Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3245-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-3245-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene
Department of Chemistry, University of California,
Irvine, CA 92697, USA
Lisa M. Wingen
Department of Chemistry, University of California,
Irvine, CA 92697, USA
Véronique Perraud
Department of Chemistry, University of California,
Irvine, CA 92697, USA
Barbara J. Finlayson-Pitts
CORRESPONDING AUTHOR
Department of Chemistry, University of California,
Irvine, CA 92697, USA
Related authors
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025, https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Huilin Hu, Yunyi Liang, Ting Li, Yongliang She, Yao Wang, Ting Yang, Min Zhou, Ziyue Li, Chenxi Li, Huayun Xiao, Jianlin Hu, Jingyi Li, and Yue Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1909, https://doi.org/10.5194/egusphere-2025-1909, 2025
Short summary
Short summary
Isoprene-derived secondary organic aerosol (iSOA) is a major type of biogenic SOA in the atmosphere, yet its response to long-term anthropogenic emission reductions remains poorly understood. Here, combing field observations and model simulations, we characterized the abundance, trend, and underlying drivers of iSOA in Shanghai, China during 2015–2021, which will advance our understandings of the formation and impacts of biogenic SOA under rapidly evolving emission scenarios in urban regions.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 13433–13450, https://doi.org/10.5194/acp-23-13433-2023, https://doi.org/10.5194/acp-23-13433-2023, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in the summer of 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, https://doi.org/10.5194/acp-21-2959-2021, 2021
Short summary
Short summary
Organosulfates (OSs) are important constituents and tracers of secondary organic aerosols (SOAs) in the atmosphere. Here we characterized the OS species in ambient aerosols in Shanghai, China. We find that the contributions of OSs and SOAs to organic aerosols have increased in recent years and that OS production was largely controlled by the oxidant level (Ox), particularly in summer. We infer that mitigation of Ox pollution can effectively reduce the production of OSs and SOAs in eastern China.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Yue Zhao, Jeremy K. Chan, Felipe D. Lopez-Hilfiker, Megan A. McKeown, Emma L. D'Ambro, Jay G. Slowik, Jeffrey A. Riffell, and Joel A. Thornton
Atmos. Meas. Tech., 10, 3609–3625, https://doi.org/10.5194/amt-10-3609-2017, https://doi.org/10.5194/amt-10-3609-2017, 2017
Short summary
Short summary
We present a novel atmospheric pressure electrospray chemical ionization (ESCI) source that can generate intense and stable currents of several specific reagent ions using a range of salt solutions prepared in methanol. We couple the ESCI source to a high-resolution time-of-flight mass spectrometer (HRToF-MS) and assess instrument performance through calibrations using different gas standards and measurements of organic mixtures formed by ozonolysis of α-pinene.
Yue Zhao, Michelle C. Fairhurst, Lisa M. Wingen, Véronique Perraud, Michael J. Ezell, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 10, 1373–1386, https://doi.org/10.5194/amt-10-1373-2017, https://doi.org/10.5194/amt-10-1373-2017, 2017
Short summary
Short summary
Two model systems are studied: dicarboxylic acid particles with gaseous amines and α-cedrene ozonolysis particles. Measurements by direct analysis in real-time mass spectrometry and high-resolution time-of-flight aerosol mass spectrometry
show that the reaction of the amines with the acid particles is restricted to the surface layer, with an odd–even alternating pattern. Furthermore, in the α-cedrene study, DART-MS is able to differentiate isomers based on their volatility.
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025, https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Huilin Hu, Yunyi Liang, Ting Li, Yongliang She, Yao Wang, Ting Yang, Min Zhou, Ziyue Li, Chenxi Li, Huayun Xiao, Jianlin Hu, Jingyi Li, and Yue Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1909, https://doi.org/10.5194/egusphere-2025-1909, 2025
Short summary
Short summary
Isoprene-derived secondary organic aerosol (iSOA) is a major type of biogenic SOA in the atmosphere, yet its response to long-term anthropogenic emission reductions remains poorly understood. Here, combing field observations and model simulations, we characterized the abundance, trend, and underlying drivers of iSOA in Shanghai, China during 2015–2021, which will advance our understandings of the formation and impacts of biogenic SOA under rapidly evolving emission scenarios in urban regions.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 13433–13450, https://doi.org/10.5194/acp-23-13433-2023, https://doi.org/10.5194/acp-23-13433-2023, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in the summer of 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, https://doi.org/10.5194/acp-21-2959-2021, 2021
Short summary
Short summary
Organosulfates (OSs) are important constituents and tracers of secondary organic aerosols (SOAs) in the atmosphere. Here we characterized the OS species in ambient aerosols in Shanghai, China. We find that the contributions of OSs and SOAs to organic aerosols have increased in recent years and that OS production was largely controlled by the oxidant level (Ox), particularly in summer. We infer that mitigation of Ox pollution can effectively reduce the production of OSs and SOAs in eastern China.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Yue Zhao, Jeremy K. Chan, Felipe D. Lopez-Hilfiker, Megan A. McKeown, Emma L. D'Ambro, Jay G. Slowik, Jeffrey A. Riffell, and Joel A. Thornton
Atmos. Meas. Tech., 10, 3609–3625, https://doi.org/10.5194/amt-10-3609-2017, https://doi.org/10.5194/amt-10-3609-2017, 2017
Short summary
Short summary
We present a novel atmospheric pressure electrospray chemical ionization (ESCI) source that can generate intense and stable currents of several specific reagent ions using a range of salt solutions prepared in methanol. We couple the ESCI source to a high-resolution time-of-flight mass spectrometer (HRToF-MS) and assess instrument performance through calibrations using different gas standards and measurements of organic mixtures formed by ozonolysis of α-pinene.
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Yue Zhao, Michelle C. Fairhurst, Lisa M. Wingen, Véronique Perraud, Michael J. Ezell, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 10, 1373–1386, https://doi.org/10.5194/amt-10-1373-2017, https://doi.org/10.5194/amt-10-1373-2017, 2017
Short summary
Short summary
Two model systems are studied: dicarboxylic acid particles with gaseous amines and α-cedrene ozonolysis particles. Measurements by direct analysis in real-time mass spectrometry and high-resolution time-of-flight aerosol mass spectrometry
show that the reaction of the amines with the acid particles is restricted to the surface layer, with an odd–even alternating pattern. Furthermore, in the α-cedrene study, DART-MS is able to differentiate isomers based on their volatility.
Véronique Perraud, Simone Meinardi, Donald R. Blake, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 9, 1325–1340, https://doi.org/10.5194/amt-9-1325-2016, https://doi.org/10.5194/amt-9-1325-2016, 2016
Short summary
Short summary
Gas phase organosulfur compounds in air serve as precursors of particles which impact human health, visibility, and climate. We compare here two different approaches to measuring these compounds, one an online mass spectrometry technique and the other canister sampling followed by offline analysis by gas chromatography. We show that each approach has its own advantages and limitations in measuring these compounds in complex mixtures, including some artifacts due to reactions on surfaces.
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014, https://doi.org/10.5194/amt-7-2733-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The role of surface-active macromolecules in the ice-nucleating ability of lignin, Snomax, and agricultural soil extracts
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Laboratory studies on the optical, physical, and chemical properties of fresh and aged biomass burning aerosols
The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Initiation of linoleic acid autoxidation with ozone exposure in levitated aerosol particles
Measurement Report: Seasonal trends and chemical speciation of chromium (III/VI) in different fractions of urban particulate matter – a case study of Radom, Poland
Boosting aerosol surface effects: strongly enhanced cooperative surface propensity of atmospherically relevant organic molecular ions in aqueous solution
Potential contribution to secondary aerosols from benzothiazoles in the atmospheric aqueous phase based on oxidation and oligomerization mechanisms
Molecular insight into aqueous-phase photolysis and photooxidation of water-soluble organic matter emitted from biomass burning and coal combustion
Roles of pH, ionic strength, and sulfate in the aqueous nitrate-mediated photooxidation of green leaf volatiles
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Gas-particle partitioning of m-xylene and naphthalene oxidation products: temperature and NOx influence
Surprisingly Robust Photochemistry in Subarctic Particles During Winter: Evidence from Photooxidants
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Ozonolysis of primary biomass burning organic aerosol particles: Insights into reactivity and phase state
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Photochemical aging of aviation emissions: transformation of chemical and physical properties of exhaust emissions from a laboratory-scale jet engine combustion chamber
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Technical note: High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 1: Continuous flow analysis of the SIGMA-D ice core using the wide-range Single-Particle Soot Photometer and a high-efficiency nebulizer
HOMs and SOA formation from the oxidation of α- and β-phellandrenes by NO3 radicals
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Copper accelerates photochemically induced radical chemistry of iron-containing SOA
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025, https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Short summary
Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. To explain this difference, we propose that as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air–water interface.
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025, https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Short summary
This work provides the first fundamental laboratory data to evaluate SOA (secondary organic aerosol) production from styrene and NO3 chemistry. Additionally, the formation mechanisms of aromatic organic nitrates (ONs) are reported, highlighting that previously identified nitroaromatics in ambient field campaigns can be aromatic ONs. Finally, the hydrolysis lifetimes observed for ONs generated from styrene and NO3 oxidation can serve as experimentally constrained parameters for modeling hydrolysis of aromatic ONs in general.
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025, https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
Short summary
Hydrogen peroxide (HOOH) is an important oxidant that forms atmospheric sulfate. We demonstrate that the illumination of brown carbon can rapidly form HOOH within particles, even under the low-sunlight conditions of Fairbanks, Alaska, during winter. This in-particle formation of HOOH is fast enough that it forms sulfate at significant rates. In contrast, the formation of HOOH in the gas phase during the campaign is expected to be negligible because of high NOx levels.
Zheng Yang, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, Jie Tian, Yaqing Zhou, Ge Xu, Miao Gao, Xiaoxian Zhou, Yang Zhang, Weikang Ran, Ning Yang, Jiangchuan Tao, Juan Hong, Yunfei Wu, Junji Cao, Hang Su, and Yafang Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1020, https://doi.org/10.5194/egusphere-2025-1020, 2025
Short summary
Short summary
Our results demonstrate that the reduction in mass absorption efficiency from biomass burning is mainly driven by the decline in the imaginary part, with particle size playing a minor role. And light absorption of oxygenated BrC increases significantly with aging, but hydrocarbon-like BrC decrease over time. These results emphasize the necessity to classify BrC into different groups based on their mass absorption efficiency and atmospheric behavior in climate models.
Rhianna L. Evans, Daniel J. Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor E. Oghama, Gordon McFiggans, Jacqueline F. Hamilton, and Andrew R. Rickard
Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025, https://doi.org/10.5194/acp-25-4367-2025, 2025
Short summary
Short summary
The chemical composition of organic aerosol derived from wood-burning emissions under different burning conditions was characterised. Fresh emissions from flaming and smouldering were largely aromatic in nature, whereas upon aging the aromatic content decreased. This decrease was greater for smouldering due to the loss of toxic polyaromatic species, whereas under flaming conditions highly toxic polyaromatic species were produced. These differences present an important challenge for future policy.
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025, https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Short summary
Halogenated polycyclic aromatic hydrocarbons (XPAHs) are emerging pollutants. Stability during atmospheric transformation processes is crucial for predicting their environmental fate and assessing the associated risks. Here, we conducted field studies and laboratory simulation experiments to reveal the mechanisms, influencing factors and products for XPAHs' heterogeneous phototransformation. Results revealed that the conversion of XPAHs led to a reduction in environmental risk.
Marcel Müller, Marcel Reichmuth, and Ulrich Karl Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1238, https://doi.org/10.5194/egusphere-2025-1238, 2025
Short summary
Short summary
The initiation of autoxidation by ozonolysis was investigated on levitated linoleic acid droplets using electrodynamic balance–mass spectrometry. Exposing the droplets to ozone for one hour before switching the gas phase to air without ozone led to a shortening of the autoxidation initiation phase in comparison to experiments without ozone exposure. Results were compared to a bulk reaction model to investigate the synergistic effects of ozonolysis and autoxidation.
Monika Łożyńska, Marzena Trojanowska, Artur Molik, and Ryszard Świetlik
EGUsphere, https://doi.org/10.5194/egusphere-2025-541, https://doi.org/10.5194/egusphere-2025-541, 2025
Short summary
Short summary
The assessment of chromium occurrence in particulate matter in cities: PM10, PM2.5, PM1 and PM0.25 during the calendar year was presented. The seasonality of both pseudototal chromium content and its valence speciation was examined. Seasonality of changes in Crtot and Cr(VI) concentrations was observed. Maximum in the winter season, most likely due to the greater share of fuel combustion sources. Regardless of the season, the risk levels for Radom residents were within the acceptable risk range.
Harmanjot Kaur, Stephan Thürmer, Shirin Gholami, Bruno Credidio, Florian Trinter, Debora Vasconcelos, Ricardo Marinho, Joel Pinheiro, Hendrik Bluhm, Arnaldo Naves de Brito, Gunnar Öhrwall, Bernd Winter, and Olle Björneholm
Atmos. Chem. Phys., 25, 3503–3518, https://doi.org/10.5194/acp-25-3503-2025, https://doi.org/10.5194/acp-25-3503-2025, 2025
Short summary
Short summary
Understanding the surface composition of aerosols is crucial for advancing climate models. We investigated the interface of single-component and mixed aqueous solutions of atmospherically relevant carboxylic acid and alkyl-ammonium ions using liquid-jet photoelectron spectroscopy. An exponential increase in surface propensity as a function of chain length was found for the single species, and cooperative effects in the mixtures cause a further drastic increase in surface solute concentration.
Qun Zhang, Wei Zhou, Shanshan Tang, Kai Huang, Jie Fu, Zechen Yu, Yunhe Teng, Shuyi Shen, Yang Mei, Xuezhi Yang, Jianjie Fu, and Guibin Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1028, https://doi.org/10.5194/egusphere-2025-1028, 2025
Short summary
Short summary
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles (BTs), common rubber additives found in urban air, through laboratory simulation experiments. BTs can rapidly degrade, leading to light absorption, high yields of sulfate, and the formation of highly oxidized and/or oligomerized organic compounds. The results reveal that aqueous-phase BTs can contribute to secondary aerosols, altering the chemical and optical properties of atmospheric particles.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Yuting Lyu, Taekyu Joo, Ruihan Ma, Mark Kristan Espejo Cabello, Tianye Zhou, Shun Yeung, Cheuk Ki Wong, Yifang Gu, Yiming Qin, and Theodora Nah
EGUsphere, https://doi.org/10.5194/egusphere-2025-570, https://doi.org/10.5194/egusphere-2025-570, 2025
Short summary
Short summary
We investigated the aqueous nitrate-mediated photooxidation of four green leaf volatiles (GLVs). The aqueous reaction medium conditions, dilute cloud/fog vs. concentrated aqueous aerosol conditions, governed the effects that pH, ionic strength, and sulfate have on the GLV degradation rates and aqSOA mass yields. Most notably, reactions initiated by sulfate photolysis have significant effects in aqueous aerosols, but not in cloud/fog droplets.
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025, https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Short summary
Thin film formation at the air–water interface from material extracted from atmospheric aerosol was demonstrated, supporting the core–shell morphology. Film thicknesses were approximately 10 Å and 17 Å for urban and remote extracts, respectively. Exposure to gas-phase OH radicals showed fast reactions and short lifetimes of around 1 h. The effect on the Earth's radiative balance indicated that removing half of the film could significantly increase the top-of-atmosphere albedo for urban films.
Marwa Shahin, Julien Kammer, Brice Temime-Roussel, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2025-833, https://doi.org/10.5194/egusphere-2025-833, 2025
Short summary
Short summary
Air pollution and climate change are influenced by tiny airborne particles called aerosols. This study explores how pollutants from urban sources, as m-xylene and naphthalene, form new particles in the atmosphere under different conditions. Using advanced techniques, we show how temperature and nitrogen oxides affect the formation and behaviour of these particles. Our findings will improve our understanding on secondary organic particle and air quality models.
Laura Marie Dahler Heinlein, Junwei He, Michael Oluwatoyin Sunday, Fangzhou Guo, James Campbell, Allison Moon, Sukriti Kapur, Ting Fang, Kasey Edwards, Meeta Cesler-Maloney, Alyssa J. Burns, Jack Dibb, William Simpson, Manabu Shiraiwa, Becky Alexander, Jingqiu Mao, James H. Flynn III, Jochen Stutz, and Cort Anastasio
EGUsphere, https://doi.org/10.5194/egusphere-2025-824, https://doi.org/10.5194/egusphere-2025-824, 2025
Short summary
Short summary
High-latitude cities like Fairbanks, Alaska, experience severe wintertime pollution episodes. While conventional wisdom holds that oxidation is slow under these conditions, field measurements find oxidized products in particles. To explore this, we measured oxidants in aqueous extracts of winter particles from Fairbanks. We find high concentrations of oxidants during illumination, indicating that particle photochemistry can be significant even in high latitudes during winter.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025, https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolites and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, Andre S. H. Prevot, Imad El Haddad, and David M. Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-385, https://doi.org/10.5194/egusphere-2025-385, 2025
Short summary
Short summary
Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions the reaction does not proceed to completion, while under high humidity conditions the reactivity proceeds further. These results indicate the reactivity with ozone is likely impacted by aerosol phase state (e.g. aerosol viscosity).
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025, https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Short summary
Past atmospheric NH3 pollution in south-eastern Europe was reconstructed by analysing ammonium in an ice core drilled at the Mount Elbrus (Caucasus, Russia). The observed 3.5-fold increase in ice concentrations between 1750 and 1990 CE is in good agreement with estimated past dominant ammonia emissions from agriculture, mainly from south European Russia and Türkiye. In contrast to present-day conditions, the ammonium level observed in 1750 CE indicates significant natural emissions at that time.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025, https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications for urban air quality. Health effect studies have focused on whole particulate matter, but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and seed aerosol acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025, https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Short summary
This study provides laboratory evidence that the photosensitizers in biomass burning extracts can enhance sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air conditions, with a lower contribution of direct photosensitization via triplets.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3836, https://doi.org/10.5194/egusphere-2024-3836, 2025
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to shift from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024, https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) from acetone photooxidation in the presence of various seeds were studied to illustrate SOA formation kinetics under ammonia-rich conditions. The oxidation mechanism of acetone was investigated using an observation-based model incorporating a Master Chemical Mechanism model. A higher SOA yield of acetone was observed compared to methylglyoxal due to an enhanced uptake of the small photooxidation products of acetone.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024, https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate and fructose) during humidity change and ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact water uptake and chemical reactivity, affecting atmospheric lifetimes, urban air quality (preventing harmful emissions from degradation and enabling their long-range transport) and climate (affecting cloud formation), with implications for human health.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Sergio Harb, Manuela Cirtog, Stéphanie Alage, Christopher Cantrell, Mathieu Cazaunau, Vincent Michoud, Edouard Pangui, Antonin Bergé, Chiara Giorio, Francesco Battaglia, and Bénédicte Picquet-Varrault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3419, https://doi.org/10.5194/egusphere-2024-3419, 2024
Short summary
Short summary
We investigated the reactions of α- and β-phellandrenes (from vegetation emissions) with NO3 radicals, a major nighttime oxidant from human activities. Using lab-based simulations, we examined these reactions and measured particle formation and by-products. Our findings reveal that α- and β-phellandrenes are efficient particle sources and enhance our understanding of biogenic-anthropogenic interactions and their contributions to atmospheric changes affecting climate and health.
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Ka Yuen Cheung, and Peter Aaron Alpert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3226, https://doi.org/10.5194/egusphere-2024-3226, 2024
Short summary
Short summary
Aerosol particles composed of metal complexes generate radicals as the result of photochemical reactions. Reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account a decreased photochemical activity and use a copper-induced reoxidation reaction.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Cited articles
Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.:
Experimental determination of chemical diffusion within secondary organic
aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991,
https://doi.org/10.1039/C2cp44013j, 2013.
Alfarra, M. R., Hamilton, J. F., Wyche, K. P., Good, N., Ward, M. W., Carr,
T., Barley, M. H., Monks, P. S., Jenkin, M. E., Lewis, A. C., and McFiggans,
G. B.: The effect of photochemical ageing and initial precursor concentration
on the composition and hygroscopic properties of β-caryophyllene
secondary organic aerosol, Atmos. Chem. Phys., 12, 6417–6436,
https://doi.org/10.5194/acp-12-6417-2012, 2012.
Anglada, J. M., Gonzalez, J., and Torrent-Sucarrat, M.: Effects of the
substituents on the reactivity of carbonyl oxides. A theoretical study on the
reaction of substituted carbonyl oxides with water, Phys. Chem. Chem. Phys.,
13, 13034–13045, https://doi.org/10.1039/c1cp20872a, 2011.
Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic Influence on
the Semisolid-to-Liquid Transition of Secondary Organic Materials, J. Phys.
Chem. A, 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015.
Berndt, T., Kaethner, R., Voigtlander, J., Stratmann, F., Pfeifle, M.,
Reichle, P., Sipila, M., Kulmala, M., and Olzmann, M.: Kinetics of the
unimolecular reaction of CH2OO and the bimolecular reactions with the
water monomer, acetaldehyde and acetone under atmospheric conditions, Phys.
Chem. Chem. Phys., 17, 19862–19873, https://doi.org/10.1039/c5cp02224j, 2015.
Birdsall, A. W., Zentner, C. A., and Elrod, M. J.: Study of the kinetics and
equilibria of the oligomerization reactions of 2-methylglyceric acid, Atmos.
Chem. Phys., 13, 3097–3109, https://doi.org/10.5194/acp-13-3097-2013, 2013.
Bones, D. L., Reid, J. P., Lienhard, D. M., and Krieger, U. K.: Comparing the
mechanism of water condensation and evaporation in glassy aerosol, P. Natl.
Acad. Sci. USA, 109, 11613–11618, 2012.
Bonn, B. and Moortgat, G. K.: Sesquiterpene ozonolysis: Origin of atmospheric
new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., 30,
1585, https://doi.org/10.1029/2003GL017000, 2003.
Bonn, B., Kulmala, M., Riipinen, I., Sihto, S. L., and Ruuskanen, T. M.: How
biogenic terpenes govern the correlation between sulfuric acid concentrations
and new particle formation, J. Geophys. Res., 113, D12209,
https://doi.org/10.1029/2007jd009327, 2008.
Bouvier-Brown, N. C., Goldstein, A. H., Gilman, J. B., Kuster, W. C., and de
Gouw, J. A.: In-situ ambient quantification of monoterpenes, sesquiterpenes,
and related oxygenated compounds during BEARPEX 2007: implications for gas-
and particle-phase chemistry, Atmos. Chem. Phys., 9, 5505–5518,
https://doi.org/10.5194/acp-9-5505-2009, 2009.
Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg,
J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S.,
Wiedensohler, A., Bonn, B., Kulmala, M., and Guenther, A.: New particle
formation in the Front Range of the Colorado Rocky Mountains, Atmos. Chem.
Phys., 8, 1577–1590, https://doi.org/10.5194/acp-8-1577-2008, 2008.
Bruns, E. A., Perraud, V., Zelenyuk, A., Ezell, M. J., Johnson, S. N., Yu,
Y., Imre, D., Finlayson-Pitts, B. J., and Alexander, M. L.: Comparison of
FTIR and particle mass spectrometry for the measurement of particulate
organic nitrates, Environ. Sci. Technol., 44, 1056–1061,
https://doi.org/10.1021/Es9029864, 2010.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H.,
Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K.
R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.:
Elemental ratio measurements of organic compounds using aerosol mass
spectrometry: characterization, improved calibration, and implications,
Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Cappa, C. D. and Wilson, K. R.: Evolution of organic aerosol mass spectra
upon heating: implications for OA phase and partitioning behavior, Atmos.
Chem. Phys., 11, 1895–1911, https://doi.org/10.5194/acp-11-1895-2011, 2011.
Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H.,
Lewandowski, M., Edney, E. O., Kleindienst, T. E., Jaoui, M., Edgerton, E.
S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., and Seinfeld, J.
H.: Influence of aerosol acidity on the chemical composition of secondary
organic aerosol from β-caryophyllene, Atmos. Chem. Phys., 11,
1735–1751, https://doi.org/10.5194/acp-11-1735-2011, 2011.
Chan, M. N., Zhang, H. F., Goldstein, A. H., and Wilson, K. R.: Role of water
and phase in the heterogeneous oxidation of solid and aqueous succinic acid
aerosol by hydroxyl radicals, J. Phys. Chem. C, 118, 28978–28992,
https://doi.org/10.1021/jp5012022, 2014.
Chao, W., Hsieh, J. T., Chang, C. H., and Lin, J. J. M.: Direct kinetic
measurement of the reaction of the simplest Criegee intermediate with water
vapor, Science, 347, 751–754, https://doi.org/10.1126/science.1261549, 2015.
Chen, Q., Li, Y. L., McKinney, K. A., Kuwata, M., and Martin, S. T.: Particle
mass yield from β-caryophyllene ozonolysis, Atmos. Chem. Phys., 12,
3165–3179, https://doi.org/10.5194/acp-12-3165-2012, 2012.
Cody, R. B., Laramee, J. A., and Durst, H. D.: Versatile new ion source for
the analysis of materials in open air under ambient conditions, Anal. Chem.,
77, 2297–2302, https://doi.org/10.1021/ac050162j, 2005.
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new
vapour pressure estimation methodfor organic molecules including
non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11,
9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011.
Crank, J.: The mathematics of diffusion, 2nd Edn., Clarendon Press, Oxford,
1975.
Crounse, J. D., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of organic compounds in the atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, 2013.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, 2006.
DePalma, J. W., Horan, A. J., Hall, W. A., and Johnston, M. V.:
Thermodynamics of oligomer formation: implications for secondary organic
aerosol formation and reactivity, Phys. Chem. Chem. Phys., 15, 6935–6944,
2013.
Ding, X., He, Q. F., Shen, R. Q., Yu, Q. Q., and Wang, X. M.: Spatial
distributions of secondary organic aerosols from isoprene, monoterpenes,
beta-caryophyllene, and aromatics over China during summer, J. Geophys. Res.,
119, 11877–11891, https://doi.org/10.1002/2014jd021748, 2014.
Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of
organic peroxides to secondary aerosol formed from reactions of monoterpenes
with O3, Environ. Sci. Technol., 39, 4049–4059, 2005.
Donahue, N. M., Drozd, G. T., Epstein, S. A., Presto, A. A., and Kroll, J.
H.: Adventures in ozoneland: down the rabbit-hole, Phys. Chem. Chem. Phys.,
13, 10848–10857, https://doi.org/10.1039/c0cp02564j, 2011.
Donahue, N. M., Ortega, I. K., Chuang, W., Riipinen, I., Riccobono, F.,
Schobesberger, S., Dommen, J., Baltensperger, U., Kulmala, M., Worsnop, D.
R., and Vehkamaki, H.: How do organic vapors contribute to new-particle
formation?, Faraday Discuss., 165, 91–104, https://doi.org/10.1039/c3fd00046j, 2013.
Duhl, T. R., Helmig, D., and Guenther, A.: Sesquiterpene emissions from
vegetation: a review, Biogeosciences, 5, 761–777, https://doi.org/10.5194/bg-5-761-2008,
2008.
Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I.,
Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres,
S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma,
J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S.,
Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petaja, T.,
Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and
Mentel, T. F.: A large source of low-volatility secondary organic aerosol,
Nature, 506, 476–479, 2014.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere: theory, experiments, and applications, Academic Press, San Diego,
2000.
Gao, Y. Q., Hall, W. A., and Johnston, M. V.: Molecular composition of
monoterpene secondary organic aerosol at low mss loading, Environ. Sci.
Technol., 44, 7897–7902, https://doi.org/10.1021/Es101861k, 2010.
Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic
constituents in the earth's atmosphere, Environ. Sci. Technol., 41,
1514–1521, https://doi.org/10.1021/Es072476p, 2007.
Greaves, J. and Roboz, J.: Mass spectrometry for the novice, CRC Press, Boca
Raton, F. L., USA, 2013.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A
global-model of natural volatile organic compound emissions, J. Geophys.
Res., 100, 8873–8892, https://doi.org/10.1029/94jd02950, 1995.
Hall, W. A. and Johnston, M. V.: Oligomer formation pathways in secondary
organic aerosol from MS and MS/MS measurements with high mass accuracy and
resolving power, J. Am. Soc. Mass Spectrom., 23, 1097–1108, 2012.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.
E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel,
Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Harrick, N. J.: Internal reflection spectroscopy, Interscience Publishers,
New York, 1967.
Heaton, K. J., Sleighter, R. L., Hatcher, P. G., Hall, W. A., and Johnston,
M. V.: Composition domains in monoterpene secondary organic aerosol, Environ.
Sci. Technol., 43, 7797–7802, 2009.
Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P.,
Wiedinmyer, C., Milford, J., and Sakulyanontvittaya, T.: Sesquiterpene
emissions from pine trees – Identifications, emission rates and flux
estimates for the contiguous United States, Environ. Sci. Technol., 41,
1545–1553, https://doi.org/10.1021/Es0618907, 2007.
Hodas, N., Zuend, A., Mui, W., Flagan, R. C., and Seinfeld, J. H.: Influence
of particle-phase state on the hygroscopic behavior of mixed
organic–inorganic aerosols, Atmos. Chem. Phys., 15, 5027–5045,
https://doi.org/10.5194/acp-15-5027-2015, 2015.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R.
C., and Seinfeld, J. H.: Formation of organic aerosols from the oxidation of
biogenic hydrocarbons, J. Atmos. Chem., 26, 189–222,
https://doi.org/10.1023/A:1005734301837, 1997.
Hoffmann, T., Bandur, R., Marggraf, U., and Linscheid, M.: Molecular
composition of organic aerosols formed in the alpha-pinene/O3 reaction:
Implications for new particle formation processes, J. Geophys. Res., 103,
25569–25578, 1998.
Hu, D., Bian, Q., Li, T. W. Y., Lau, A. K. H., and Yu, J. Z.: Contributions
of isoprene, monoterpenes, beta-caryophyllene, and toluene to secondary
organic aerosols in Hong Kong during the summer of 2006, J. Geophys. Res.,
113, D22206, https://doi.org/10.1029/2008jd010437, 2008.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013.
Jaoui, M., Sexton, K. G., and Kamens, R. M.: Reaction of alpha-cedrene with
ozone: mechanism, gas and particulate products distribution, Atmos. Environ.,
38, 2709–2725, 2004.
Jaoui, M., Kleindienst, T. E., Docherty, K. S., Lewandowski, M., and
Offenberg, J. H.: Secondary organic aerosol formation from the oxidation of a
series of sesquiterpenes: alpha-cedrene, beta-caryophyllene, alpha-humulene
and alpha-farnesene with O3, OH and NO3 radicals, Environ. Chem.,
10, 178–193, https://doi.org/10.1071/En13025, 2013.
Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V. M., Junninen, H.,
Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R.,
Kulmala, M., Ehn, M., and Sipila, M.: Production of extremely low volatile
organic compounds from biogenic emissions: Measured yields and atmospheric
implications, P. Natl. Acad. Sci. USA, 112, 7123–7128,
https://doi.org/10.1073/pnas.1423977112, 2015.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat,
G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E.,
Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate
modelling: a review, Atmos. Chem. Phys., 5, 1053–1123,
https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kanawati, B., Herrmann, F., Joniec, S., Winterhalter, R., and Moortgat, G.
K.: Mass spectrometric characterization of beta-caryophyllene ozonolysis
products in the aerosol studied using an electrospray triple quadrupole and
time-of-flight analyzer hybrid system and density functional theory, Rapid
Commun. Mass Sp., 22, 165–186, https://doi.org/10.1002/Rcm.3340, 2008.
Kidd, C., Perraud, V., and Finlayson-Pitts, B. J.: New insights into
secondary organic aerosol from the ozonolysis of alpha-pinene from combined
infrared spectroscopy and mass spectrometry measurements, Phys. Chem. Chem.
Phys., 16, 22706–22716, 2014a.
Kidd, C., Perraud, V., Wingen, L. M., and Finlayson-Pitts, B. J.: Integrating
phase and composition of secondary organic aerosol from the ozonolysis of
alpha-pinene, P. Natl. Acad. Sci. USA, 111, 7552–7557, 2014b.
Kim, H., Liu, S., Russell, L. M., and Paulson, S. E.: Dependence of real
refractive indices on O : C, H : C and mass fragments of secondary
organic aerosol generated from ozonolysis and photooxidation of limonene and
alpha-pinene, Aerosol Sci. Tech., 48, 498–507,
https://doi.org/10.1080/02786826.2014.893278, 2014.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, 2011.
Kristensen, K., Enggrob, K. L., King, S. M., Worton, D. R., Platt, S. M.,
Mortensen, R., Rosenoern, T., Surratt, J. D., Bilde, M., Goldstein, A. H.,
and Glasius, M.: Formation and occurrence of dimer esters of pinene oxidation
products in atmospheric aerosols, Atmos. Chem. Phys., 13, 3763–3776,
https://doi.org/10.5194/acp-13-3763-2013, 2013.
Kristensen, K., Cui, T., Zhang, H., Gold, A., Glasius, M., and Surratt, J.
D.: Dimers in α-pinene secondary organic aerosol: effect of hydroxyl
radical, ozone, relative humidity and aerosol acidity, Atmos. Chem. Phys.,
14, 4201–4218, https://doi.org/10.5194/acp-14-4201-2014, 2014.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, 2008.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.,
Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D.
R., and Davidovits, P.: Relationship between oxidation level and optical
properties of secondary organic aerosol, Environ. Sci. Technol., 47,
6349–6357, 2013.
Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V.,
Bahreini, R., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Gas-phase
products and secondary aerosol yields from the ozonolysis of ten different
terpenes, J. Geophys. Res., 111, D07302, https://doi.org/10.1029/2005JD006437, 2006.
Lee, C. T. and Kamens, R. M.: Particle nucleation from the reaction of
α−pinene and O3, Atmos. Environ., 39, 6822–6832, 2005.
Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence
for a substantive reaction between the Criegee intermediate, CH2OO, and
the water vapour dimer, Phys. Chem. Chem. Phys., 17, 4859–4863,
https://doi.org/10.1039/c4cp04750h, 2015.
Li, Y. J., Chen, Q., Guzman, M. I., Chan, C. K., and Martin, S. T.:
Second-generation products contribute substantially to the particle-phase
organic material produced by β-caryophyllene ozonolysis, Atmos. Chem.
Phys., 11, 121–132, https://doi.org/10.5194/acp-11-121-2011, 2011.
Lignell, H., Hinks, M. L., and Nizkorodov, S. A.: Exploring matrix effects on
photochemistry of organic aerosols, P. Natl. Acad. Sci. USA, 111,
13780–13785, 2014.
Mauderly, J. L. and Chow, J. C.: Health effects of organic aerosols, Inhal.
Toxicol., 20, 257–288, https://doi.org/10.1080/08958370701866008, 2008.
Mehrer, H.: Diffusion in solids: fundamentals, methods, materials,
diffusion-controlled processes, Springer Series, solid state science, 155,
Springer, Berlin, New York, 2007.
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.:
Amorphous and crystalline aerosol particles interacting with water vapor:
conceptual framework and experimental evidence for restructuring, phase
transitions and kinetic limitations, Atmos. Chem. Phys., 9, 9491–9522,
https://doi.org/10.5194/acp-9-9491-2009, 2009.
Müller, L., Reinnig, M.-C., Warnke, J., and Hoffmann, Th.: Unambiguous
identification of esters as oligomers in secondary organic aerosol formed
from cyclohexene and cyclohexene/a-pinene ozonolysis, Atmos. Chem. Phys., 8,
1423–1433, https://doi.org/10.5194/acp-8-1423-2008, 2008.
Müller, L., Reinnig, M. C., Hayen, H., and Hoffmann, T.: Characterization of
oligomeric compounds in secondary organic aerosol using liquid chromatography
coupled to electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry, Rapid Commun. Mass Sp., 23, 971–979, 2009.
Nah, T., Chan, M., Leone, S. R., and Wilson, K. R.: Real time in situ
chemical characterization of submicrometer organic particles using direct
analysis in real time-mass spectrometry, Anal. Chem., 85, 2087–2095,
https://doi.org/10.1021/ac302560c, 2013.
Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V.,
Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution
of first- versus second-generation products to secondary organic aerosols
formed in the oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 40,
2283–2297, https://doi.org/10.1021/Es052269u, 2006.
Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan,
J. F., Hao, L. Q., Paramonov, M., Hong, J., Prisle, N. L., Malila, J.,
Romakkaniemi, S., Lehtinen, K. E. J., Laaksonen, A., Kulmala, M., Massoli,
P., Onasch, T. B., Donahue, N. M., Riipinen, I., Davidovits, P., Worsnop, D.
R., Petaja, T., and Virtanen, A.: Adsorptive uptake of water by semisolid
secondary organic aerosols, Geophys. Res. Lett., 42, 3063–3068,
https://doi.org/10.1002/2015GL063142, 2015.
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method
for predicting vapor pressures and enthalpies of vaporization of
multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796,
https://doi.org/10.5194/acp-8-2773-2008, 2008.
Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander,
M. L., Zelenyuk, A., Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and
Finlayson-Pitts, B. J.: Nonequilibrium atmospheric secondary organic aerosol
formation and growth, P. Natl. Acad. Sci. USA, 109, 2836–2841, 2012.
Reinnig, M. C., Warnke, J., and Hoffmann, T.: Identification of organic
hydroperoxides and hydroperoxy acids in secondary organic aerosol formed
during the ozonolysis of different monoterpenes and sesquiterpenes by on-line
analysis using atmospheric pressure chemical ionization ion trap mass
spectrometry, Rapid Commun. Mass Sp., 23, 1735–1741, https://doi.org/10.1002/Rcm.4065,
2009.
Renbaum, L. H. and Smith, G. D.: The importance of phase in the
radical-initiated oxidation of model organic aerosols: reactions of solid and
liquid brassidic acid particles, Phys. Chem. Chem. Phys., 11, 2441–2451,
https://doi.org/10.1039/b816799k, 2009.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M.,
Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity
of alpha-pinene secondary organic material and implications for particle
growth and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019, 2013.
Richters, S., Herrmann, H., and Berndt, T.: Gas-phase rate coefficients of
the reaction of ozone with four sesquiterpenes at 295 ± 2 K, Phys.
Chem. Chem. Phys., 17, 11658–11669, https://doi.org/10.1039/c4cp05542j, 2015.
Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S.,
Ehn, M., Junninen, H., Lehtipalo, K., Petäjä, T., Slowik, J., Chang,
R., Shantz, N. C., Abbatt, J., Leaitch, W. R., Kerminen, V.-M., Worsnop, D.
R., Pandis, S. N., Donahue, N. M., and Kulmala, M.: Organic condensation: a
vital link connecting aerosol formation to cloud condensation nuclei (CCN)
concentrations, Atmos. Chem. Phys., 11, 3865–3878,
https://doi.org/10.5194/acp-11-3865-2011, 2011.
Rissanen, M. P., Kurten, T., Sipila, M., Thornton, J. A., Kausiala, O.,
Garmash, O., Kjaergaard, H. G., Petaja, T., Worsnop, D. R., Ehn, M., and
Kulmala, M.: Effects of chemical complexity on the autoxidation mechanisms of
endocyclic alkene ozonolysis products: from methylcyclohexenes toward
understanding alpha-pinene, J. Phys. Chem. A, 119, 4633–4650,
https://doi.org/10.1021/jp510966g, 2015.
Ruscic, B.: Active thermochemical tables: water and water dimer, J. Phys.
Chem. A, 117, 11940–11953, https://doi.org/10.1021/jp403197t, 2013.
Ryzhkov, A. B. and Ariya, P. A.: A theoretical study of the reactions of
parent and substituted Criegee intermediates with water and the water dimer,
Phys. Chem. Chem. Phys., 6, 5042–5050, https://doi.org/10.1039/b408414d, 2004.
Sadezky, A., Winterhalter, R., Kanawati, B., Römpp, A., Spengler, B.,
Mellouki, A., Le Bras, G., Chaimbault, P., and Moortgat, G. K.: Oligomer
formation during gas-phase ozonolysis of small alkenes and enol ethers: new
evidence for the central role of the Criegee Intermediate as oligomer chain
unit, Atmos. Chem. Phys., 8, 2667–2699, https://doi.org/10.5194/acp-8-2667-2008, 2008.
Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S.,
Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and sesquiterpene
emission estimates for the United States, Environ. Sci. Technol., 42,
1623–1629, https://doi.org/10.1021/Es702274e, 2008a.
Sakulyanontvittaya, T., Guenther, A., Helmig, D., Milford, J., and
Wiedinmyer, C.: Secondary organic aerosol from sesquiterpene and monoterpene
emissions in the United States, Environ. Sci. Technol., 42, 8784–8790,
https://doi.org/10.1021/Es800817r, 2008b.
Saukko, E., Lambe, A. T., Massoli, P., Koop, T., Wright, J. P., Croasdale, D.
R., Pedernera, D. A., Onasch, T. B., Laaksonen, A., Davidovits, P., Worsnop,
D. R., and Virtanen, A.: Humidity-dependent phase state of SOA particles from
biogenic and anthropogenic precursors, Atmos. Chem. Phys., 12, 7517–7529,
https://doi.org/10.5194/acp-12-7517-2012, 2012.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, 2nd Edn., J. Wiley, Hoboken, N.J., 2006.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801,
https://doi.org/10.1029/2012GL054008, 2012.
Shiraiwa, M., Ammann, M., Koop, T., and Poschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA, 108,
11003–11008, 2011.
Shiraiwa, M., Selzle, K., and Pöschl, U.: Hazardous components and health
effects of atmospheric aerosol particles: reactive oxygen species, soot,
polycyclic aromatic compounds and allergenic proteins, Free Radical Res., 46,
927–939, https://doi.org/10.3109/10715762.2012.663084, 2012.
Shu, Y. G. and Atkinson, R.: Rate constants for the gas-phase reactions of
O3 with a series of terpenes and OH radical formation from the O3
reactions with sesquiterpenes at 296 ± 2 K, Int. J. Chem. Kinet., 26,
1193–1205, 1994.
Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic
aerosol: The role of particle phase state and relative humidity, Geophys.
Res. Lett., 41, 5297–5306, https://doi.org/10.1002/2014GL060582, 2014.
Socrates, G.: Infrared and Raman characteristic group frequencies: tables and
charts, 3rd Edn., Wiley, Chichester, New York, 2001.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. K. W.,
Osborn, D. L., and Percival, C. J.: Direct measurements of
conformer-dependent reactivity of the criegee intermediate CH3CHOO,
Science, 340, 177–180, 2013.
Tasoglou, A. and Pandis, S. N.: Formation and chemical aging of secondary
organic aerosol during the β-caryophyllene oxidation, Atmos. Chem.
Phys., 15, 6035–6046, https://doi.org/10.5194/acp-15-6035-2015, 2015.
Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., and
Johnston, M. V.: Formation of oligomers in secondary organic aerosol,
Environ. Sci. Technol., 38, 1428–1434, 2004.
Vaden, T. D., Imre, D., Beranek, J., Shrivastava, M., and Zelenyuk, A.:
Evaporation kinetics and phase of laboratory and ambient secondary organic
aerosol, P. Natl. Acad. Sci. USA, 108, 2190–2195, 2011.
Vereecken, L., Muller, J. F., and Peeters, J.: Low-volatility poly-oxygenates
in the OH-initiated atmospheric oxidation of alpha-pinene: impact of
non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9,
5241–5248, 2007.
Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee
intermediates with NO, RO2, and SO2, and their fate in the
atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, 2012.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P.,
Leskinen, J., Makela, J. M., Holopainen, J. K., Poschl, U., Kulmala, M.,
Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic
secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee, J. D., Scheer, A.
M., Osborn, D. L., Lowe, D., Booth, A. M., Xiao, P., Khan, M. A. H.,
Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of
C1 and C2 Criegee intermediate reactions with formic and acetic acid near the
collision limit: direct kinetics measurements and atmospheric implications,
Angew. Chem.-Int. Ed., 53, 4547–4550, 2014.
Winkler, P. M., Ortega, J., Karl, T., Cappellin, L., Friedli, H. R.,
Barsanti, K., McMurry, P. H., and Smith, J. N.: Identification of the
biogenic compounds responsible for size-dependent nanoparticle growth,
Geophys. Res. Lett., 39, L20815, https://doi.org/10.1029/2012gl053253, 2012.
Winterhalter, R., Herrmann, F., Kanawati, B., Nguyen, T. L., Peeters, J.,
Vereecken, L., and Moortgat, G. K.: The gas-phase ozonolysis of
beta-caryophyllene (C15H24). Part I: an experimental study, Phys.
Chem. Chem. Phys., 11, 4152–4172, https://doi.org/10.1039/B817824k, 2009.
Witkowski, B. and Gierczak, T.: Analysis of alpha-acyloxyhydroperoxy
aldehydes with electrospray ionization-tandem mass spectrometry
(ESI-MSn), J. Mass Spectrom., 48, 79–88, https://doi.org/10.1002/jms.3130, 2013.
Witkowski, B. and Gierczak, T.: Early stage composition of SOA produced by
alpha-pinene/ozone reaction: alpha-Acyloxyhydroperoxy aldehydes and acidic
dimers, Atmos. Environ., 95, 59–70, 2014.
Yao, L., Ma, Y., Wang, L., Zheng, J., Khalizov, A., Chen, M. D., Zhou, Y. Y.,
Qi, L., and Cui, F. P.: Role of stabilized Criegee intermediate in secondary
organic aerosol formation from the ozonolysis of alpha-cedrene, Atmos.
Environ., 94, 448–457, 2014.
Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Boge, O., Herrmann,
H., Maenhaut, W., and Claeys, M.: Terpenylic acid and related compounds:
precursors for dimers in secondary organic aerosol from the ozonolysis of
alpha- and beta-pinene, Atmos. Chem. Phys., 10, 9383–9392, 2010.
Ying, Q., Li, J. Y., and Kota S. H.: Significant contributions of isoprene to
summertime secondary organic aerosol in eastern United States, Environ. Sci.
Technol., 49, 7834–7842, 2015.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007.
Zhang, R. Y., Wang, G. H., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang,
W. G., Hu, M., and Wang, Y.: Formation of urban fine particulate matter,
Chem. Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, X., McVay, R. C., Huang, D. D., Dalleska, N. F., Aumont, B., Flagan,
R. C., and Seinfeld, J. H.: Formation and evolution of molecular products in
α-pinene secondary organic aerosol, P. Natl. Acad. Sci. USA, 112,
14168–14173, https://doi.org/10.1073/pnas.1517742112, 2015.
Zhao, J., Ortega, J., Chen, M., McMurry, P. H., and Smith, J. N.: Dependence
of particle nucleation and growth on high-molecular-weight gas-phase products
during ozonolysis of α-pinene, Atmos. Chem. Phys., 13, 7631–7644,
https://doi.org/10.5194/acp-13-7631-2013, 2013.
Zhao, Y., Wingen, L. M., Perraud, V., Greaves, J., and Finlayson-Pitts, B.
J.: Role of the reaction of stabilized Criegee intermediates with peroxy
radicals in particle formation and growth in air, Phys. Chem. Chem. Phys.,
17, 12500–12514, https://doi.org/10.1039/C5cp01171j, 2015.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605, 2012.
Short summary
A significant fraction of airborne particles, which have significant impacts on human health, visibility, and climate, are formed from the oxidation of gaseous precursors to generate low-volatility products. We show here that a sesquiterpene, α-cedrene, efficiently forms high-viscosity semisolid particles with complex composition via mechanisms that involve the highly reactive Criegee intermediate and that high molecular weight products play an important role in new particle formation.
A significant fraction of airborne particles, which have significant impacts on human health,...
Altmetrics
Final-revised paper
Preprint