Articles | Volume 15, issue 4
https://doi.org/10.5194/acp-15-2203-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-2203-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends
Institute of Atmospheric Physics ASCR, Bocni II, 14131 Prague, Czech Republic
P. Krizan
Institute of Atmospheric Physics ASCR, Bocni II, 14131 Prague, Czech Republic
J. Lastovicka
Institute of Atmospheric Physics ASCR, Bocni II, 14131 Prague, Czech Republic
Related authors
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-167, https://doi.org/10.5194/amt-2023-167, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Waves are very important as main drivers of different patterns (streamers) in stratosphere. We analyze some changes of these waves or infrasound characteristics related to streamers using continuous Doppler soundings, array of microbarometers in the Czechia. Ground measurements using the WBCI array showed that GW propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time
Peter Krizan, Michal Kozubek, and Jan Lastovicka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-551, https://doi.org/10.5194/acp-2020-551, 2020
Publication in ACP not foreseen
Short summary
Short summary
This paper is devoted to the occurrence of discontinuities in the ozone concentration data from the selected reanalyses, because they have large impact to the results of trend studies. The discontinuity occurrence is reanalyse dependant. The discontinuities frequently occur at the middle stratosphere and in the troposphere for a certain reanalyses. According our opinion, the reanalyses data can be used in trend studies especially in the lower stratosphere.
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020, https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Short summary
Severe meteorological storm Fabienne passing above central Europe was observed. Significant variations of atmospheric and ionospheric parameters were detected. Above Europe, stratospheric temperature and wind significantly changed in coincidence with frontal transition. Within ionospheric parameters, we have detected significant wave-like activity shortly after the cold front crossed the observational point. During the storm event, we have observed strong horizontal plasma flow shears.
Jan Lastovicka, Peter Krizan, and Michal Kozubek
Ann. Geophys., 36, 181–192, https://doi.org/10.5194/angeo-36-181-2018, https://doi.org/10.5194/angeo-36-181-2018, 2018
Short summary
Short summary
The longitudinal structure in geopotential heights and meridional wind is analysed for 1979–2013 in order to find its persistence and altitudinal dependence with focus on anomalous years. Substantial deviations from the average pattern are studied for Januaries – typically the second (Euro-Atlantic) peak extends to much higher altitudes than usual. The decisive role in the existence of anomalous years appears to be played by the stationary planetary wave filtering by the zonal wind pattern.
Michal Kozubek, Peter Krizan, and Jan Lastovicka
Ann. Geophys., 35, 279–294, https://doi.org/10.5194/angeo-35-279-2017, https://doi.org/10.5194/angeo-35-279-2017, 2017
Short summary
Short summary
A study of trends in the middle stratosphere using comparisons of four main reanalyses (ERA-Interim, JRA-55, MERRA and NCEP/NCAR). We identified that all four reanalyses show very similar trends on a season or monthly basis. We also compute trends for each grid point not as a zonal mean. This approach shows detailed features in the trend studies in both hemispheres.
M. Kozubek, E. Rozanov, and P. Krizan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23891-2014, https://doi.org/10.5194/acpd-14-23891-2014, 2014
Revised manuscript not accepted
M. Kozubek, J. Laštovička, and P. Križan
Ann. Geophys., 32, 353–366, https://doi.org/10.5194/angeo-32-353-2014, https://doi.org/10.5194/angeo-32-353-2014, 2014
Jaroslav Urbář and Jan Laštovička
Ann. Geophys., 43, 67–72, https://doi.org/10.5194/angeo-43-67-2025, https://doi.org/10.5194/angeo-43-67-2025, 2025
Short summary
Short summary
Total electron content (TEC) affects the GPS (Global Positioning System) signal propagation and applications of GPS signals like positioning. Here, we study long-term trends in TEC. TEC trends are regionally different and predominantly negative; all statistically significant trends are negative. TEC trends reveal a clear wavenumber 2 longitudinal structure in low/equatorial latitudes, with strong negative trends in belts 0–60° E and 180–240° E and weak trends in belts 90–150° E and 270–330° E.
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-167, https://doi.org/10.5194/amt-2023-167, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Waves are very important as main drivers of different patterns (streamers) in stratosphere. We analyze some changes of these waves or infrasound characteristics related to streamers using continuous Doppler soundings, array of microbarometers in the Czechia. Ground measurements using the WBCI array showed that GW propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time
Jan Laštovička
Atmos. Chem. Phys., 23, 5783–5800, https://doi.org/10.5194/acp-23-5783-2023, https://doi.org/10.5194/acp-23-5783-2023, 2023
Short summary
Short summary
Increasing concentration of greenhouse gases, particularly of CO2, in the atmosphere causes well-known heating of the troposphere and surface. However, the increasing concentration of CO2 also affects higher levels of the atmosphere, the stratosphere, mesosphere, thermosphere, and ionosphere, where it results in remarkable long-term trends. This article reviews significant progress in investigations of long-term trends in the mesosphere, thermosphere, and ionosphere during the period 2018–2022.
Peter Krizan, Michal Kozubek, and Jan Lastovicka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-551, https://doi.org/10.5194/acp-2020-551, 2020
Publication in ACP not foreseen
Short summary
Short summary
This paper is devoted to the occurrence of discontinuities in the ozone concentration data from the selected reanalyses, because they have large impact to the results of trend studies. The discontinuity occurrence is reanalyse dependant. The discontinuities frequently occur at the middle stratosphere and in the troposphere for a certain reanalyses. According our opinion, the reanalyses data can be used in trend studies especially in the lower stratosphere.
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020, https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Short summary
Severe meteorological storm Fabienne passing above central Europe was observed. Significant variations of atmospheric and ionospheric parameters were detected. Above Europe, stratospheric temperature and wind significantly changed in coincidence with frontal transition. Within ionospheric parameters, we have detected significant wave-like activity shortly after the cold front crossed the observational point. During the storm event, we have observed strong horizontal plasma flow shears.
Peter Križan
Ann. Geophys., 37, 525–533, https://doi.org/10.5194/angeo-37-525-2019, https://doi.org/10.5194/angeo-37-525-2019, 2019
Short summary
Short summary
We observe the planetary and gravity wave activity in the vertical profile of ozone at the mid-European ozonosonde stations The performance of the used detection method is satisfactory. There are differences in the following characteristics of the structure caused by the planetary and gravity wave: the annual variation, the size, and the vertical distribution. The results are influenced by the ozonosonde vertical resolution only for small and medium structures.
Jan Lastovicka, Peter Krizan, and Michal Kozubek
Ann. Geophys., 36, 181–192, https://doi.org/10.5194/angeo-36-181-2018, https://doi.org/10.5194/angeo-36-181-2018, 2018
Short summary
Short summary
The longitudinal structure in geopotential heights and meridional wind is analysed for 1979–2013 in order to find its persistence and altitudinal dependence with focus on anomalous years. Substantial deviations from the average pattern are studied for Januaries – typically the second (Euro-Atlantic) peak extends to much higher altitudes than usual. The decisive role in the existence of anomalous years appears to be played by the stationary planetary wave filtering by the zonal wind pattern.
Ilya Edemskiy, Jan Lastovicka, Dalia Buresova, John Bosco Habarulema, and Ivan Nepomnyashchikh
Ann. Geophys., 36, 71–79, https://doi.org/10.5194/angeo-36-71-2018, https://doi.org/10.5194/angeo-36-71-2018, 2018
Short summary
Short summary
An unusual geomagnetic storm effect on the ionosphere in the form of localized enhancement of total electron content southward of South Africa is investigated using data from different ionosphere sounding facilities. Global ionospheric maps allow us to get the occurrence rate of such irregularities over the period of 2002–2016 and to see its correlation with solar cycle. The events we detected occur during geomagnetic storms, but not every geomagnetic storm produces such an effect.
Michal Kozubek, Peter Krizan, and Jan Lastovicka
Ann. Geophys., 35, 279–294, https://doi.org/10.5194/angeo-35-279-2017, https://doi.org/10.5194/angeo-35-279-2017, 2017
Short summary
Short summary
A study of trends in the middle stratosphere using comparisons of four main reanalyses (ERA-Interim, JRA-55, MERRA and NCEP/NCAR). We identified that all four reanalyses show very similar trends on a season or monthly basis. We also compute trends for each grid point not as a zonal mean. This approach shows detailed features in the trend studies in both hemispheres.
Jan Laštovička, Dalia Burešová, Daniel Kouba, and Peter Križan
Ann. Geophys., 34, 1191–1196, https://doi.org/10.5194/angeo-34-1191-2016, https://doi.org/10.5194/angeo-34-1191-2016, 2016
Short summary
Short summary
Global climate change affects the whole atmosphere, including the thermosphere and ionosphere. Calculations of long-term trends in the ionosphere are critically dependent on solar activity correction of ionospheric input data. The main result of this study is the finding that the solar activity correction used in calculating ionospheric long-term trends is not stable, as was assumed in all previous investigations of ionospheric trends.
M. Kozubek, E. Rozanov, and P. Krizan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23891-2014, https://doi.org/10.5194/acpd-14-23891-2014, 2014
Revised manuscript not accepted
M. Kozubek, J. Laštovička, and P. Križan
Ann. Geophys., 32, 353–366, https://doi.org/10.5194/angeo-32-353-2014, https://doi.org/10.5194/angeo-32-353-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Gravity waves excited during a minor sudden stratospheric warming
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Age and gravitational separation of the stratospheric air over Indonesia
Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
A comparison of Loon balloon observations and stratospheric reanalysis products
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Comparing turbulent parameters obtained from LITOS and radiosonde measurements
On the structural changes in the Brewer-Dobson circulation after 2000
Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E)
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024, https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology, developed in recent years, that can capture atmospheric fine-structure information via three-stage (rising, flat-floating, and falling) detection. Based on the RTISS, we developed a method to quantify stratospheric atmospheric disturbance information; this method shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Satoshi Sugawara, Shigeyuki Ishidoya, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Sakae Toyoda, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, Daisuke Goto, and Fanny A. Putri
Atmos. Chem. Phys., 18, 1819–1833, https://doi.org/10.5194/acp-18-1819-2018, https://doi.org/10.5194/acp-18-1819-2018, 2018
Short summary
Short summary
This is the first research that shows concrete evidence of gravitational separation in the tropical stratosphere. This implies that gravitational separation occurs within the entire stratosphere, which gives us new insight into atmospheric dynamics.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Andreas Schneider, Johannes Wagner, Jens Faber, Michael Gerding, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017, https://doi.org/10.5194/acp-17-7941-2017, 2017
Short summary
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Fabrice Chane Ming, Damien Vignelles, Fabrice Jegou, Gwenael Berthet, Jean-Baptiste Renard, François Gheusi, and Yuriy Kuleshov
Atmos. Chem. Phys., 16, 8023–8042, https://doi.org/10.5194/acp-16-8023-2016, https://doi.org/10.5194/acp-16-8023-2016, 2016
Short summary
Short summary
Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological GPS sondes, ozonesondes, and GPS radio occultation data are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
Fuqing Zhang, Junhong Wei, Meng Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy
Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015, https://doi.org/10.5194/acp-15-7667-2015, 2015
Short summary
Short summary
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations, this study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS) region. The focus is on the second research flight (RF02), which was dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
H. Bönisch, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, https://doi.org/10.5194/acp-11-3937-2011, 2011
N. Bègue, H. Bencherif, V. Sivakumar, G. Kirgis, N. Mze, and J. Leclair de Bellevue
Atmos. Chem. Phys., 10, 8563–8574, https://doi.org/10.5194/acp-10-8563-2010, https://doi.org/10.5194/acp-10-8563-2010, 2010
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009, https://doi.org/10.5194/acp-9-9349-2009, 2009
J. M. Castanheira, J. A. Añel, C. A. F. Marques, J. C. Antuña, M. L. R. Liberato, L. de la Torre, and L. Gimeno
Atmos. Chem. Phys., 9, 9143–9153, https://doi.org/10.5194/acp-9-9143-2009, https://doi.org/10.5194/acp-9-9143-2009, 2009
Cited articles
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937–30946, 1999.
Baldwin, M. P., Shuckburgh, D., Norton, E., Thompson, W., and Gillett, G.: Weather from the Stratosphere?, Science, 301, 317–318, 2003.
Bari, D., Gabriel, A., Körnich, H., and Peters, D. W. H.: The effect of zonal asymmetries in the Brewer-Dobson circulation on ozone and water vapor distributions in the northern middle atmosphere, J. Geophys. Res. Atmos., 118, 3447–3466, https://doi.org/10.1029/2012JD017709, 2013.
Baron, P., Murtagh, D. P., Urban, J., Sagawa, H., Ochiai, S., Kasai, Y., Kikuchi, K., Khosrawi, F., Körnich, H., Mizobuchi, S., Sagi, K., and Yasui, M.: Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010, Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, 2013.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014.
Deckert, R. and Dameris, M.: Higher tropical SSTs strengthen the tropical upwelling via deep convection, Geophys. Res. Lett., 35, L10813, https://doi.org/10.1029/2008GL033719, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., and Boering, K.: Age of stratospheric air unchanged within uncertainties over the past 30 yr, Nat. Geosci., 2, 28–31, https://doi.org/10.1038/ngeo388, 2009.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., and White, W.: Solar influences on climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Harris, N. R. P., Kyrö, E., Staehelin, J., Brunner, D., Andersen, S.-B., Godin-Beekmann, S., Dhomse, S., Hadjinicolaou, P., Hansen, G., Isaksen, I., Jrrar, A., Karpetchko, A., Kivi, R., Knudsen, B., Krizan, P., Lastovicka, J., Maeder, J., Orsolini, Y., Pyle, J. A., Rex, M., Vanicek, K., Weber, M., Wohltmann, I., Zanis, P., and Zerefos, C.: Ozone trends at northern mid- and high latitudes – A European perspective, Ann. Geophys., 26, 1207–1220, https://doi.org/10.5194/angeo-26-1207-2008, 2008.
Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W., and Holton, J. R.: Can ozone depletion and global warming interact to produce rapid climate change?, P. Natl. Acad. Sci., 97, 1412–1417, 2000.
Hildebrand, J., Baumgarten, G., Fiedler, J., Hoppe, U.-P., Kaifler, B., Lübken, F.-J., and Williams, B. P.: Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere, Atmos. Meas. Tech., 5, 2433–2445, https://doi.org/10.5194/amt-5-2433-2012, 2012.
Kistler, R., Collins W. Kalnay, E., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP 50-year reanalysis: Monthly means CDrom and documentation, Bull. Am. Meteorol. Soc., 82, 247–267, 2001.
Kodera, K., Yamazaki, K., Chiba, M., and Shibata, K.: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere, Geophys. Res. Lett., 17, 1263–1266, https://doi.org/10.1029/GL017i009p01263, 1990.
Kozubek, M., Laštovička, J., and Križan, P.: Differences in mid-latitude stratospheric winds between reanalysis data and versus radiosonde observations at Prague, Ann. Geophys., 32, 353–366, https://doi.org/10.5194/angeo-32-353-2014, 2014.
Labitzke, K. and Kunze, M.: Variability in the stratosphere: The Sun and the QBO, in: Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the Kyoto Symposium, edited by: Tsuda, K. S. T., Fujii, R., and Geller, M., 257–278, TERRAPUB, Tokyo, 2009.
Labitzke, K. and van Loon, H.: Associations between the 11-year solar cycle, the QBO and the atmosphere: Part I. The troposphere and stratosphere in the Northern Hemisphere winter, J. Atmos. Terr. Phys., 50, 197–206, 1988.
Lastovicka, J., Solomon, S. C., and Qian, L.: Trends in the Neutral and Ionized Upper Atmosphere, Space Sci. Rev., 168, 113–145, https://doi.org/10.1007/s11214-011-9799-3, 2012.
Lastovicka, J., Krizan, P., and Kozubek, M.: Long-term trends in the northern extratropical ozone laminae with focus on European stations, J. Atmos. Sol.-Terr. Phys., 120, 88–95, https://doi.org/10.1016/j.jastp.2014.09.006, 2014.
Limpasuvan, V., Thompson, D. W., and Hartmann, D. L.: The life cycle of the Northern Hemisphere sudden stratospheric warmings, J. Clim., 17, 2584–2596, 2004.
Lin, P. and Fu, Q.: Changes in various branches of the Brewer-Dobson circulation from an ensemble of chemistry climate models, J. Geophys. Res.-Atmos., 118, 73–84, https://doi.org/10.1029/2012JD018813, 2013.
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas, A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented Artic loss in 2011, Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011.
Matsuno, T.: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, 1970.
Miller, A., Schmidt, H., and Bunzel, F.: Vertical coupling of the middle atmosphere during stratospheric warming events, J. Atmos. Sol.-Terr. Phys., 97, 11–21, https://doi.org/10.1016/j.jastp.2013.02.008, 2013.
Mlch, P.: Total ozone response to major geomagnetic storms during non-winter periods, Studia Geoph. Geod., 38, 423–429, 1994.
Monier, E. and Weare, B. C.: Climatology and trends in the forcing of the stratospheric ozone transport, Atmos. Chem. Phys., 11, 6311–6323, https://doi.org/10.5194/acp-11-6311-2011, 2011a.
Monier, E. and Weare, B. C.: Climatology and trends in the forcing of the stratospheric zonal-mean flow, Atmos. Chem. Phys., 11, 12751–12771, https://doi.org/10.5194/acp-11-12751-2011, 2011b.
Naito, Y. and Hirota, I.: Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle, J. Meteorol. Soc. Jpn., 75, 925–937, 1997.
Oberländer, S., Langematz, U., and Meul, S.: Unravelling impact factors for future changes in the Brewer-Dobson circulation, J. Geophys. Res.-Atmos., 118, 10296–10312, https://doi.org/10.1002/jgrd.50775, 2013.
Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S., and Newman, P. A.: On the influence of anthropogenic forcings on changes in the stratospheric mean age, J. Geophys. Res.-Atmos., 114, D03105, https://doi.org/10.1029/2008JD010378, 2009.
Ortland, D. A., Skinner, W. R., Hays, P. B., Burrage, M. D., Lieberman, R. S., Marshall, A. R., and Gell, D. A.: Measurements of stratospheric winds by the High Resolution Doppler Imager, J. Geophys. Res., 101, 10351–10363, 1996.
Pommereau, J.-P., Goutail, F., Lefèvre, F., Pazmino, A., Adams, C., Dorokhov, V., Eriksen, P., Kivi, R., Stebel, K., Zhao, X., and van Roozendael, M.: Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change?, Atmos. Chem. Phys., 13, 5299–5308, https://doi.org/10.5194/acp-13-5299-2013, 2013.
Ray, E. A., Moore, F. L., Rosenlof, K. H., Davis, S. M., Sweeney, C., Tans, P., Wang, T., Elkins, J. W., Bönisch, H., Engel, A., Sugawara, S., Nakazawa, T., and Aoki, S.: Improving stratospheric transport trend analysis based on SF6 and CO2 measurements, J. Geophys. Res.-Atmos., 119, 14–110, https://doi.org/10.1002/2014JD021802, 2014.
Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer, Atmos. Meas. Tech., 5, 2647–2659, https://doi.org/10.5194/amt-5-2647-2012, 2012.
Salby, M. and Callahan, P.: Connection between the Solar Cycle and the QBO: The missing link, J. Clim., 13, 2652–2662, 2000.
Scaife, A. A., Spangehl, T., Fereday, D. R., Cubasch, U., Langematz, U., Akiyoshi, H., Slimane, B., Breasicke, P., Butchard, N., Chipperfield, M. P., Gettelman, A., Hardiman, S. C., Michou, M., Rozanov, E. and Shepherd, T. G.: Climate change projections and stratosphere-troposphere interaction, Clim. Dynamics, 38, 2089–2097, 2012.
Shepherd, T. G.: Transport in the middle atmosphere, J. Meteorol. Soc. Jpn. II, 85B, 165–191, 2007.
Shepherd, T. G.: Dynamics, stratospheric ozone, and climate change, Atmos. Ocean, 46, 117–138, 2008.
Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: Solar cycle variability, ozone, and climate, Science, 284, 305–308, 1999.
Sigmond, M., Scinocca, J. F., and Kushner, P. J.: Impact of the stratosphere on the tropospheric climate change, Science, 301, 317–318, 2008.
Stiller, G. P., von Clarmann, T., Haenel, F., Funke, B., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., and López-Puertas, M.: Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period, Atmos. Chem. Phys., 12, 3311–3331, https://doi.org/10.5194/acp-12-3311-2012, 2012.
Waugh, D. W. and Hall, T. M.: Age of stratospheric air: Theory, observations and models, Rev. Geophys, 40, 1010, https://doi.org/10.1029/2000RG000101, 2002.
Weare, B. C.: Tropospheric-stratospheric wave propagation during El Niño-Southern Oscillation, J. Geophys. Res., 115, D18122, https://doi.org/10.1029/2009JD013647, 2010.
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
The main goal of this paper is to show the geographical distribution of meridional wind for...
Altmetrics
Final-revised paper
Preprint