Articles | Volume 15, issue 4
https://doi.org/10.5194/acp-15-2203-2015
https://doi.org/10.5194/acp-15-2203-2015
Research article
 | 
27 Feb 2015
Research article |  | 27 Feb 2015

Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends

M. Kozubek, P. Krizan, and J. Lastovicka

Related authors

Testing ground based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-167,https://doi.org/10.5194/amt-2023-167, 2023
Revised manuscript accepted for AMT
Short summary
Occurrence of discontinuities in the ozone concentration data from three reanalyses
Peter Krizan, Michal Kozubek, and Jan Lastovicka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-551,https://doi.org/10.5194/acp-2020-551, 2020
Publication in ACP not foreseen
Short summary
Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020,https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Longitudinal structure of stationary planetary waves in the middle atmosphere – extraordinary years
Jan Lastovicka, Peter Krizan, and Michal Kozubek
Ann. Geophys., 36, 181–192, https://doi.org/10.5194/angeo-36-181-2018,https://doi.org/10.5194/angeo-36-181-2018, 2018
Short summary
Comparison of the long-term trends in stratospheric dynamics of four reanalyses
Michal Kozubek, Peter Krizan, and Jan Lastovicka
Ann. Geophys., 35, 279–294, https://doi.org/10.5194/angeo-35-279-2017,https://doi.org/10.5194/angeo-35-279-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024,https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023,https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022,https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022,https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022,https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary

Cited articles

Baldwin, M. P. and Dunkerton, T. J.: Propagation of the arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937–30946, 1999.
Baldwin, M. P., Shuckburgh, D., Norton, E., Thompson, W., and Gillett, G.: Weather from the Stratosphere?, Science, 301, 317–318, 2003.
Bari, D., Gabriel, A., Körnich, H., and Peters, D. W. H.: The effect of zonal asymmetries in the Brewer-Dobson circulation on ozone and water vapor distributions in the northern middle atmosphere, J. Geophys. Res. Atmos., 118, 3447–3466, https://doi.org/10.1029/2012JD017709, 2013.
Baron, P., Murtagh, D. P., Urban, J., Sagawa, H., Ochiai, S., Kasai, Y., Kikuchi, K., Khosrawi, F., Körnich, H., Mizobuchi, S., Sagi, K., and Yasui, M.: Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010, Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, 2013.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014.
Download
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
Altmetrics
Final-revised paper
Preprint