Articles | Volume 15, issue 20
https://doi.org/10.5194/acp-15-11521-2015
https://doi.org/10.5194/acp-15-11521-2015
Research article
 | 
20 Oct 2015
Research article |  | 20 Oct 2015

Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale

J. Zhang, J. Liu, S. Tao, and G. A. Ban-Weiss

Related authors

Effects of urbanization on regional meteorology and air quality in Southern California
Yun Li, Jiachen Zhang, David J. Sailor, and George A. Ban-Weiss
Atmos. Chem. Phys., 19, 4439–4457, https://doi.org/10.5194/acp-19-4439-2019,https://doi.org/10.5194/acp-19-4439-2019, 2019
Short summary
Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing
Jiayu Xu, Jiachen Zhang, Junfeng Liu, Kan Yi, Songlin Xiang, Xiurong Hu, Yuqing Wang, Shu Tao, and George Ban-Weiss
Atmos. Chem. Phys., 19, 1587–1603, https://doi.org/10.5194/acp-19-1587-2019,https://doi.org/10.5194/acp-19-1587-2019, 2019
Short summary
Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport
Kan Yi, Junfeng Liu, George Ban-Weiss, Jiachen Zhang, Wei Tao, Yanli Cheng, and Shu Tao
Atmos. Chem. Phys., 17, 8771–8788, https://doi.org/10.5194/acp-17-8771-2017,https://doi.org/10.5194/acp-17-8771-2017, 2017
Short summary
Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States
Xiao Lu, Lin Zhang, Xu Yue, Jiachen Zhang, Daniel A. Jaffe, Andreas Stohl, Yuanhong Zhao, and Jingyuan Shao
Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016,https://doi.org/10.5194/acp-16-14687-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winski, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
Atmos. Chem. Phys., 25, 4083–4106, https://doi.org/10.5194/acp-25-4083-2025,https://doi.org/10.5194/acp-25-4083-2025, 2025
Short summary
Driving factors of aerosol acidity: a new hierarchical quantitative analysis framework and its application in Changzhou, China
Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 25, 3919–3928, https://doi.org/10.5194/acp-25-3919-2025,https://doi.org/10.5194/acp-25-3919-2025, 2025
Short summary
Understanding the long-term trend of organic aerosol and the influences from anthropogenic emission and regional climate change in China
Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, Kan Huang, and Minghuai Wang
Atmos. Chem. Phys., 25, 3857–3872, https://doi.org/10.5194/acp-25-3857-2025,https://doi.org/10.5194/acp-25-3857-2025, 2025
Short summary
Population exposure to outdoor NO2, black carbon, and ultrafine and fine particles over Paris with multi-scale modelling down to the street scale
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D'Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025,https://doi.org/10.5194/acp-25-3363-2025, 2025
Short summary
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks (Alaska), the Northern Hemisphere, and the Contiguous United States
Sara L. Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, and Kathleen Fahey
Atmos. Chem. Phys., 25, 3287–3312, https://doi.org/10.5194/acp-25-3287-2025,https://doi.org/10.5194/acp-25-3287-2025, 2025
Short summary

Cited articles

Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.: Dependence of climate forcing and response on the altitude of black carbon aerosols, Clim. Dynam., 38, 897–911, https://doi.org/10.1007/s00382-011-1052-y, 2012.
Bell, M. L., Ebisu, K., Peng, R. D., Samet, J. M., and Dominici, F.: Hospital Admissions and Chemical Composition of Fine Particle Air Pollution, Am. J. Resp. Crit. Care, 179, 1115–1120, https://doi.org/10.1164/rccm.200808-1240OC, 2009.
Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., Blake, D., Chu, D. A., da Silva, A., Darmenov, A. S., Diskin, G., Fuelberg, H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.: Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707–4721, https://doi.org/10.5194/acp-13-4707-2013, 2013.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon, Science, 334, 502–505, https://doi.org/10.1126/science.1204994, 2011.
Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D., and Naik, V.: Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon, Geophys. Res. Lett., 41, 680–687, https://doi.org/10.1002/2013gl058183, 2014.
Download
Short summary
We tag BC emissions from 13 source regions around the globe in a global chemical transport model MOZART-4 and optimize the aging timescale for each source region by minimizing errors in vertical profiles of BC mass mixing ratios between simulations and HIAPER Polo-to-Pole Observations (HIPPO). We find that the optimized aging timescale of BC varies significantly by region and season. Our simulations indicate that BC lifetime increases nearly linearly with aging timescale for all source regions.
Share
Altmetrics
Final-revised paper
Preprint