Articles | Volume 14, issue 16
https://doi.org/10.5194/acp-14-8533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-8533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant
Norwegian Institute for Air Research, NILU, Kjeller, Norway
N. Castell
Norwegian Institute for Air Research, NILU, Kjeller, Norway
D. Simpson
EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
Dept. Earth and Space Sciences, Chalmers Univ. Technology, Gothenburg, Sweden
S. Solberg
Norwegian Institute for Air Research, NILU, Kjeller, Norway
J. Starrfelt
Norwegian Institute for Water Research, NIVA, Gaustadalléen 21, 0349 Oslo, Norway
T. Svendby
Norwegian Institute for Air Research, NILU, Kjeller, Norway
S.-E. Walker
Norwegian Institute for Air Research, NILU, Kjeller, Norway
R. F. Wright
Norwegian Institute for Water Research, NIVA, Gaustadalléen 21, 0349 Oslo, Norway
Related authors
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Short summary
EPISODE is an air quality model designed to give information on air pollution in cities down to distances measured in metres from the roadside and other pollution sources. We demonstrate that EPISODE can adequately describe nitrogen dioxide air pollution in a case study in six Norwegian cities. From this, we conclude that EPISODE can be used to provide air quality information to public bodies and society in order to help in the understanding and management of air pollution in urban environments.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020, https://doi.org/10.5194/os-16-115-2020, 2020
Short summary
Short summary
The study evaluates how much bioavailable nitrogen is contributed to the nitrogen budget of the western Baltic Sea by deposition of shipping-emitted nitrogen oxides. Bioavailable nitrogen compounds are nutrients for phytoplankton (algae). Excessive input of nutrients into water bodies may lead to eutrophication: more algal blooms with subsequently more oxygen limitation at the seafloor. Hence, reducing shipping emissions might reduce the anthropogenic pressure on the marine ecosystem.
Matthias Karl, Sam-Erik Walker, Sverre Solberg, and Martin O. P. Ramacher
Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019, https://doi.org/10.5194/gmd-12-3357-2019, 2019
Short summary
Short summary
A large part of the population living in cities is exposed to ozone levels above the EU air quality target value. The CityChem extension of the urban air quality model EPISODE enables a detailed treatment of the atmospheric chemistry in urban areas and near-field dispersion close to industrial stacks and in street canyons. The application of the model in the city of Hamburg (Germany) shows good performance for ozone, nitrogen dioxide and particulate matter at air quality monitoring stations.
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Matthias Karl, Jan Eiof Jonson, Andreas Uppstu, Armin Aulinger, Marje Prank, Mikhail Sofiev, Jukka-Pekka Jalkanen, Lasse Johansson, Markus Quante, and Volker Matthias
Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, https://doi.org/10.5194/acp-19-7019-2019, 2019
Short summary
Short summary
The effect of ship emissions on the regional air quality in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
Matthias Karl, Johannes Bieser, Beate Geyer, Volker Matthias, Jukka-Pekka Jalkanen, Lasse Johansson, and Erik Fridell
Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, https://doi.org/10.5194/acp-19-1721-2019, 2019
Short summary
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Daniel Neumann, Hagen Radtke, Matthias Karl, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-365, https://doi.org/10.5194/bg-2018-365, 2018
Publication in BG not foreseen
Short summary
Short summary
The contribution of atmospheric nitrogen deposition to the marine dissolved inorganic nitrogen (DIN) pool of the North and Baltic Sea was assessed for the year 2012. Atmospheric deposition accounted for approximately 10 % to 15 % of the DIN but its residence time differed between both water bodies. The nitrogen contributions of atmospheric shipping and agricultural imissions also were assessed. Particularly the latter source had a large impact in coastal regions.
Daniel Neumann, Matthias Karl, Hagen Radtke, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-364, https://doi.org/10.5194/bg-2018-364, 2018
Manuscript not accepted for further review
Short summary
Short summary
Atmospheric nitrogen deposition contributes 20 % to 40 % to bioavailable nitrogen inputs into the North Sea and Baltic Sea. Excessive bioavailable nitrogen may lead to intensified algal blooms in these water bodies resulting in several negative consequences for the marine ecosystem. We traced atmospheric nitrogen in the marine ecosystem via an ecosystem model and estimated the contribution of atmospheric nitrogen to plankton biomass in different regions of the North and Baltic Sea over five years.
Daniel Neumann, René Friedland, Matthias Karl, Hagen Radtke, Volker Matthias, and Thomas Neumann
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-71, https://doi.org/10.5194/os-2018-71, 2018
Revised manuscript not accepted
Short summary
Short summary
We found that refining the spatial resolution of nitrogen deposition data had low impact on marine nitrogen compounds compared to the impact by nitrogen deposition data sets of different origin (other model). The shipping sector had a contribution of up to 10 % to the marine dissolved inorganic nitrogen.
Matthias Karl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-8, https://doi.org/10.5194/gmd-2018-8, 2018
Preprint retracted
Short summary
Short summary
Urban air pollution issues in Europe are mainly related to the human health impacts of particulate matter and ozone. A large part of the population living in cities is exposed to ozone above the European Union air quality target. The new model CityChem-EPISODE has been developed to perform chemistry/transport simulations of multiple reactive pollutants in urban areas. The application of the model in Hamburg (Germany) in 2012 shows good performance for ozone at air quality monitoring stations.
Matthias Karl, Jaakko Kukkonen, Menno P. Keuken, Susanne Lützenkirchen, Liisa Pirjola, and Tareq Hussein
Atmos. Chem. Phys., 16, 4817–4835, https://doi.org/10.5194/acp-16-4817-2016, https://doi.org/10.5194/acp-16-4817-2016, 2016
Short summary
Short summary
Particles emitted from road traffic are subject to complex dilution processes as well as microphysical transformation processes. Particle measurements at major roads in Rotterdam, Oslo and Helsinki were used to analyze the relevance of microphysical transformation processes. Transformation processes caused changes of the particle number concentration of up to 20–30 % on the neighborhood scale. A simple parameterization to predict particle number concentrations in urban areas is presented.
Willem Elias van Caspel, David Simpson, Jan Eiof Jonson, Anna Maria Katarina Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah Walker, and Mathew Heal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-147, https://doi.org/10.5194/gmd-2023-147, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Radiation coming from the sun is essential to atmospheric chemistry, driving the break-up, or photo-dissociation, of atmospheric molecules. This in turn affects the chemical composition and reactivity of the atmosphere. The representation of these photo-dissociation effects is therefore essential in atmospheric chemistry modeling. One such models is the EMEP MSC-W model, for which in this paper a new way of calculating the photo-dissociation rates is tested and evaluated.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
EGUsphere, https://doi.org/10.5194/egusphere-2023-615, https://doi.org/10.5194/egusphere-2023-615, 2023
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023, https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Katerina Sindelarova, Jana Markova, David Simpson, Peter Huszar, Jan Karlicky, Sabine Darras, and Claire Granier
Earth Syst. Sci. Data, 14, 251–270, https://doi.org/10.5194/essd-14-251-2022, https://doi.org/10.5194/essd-14-251-2022, 2022
Short summary
Short summary
Three new datasets of global emissions of biogenic volatile organic compounds (BVOCs) emitted into the atmosphere from terrestrial vegetation were developed for air quality modelling using the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) driven by European Centre for Medium-Range Weather Forecasts meteorological reanalyses for the years 2000–2019. The datasets include updates of the isoprene emission factors in Europe and study the impact of land cover change on emissions.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
David Simpson and Sabine Darras
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-221, https://doi.org/10.5194/essd-2021-221, 2021
Manuscript not accepted for further review
Short summary
Short summary
We present a dataset of global soil NO emissions suitable for atmospheric chemistry modelling. Data are provided globally at 0.5° × 0.5° degrees horizontal resolution, and with monthly time resolution over the period 2000–2018. This paper presents the emission algorithms and their data-sources, some comments on the availability of soil NO emissions in other inventories (and how to avoid double-counting), and finally some preliminary modelling results and comparison with observed data.
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Short summary
Measurements of total ozone and effective cloud transmittance (eCLT) have been performed since 1995 at three Norwegian sites with GUV multi-filter instruments. The unique data sets of high-time-resolution measurements can be used for a broad range of studies. Data analyses reveal an increase in total ozone above Norway from 1995 to 2019. Measurements of GUV eCLT indicate changes in albedo in Ny-Ålesund (Svalbard) during the past 25 years, most likely resulting from increased Arctic ice melt.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
David Simpson, Robert Bergström, Alan Briolat, Hannah Imhof, John Johansson, Michael Priestley, and Alvaro Valdebenito
Geosci. Model Dev., 13, 6447–6465, https://doi.org/10.5194/gmd-13-6447-2020, https://doi.org/10.5194/gmd-13-6447-2020, 2020
Short summary
Short summary
This paper outlines the structure and usage of the GenChem system, which includes a chemical pre-processor (GenChem.py) and a simple box model (boxChem). GenChem provides scripts and input files for converting chemical equations into differential form for use in atmospheric chemical transport models (CTMs) and/or the boxChem system. Although GenChem is primarily intended for users of the EMEP MSC-W CTM and related systems, boxChem can be run as a stand-alone chemical solver.
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Short summary
EPISODE is an air quality model designed to give information on air pollution in cities down to distances measured in metres from the roadside and other pollution sources. We demonstrate that EPISODE can adequately describe nitrogen dioxide air pollution in a case study in six Norwegian cities. From this, we conclude that EPISODE can be used to provide air quality information to public bodies and society in order to help in the understanding and management of air pollution in urban environments.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020, https://doi.org/10.5194/os-16-115-2020, 2020
Short summary
Short summary
The study evaluates how much bioavailable nitrogen is contributed to the nitrogen budget of the western Baltic Sea by deposition of shipping-emitted nitrogen oxides. Bioavailable nitrogen compounds are nutrients for phytoplankton (algae). Excessive input of nutrients into water bodies may lead to eutrophication: more algal blooms with subsequently more oxygen limitation at the seafloor. Hence, reducing shipping emissions might reduce the anthropogenic pressure on the marine ecosystem.
Matthias Karl, Sam-Erik Walker, Sverre Solberg, and Martin O. P. Ramacher
Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019, https://doi.org/10.5194/gmd-12-3357-2019, 2019
Short summary
Short summary
A large part of the population living in cities is exposed to ozone levels above the EU air quality target value. The CityChem extension of the urban air quality model EPISODE enables a detailed treatment of the atmospheric chemistry in urban areas and near-field dispersion close to industrial stacks and in street canyons. The application of the model in the city of Hamburg (Germany) shows good performance for ozone, nitrogen dioxide and particulate matter at air quality monitoring stations.
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Matthias Karl, Jan Eiof Jonson, Andreas Uppstu, Armin Aulinger, Marje Prank, Mikhail Sofiev, Jukka-Pekka Jalkanen, Lasse Johansson, Markus Quante, and Volker Matthias
Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, https://doi.org/10.5194/acp-19-7019-2019, 2019
Short summary
Short summary
The effect of ship emissions on the regional air quality in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
Karl Espen Yttri, David Simpson, Robert Bergström, Gyula Kiss, Sönke Szidat, Darius Ceburnis, Sabine Eckhardt, Christoph Hueglin, Jacob Klenø Nøjgaard, Cinzia Perrino, Ignazio Pisso, Andre Stephan Henry Prevot, Jean-Philippe Putaud, Gerald Spindler, Milan Vana, Yan-Lin Zhang, and Wenche Aas
Atmos. Chem. Phys., 19, 4211–4233, https://doi.org/10.5194/acp-19-4211-2019, https://doi.org/10.5194/acp-19-4211-2019, 2019
Short summary
Short summary
Carbonaceous aerosols from natural sources were abundant regardless of season. Residential wood burning (RWB) emissions were occasionally equally as large as or larger than of fossil-fuel sources, depending on season and region. RWB emissions are poorly constrained; thus emissions inventories need improvement. Harmonizing emission factors between countries is likely the most important step to improve model calculations for biomass burning emissions and European PM2.5 concentrations in general.
Matthias Karl, Johannes Bieser, Beate Geyer, Volker Matthias, Jukka-Pekka Jalkanen, Lasse Johansson, and Erik Fridell
Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, https://doi.org/10.5194/acp-19-1721-2019, 2019
Short summary
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, https://doi.org/10.5194/acp-18-17207-2018, 2018
Short summary
Short summary
We measured atmospheric mixing ratios of methane over the Arctic Ocean around Svalbard and compared observed variations to inventories for anthropogenic, wetland, and biomass burning methane emissions and an atmospheric transport model. With knowledge of where variations were expected due to the aforementioned land-based emissions, we were able to identify and quantify a methane source from the ocean north of Svalbard, likely from sub-sea hydrocarbon seeps and/or gas hydrate decomposition.
Daniel Neumann, Hagen Radtke, Matthias Karl, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-365, https://doi.org/10.5194/bg-2018-365, 2018
Publication in BG not foreseen
Short summary
Short summary
The contribution of atmospheric nitrogen deposition to the marine dissolved inorganic nitrogen (DIN) pool of the North and Baltic Sea was assessed for the year 2012. Atmospheric deposition accounted for approximately 10 % to 15 % of the DIN but its residence time differed between both water bodies. The nitrogen contributions of atmospheric shipping and agricultural imissions also were assessed. Particularly the latter source had a large impact in coastal regions.
Daniel Neumann, Matthias Karl, Hagen Radtke, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-364, https://doi.org/10.5194/bg-2018-364, 2018
Manuscript not accepted for further review
Short summary
Short summary
Atmospheric nitrogen deposition contributes 20 % to 40 % to bioavailable nitrogen inputs into the North Sea and Baltic Sea. Excessive bioavailable nitrogen may lead to intensified algal blooms in these water bodies resulting in several negative consequences for the marine ecosystem. We traced atmospheric nitrogen in the marine ecosystem via an ecosystem model and estimated the contribution of atmospheric nitrogen to plankton biomass in different regions of the North and Baltic Sea over five years.
Michael Le Breton, Åsa M. Hallquist, Ravi Kant Pathak, David Simpson, Yujue Wang, John Johansson, Jing Zheng, Yudong Yang, Dongjie Shang, Haichao Wang, Qianyun Liu, Chak Chan, Tao Wang, Thomas J. Bannan, Michael Priestley, Carl J. Percival, Dudley E. Shallcross, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, https://doi.org/10.5194/acp-18-13013-2018, 2018
Short summary
Short summary
We apply state-of-the-art chemical characterization to determine the chloride radical production in Beijing via measurement of inorganic halogens at a semi-rural site. The high concentration of inorganic halogens, namely nitryl chloride, enables the production of chlorinated volatile organic compounds which are measured in both the gas and particle phases simultaneously. This enables the secondary production of aerosols via chlorine oxidation to be directly observed in ambient air.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Rebecca J. Oliver, Lina M. Mercado, Stephen Sitch, David Simpson, Belinda E. Medlyn, Yan-Shih Lin, and Gerd A. Folberth
Biogeosciences, 15, 4245–4269, https://doi.org/10.5194/bg-15-4245-2018, https://doi.org/10.5194/bg-15-4245-2018, 2018
Short summary
Short summary
Potential gains in terrestrial carbon sequestration over Europe from elevated CO2 can be partially offset by concurrent rises in tropospheric O3. The land surface model JULES was run in a factorial suite of experiments showing that by 2050 simulated GPP was reduced by 4 to 9 % due to plant O3 damage. Large regional variations exist with larger impacts identified for temperate compared to boreal regions. Plant O3 damage was greatest over the twentieth century and declined into the future.
Daniel Neumann, René Friedland, Matthias Karl, Hagen Radtke, Volker Matthias, and Thomas Neumann
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-71, https://doi.org/10.5194/os-2018-71, 2018
Revised manuscript not accepted
Short summary
Short summary
We found that refining the spatial resolution of nitrogen deposition data had low impact on marine nitrogen compounds compared to the impact by nitrogen deposition data sets of different origin (other model). The shipping sector had a contribution of up to 10 % to the marine dissolved inorganic nitrogen.
Scarlet Stadtler, David Simpson, Sabine Schröder, Domenico Taraborrelli, Andreas Bott, and Martin Schultz
Atmos. Chem. Phys., 18, 3147–3171, https://doi.org/10.5194/acp-18-3147-2018, https://doi.org/10.5194/acp-18-3147-2018, 2018
Matthias Karl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-8, https://doi.org/10.5194/gmd-2018-8, 2018
Preprint retracted
Short summary
Short summary
Urban air pollution issues in Europe are mainly related to the human health impacts of particulate matter and ozone. A large part of the population living in cities is exposed to ozone above the European Union air quality target. The new model CityChem-EPISODE has been developed to perform chemistry/transport simulations of multiple reactive pollutants in urban areas. The application of the model in Hamburg (Germany) in 2012 shows good performance for ozone at air quality monitoring stations.
Matthieu Pommier, Hilde Fagerli, Michael Gauss, David Simpson, Sumit Sharma, Vinay Sinha, Sachin D. Ghude, Oskar Landgren, Agnes Nyiri, and Peter Wind
Atmos. Chem. Phys., 18, 103–127, https://doi.org/10.5194/acp-18-103-2018, https://doi.org/10.5194/acp-18-103-2018, 2018
Short summary
Short summary
India has to cope with a poor air quality, and this work shows a predicted increase in pollution (O3 & PM2.5) if no further policy efforts are made in the future. Climate change will modify the soil moisture leading to changes in O3. Changes in PM2.5 are related to changes in precipitation, biogenic emissions and wind speed. It is also shown that in the 2050s, the secondary inorganic aerosols will become the main component of PM2.5 over India related to the increase in anthropogenic emissions.
Martina Franz, David Simpson, Almut Arneth, and Sönke Zaehle
Biogeosciences, 14, 45–71, https://doi.org/10.5194/bg-14-45-2017, https://doi.org/10.5194/bg-14-45-2017, 2017
Short summary
Short summary
Ozone is a toxic air pollutant that can damage plant leaves and impact their carbon uptake from the atmosphere. We extend a terrestrial biosphere model to account for ozone damage of plants and investigate the impact on the terrestrial carbon cycle. Our approach accounts for ozone transport from the free troposphere to leaf level. We find that this substantially affects simulated ozone uptake into the plants. Simulations indicate that ozone damages plants less than expected from previous studies
Mark R. Theobald, David Simpson, and Massimo Vieno
Geosci. Model Dev., 9, 4475–4489, https://doi.org/10.5194/gmd-9-4475-2016, https://doi.org/10.5194/gmd-9-4475-2016, 2016
Short summary
Short summary
Impacts of air pollution at a continental scale, estimated using air quality models, can potentially be greatly under- or overestimated due to the low spatial resolution used (grid cells of 10–50 km). We present a method to estimate the spatial variations in air quality within a model grid cell by combining high-resolution emission data with estimates of short range dispersion. This simple but robust technique has the potential to improve estimates of air quality impacts at a continental scale.
Matthias Karl, Jaakko Kukkonen, Menno P. Keuken, Susanne Lützenkirchen, Liisa Pirjola, and Tareq Hussein
Atmos. Chem. Phys., 16, 4817–4835, https://doi.org/10.5194/acp-16-4817-2016, https://doi.org/10.5194/acp-16-4817-2016, 2016
Short summary
Short summary
Particles emitted from road traffic are subject to complex dilution processes as well as microphysical transformation processes. Particle measurements at major roads in Rotterdam, Oslo and Helsinki were used to analyze the relevance of microphysical transformation processes. Transformation processes caused changes of the particle number concentration of up to 20–30 % on the neighborhood scale. A simple parameterization to predict particle number concentrations in urban areas is presented.
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
H. A. C. Denier van der Gon, R. Bergström, C. Fountoukis, C. Johansson, S. N. Pandis, D. Simpson, and A. J. H. Visschedijk
Atmos. Chem. Phys., 15, 6503–6519, https://doi.org/10.5194/acp-15-6503-2015, https://doi.org/10.5194/acp-15-6503-2015, 2015
Short summary
Short summary
Residential wood combustion (RWC) is increasing in Europe but may cause high emissions of particulate matter (PM). A revised bottom-up emission inventory was made which included the semi-volatile components. The revised RWC emissions are 2–3 times higher than the previous inventory. It significantly improved the modeling of PM and comparison with observations. Our results suggest primary PM2.5 emission from RWC as reported in Europe is underestimated and emission inventories need to be revised.
R. Bergström, M. Hallquist, D. Simpson, J. Wildt, and T. F. Mentel
Atmos. Chem. Phys., 14, 13643–13660, https://doi.org/10.5194/acp-14-13643-2014, https://doi.org/10.5194/acp-14-13643-2014, 2014
H. Pleijel, H. Danielsson, D. Simpson, and G. Mills
Biogeosciences, 11, 4521–4528, https://doi.org/10.5194/bg-11-4521-2014, https://doi.org/10.5194/bg-11-4521-2014, 2014
D. Simpson, C. Andersson, J.H. Christensen, M. Engardt, C. Geels, A. Nyiri, M. Posch, J. Soares, M. Sofiev, P. Wind, and J. Langner
Atmos. Chem. Phys., 14, 6995–7017, https://doi.org/10.5194/acp-14-6995-2014, https://doi.org/10.5194/acp-14-6995-2014, 2014
J. Genberg, H. A. C. Denier van der Gon, D. Simpson, E. Swietlicki, H. Areskoug, D. Beddows, D. Ceburnis, M. Fiebig, H. C. Hansson, R. M. Harrison, S. G. Jennings, S. Saarikoski, G. Spindler, A. J. H. Visschedijk, A. Wiedensohler, K. E. Yttri, and R. Bergström
Atmos. Chem. Phys., 13, 8719–8738, https://doi.org/10.5194/acp-13-8719-2013, https://doi.org/10.5194/acp-13-8719-2013, 2013
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
A. Sakalli and D. Simpson
Biogeosciences, 9, 5161–5179, https://doi.org/10.5194/bg-9-5161-2012, https://doi.org/10.5194/bg-9-5161-2012, 2012
O. Hertel, C. A. Skjøth, S. Reis, A. Bleeker, R. M. Harrison, J. N. Cape, D. Fowler, U. Skiba, D. Simpson, T. Jickells, M. Kulmala, S. Gyldenkærne, L. L. Sørensen, J. W. Erisman, and M. A. Sutton
Biogeosciences, 9, 4921–4954, https://doi.org/10.5194/bg-9-4921-2012, https://doi.org/10.5194/bg-9-4921-2012, 2012
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes
Benefits of net-zero policies for future ozone pollution in China
Simulating impacts on UK air quality from net-zero forest planting scenarios
Understanding offshore high-ozone events during TRACER-AQ 2021 in Houston: insights from WRF–CAMx photochemical modeling
Opinion: Establishing a science-into-policy process for tropospheric ozone assessment
Atmospheric composition and climate impacts of a future hydrogen economy
Assessment of isoprene and near-surface ozone sensitivities to water stress over the Euro-Mediterranean region
Nighttime ozone in the lower boundary layer: insights from 3-year tower-based measurements in South China and regional air quality modeling
What controls ozone sensitivity in the upper tropical troposphere?
Modelling the impacts of emission changes on O3 sensitivity, atmospheric oxidation capacity, and pollution transport over the Catalonia region
A regional modelling study of halogen chemistry within a volcanic plume of Mt Etna's Christmas 2018 eruption
Weekly-derived top-down VOC fluxes over Europe from TROPOMI HCHO data in 2018–2021
Constraining the budget of atmospheric carbonyl sulfide using a 3-D chemical transport model
Atmospheric CO2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions
Rapid O3 assimilations – Part 2: Tropospheric O3 changes accompanied by declining NOx emissions in the USA and Europe in 2005–2020
High-resolution air quality simulations of ozone exceedance events during the Lake Michigan Ozone Study
Simulations of winter ozone in the Upper Green River basin, Wyoming, using WRF-Chem
The suitability of atmospheric oxygen measurements to constrain Western European fossil-fuel CO2 emissions and their trends
Measurement report: Assessment of Asian emissions of ethane and propane with a chemistry transport model based on observations from the island of Hateruma
Sensitivity of northeastern US surface ozone predictions to the representation of atmospheric chemistry in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMMv1.0)
Current status of model predictions on volatile organic compounds and impacts on surface ozone predictions during summer in China
Daytime isoprene nitrates under changing NOx and O3
Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions
Air quality and related health impact in the UNECE region: source attribution and scenario analysis
Future tropospheric ozone budget and distribution over East Asia under a Net Zero scenario
East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis
Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic
Spatiotemporal variation of radionuclide dispersion from nuclear power plant accidents using FLEXPART mini-ensemble modeling
Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations
Western European emission estimates of CFC-11, CFC-12 and CCl4 derived from atmospheric measurements from 2008 to 2021
Evaluating modelled tropospheric columns of CH4, CO and O3 in the Arctic using ground-based FTIR measurements
Utility of Geostationary Lightning Mapper Derived Lightning NOx Emission Estimates in Air Quality Modeling Studies
Estimating methane emissions in the Arctic nations using surface observations from 2008 to 2019
Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires
Seasonal, interannual and decadal variability of tropospheric ozone in the North Atlantic: comparison of UM-UKCA and remote sensing observations for 2005–2018
Quantification of oil and gas methane emissions in the Delaware and Marcellus basins using a network of continuous tower-based measurements
Insights into Soil NO Emissions and the Contribution to Surface Ozone Formation in China
Global sensitivities of reactive N and S gas and particle concentrations and deposition to precursor emissions reductions
A high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021
Large simulated future changes in the nitrate radical under the CMIP6 SSP scenarios: implications for oxidation chemistry
Impact of HO2 aerosol uptake on radical levels and O3 production during summertime in Beijing
Source attribution of near-surface ozone trends in the United States during 1995–2019
Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
Comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA: Implications to atmospheric oxidative capacity
Impacts of land cover changes on biogenic emission and its contribution to ozone and secondary organic aerosol in China
High-resolution regional emission inventory contributes to the evaluation of policy effectiveness: a case study in Jiangsu Province, China
Why is ozone in South Korea and the Seoul metropolitan area so high and increasing?
Vehicular ammonia emissions: an underappreciated emission source in densely populated areas
Improving ozone simulations in Asia via multisource data assimilation: results from an observing system simulation experiment with GEMS geostationary satellite observations
A three-dimensional simulation and process analysis of tropospheric ozone depletion events (ODEs) during the springtime in the Arctic using CMAQ (Community Multiscale Air Quality Modeling System)
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023, https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary
Short summary
In this study, we used a regional chemical transport model to characterize the different parameters of atmospheric oxidative capacity in recent chemical environments in China. These parameters include the production and destruction rates of ozone and other oxidants, the ozone production efficiency, the OH reactivity, and the length of the reaction chain responsible for the formation of ozone and ROx. They are also affected by the aerosol burden in the atmosphere.
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023, https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Short summary
We investigate the impact of net-zero policies on surface ozone pollution in China. A chemistry–climate model is used to simulate ozone changes driven by local and external emissions, methane, and warmer climates. A deep learning model is applied to generate more robust ozone projection, and we find that the benefits of net-zero policies may be overestimated with the chemistry–climate model. Nevertheless, it is clear that the policies can still substantially reduce ozone pollution in future.
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023, https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Short summary
Forest expansion is a ″net-zero“ pathway, but change in land cover alters air quality in many ways. This study combines tree planting suitability data with UK measured emissions of biogenic volatile organic compounds to simulate spatial and temporal changes in atmospheric composition for planting scenarios of four species. Decreases in fine particulate matter are relatively larger than increases in ozone, which may indicate a net benefit of tree planting on human health aspects of air quality.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Richard G. Derwent, David D. Parrish, and Ian C. Faloona
Atmos. Chem. Phys., 23, 13613–13623, https://doi.org/10.5194/acp-23-13613-2023, https://doi.org/10.5194/acp-23-13613-2023, 2023
Short summary
Short summary
Elevated tropospheric ozone concentrations driven by anthropogenic precursor emissions are a world-wide health and environmental concern; however, this issue lacks a generally accepted understanding of the scientific issues. Here, we briefly outline the elements required to conduct an international assessment process to establish a conceptual model of the underpinning science and motivate international policy forums for regulating ozone production over hemispheric and global scales.
Nicola J. Warwick, Alex T. Archibald, Paul T. Griffiths, James Keeble, Fiona M. O'Connor, John A. Pyle, and Keith P. Shine
Atmos. Chem. Phys., 23, 13451–13467, https://doi.org/10.5194/acp-23-13451-2023, https://doi.org/10.5194/acp-23-13451-2023, 2023
Short summary
Short summary
A chemistry–climate model has been used to explore the atmospheric response to changes in emissions of hydrogen and other species associated with a shift from fossil fuel to hydrogen use. Leakage of hydrogen results in indirect global warming, offsetting greenhouse gas emission reductions from reduced fossil fuel use. To maximise the benefit of hydrogen as an energy source, hydrogen leakage and emissions of methane, carbon monoxide and nitrogen oxides should be minimised.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Guowen He, Cheng He, Haofan Wang, Xiao Lu, Chenglei Pei, Xiaonuan Qiu, Chenxi Liu, Yiming Wang, Nanxi Liu, Jinpu Zhang, Lei Lei, Yiming Liu, Haichao Wang, Tao Deng, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 23, 13107–13124, https://doi.org/10.5194/acp-23-13107-2023, https://doi.org/10.5194/acp-23-13107-2023, 2023
Short summary
Short summary
We analyze nighttime ozone in the lower boundary layer (up to 500 m) from the 2017–2019 measurements at the Canton Tower and the WRF-CMAQ model. We identify a strong ability of the residual layer to store daytime ozone in the convective mixing layer, investigate the chemical and meteorological factors controlling nighttime ozone in the residual layer, and quantify the contribution of nighttime ozone in the residual layer to both the nighttime and the following day’s surface ozone air quality.
Clara M. Nussbaumer, Horst Fischer, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 23, 12651–12669, https://doi.org/10.5194/acp-23-12651-2023, https://doi.org/10.5194/acp-23-12651-2023, 2023
Short summary
Short summary
Ozone is a greenhouse gas and contributes to the earth’s radiative energy budget and therefore to global warming. This effect is the largest in the upper troposphere. In this study, we investigate the processes controlling ozone formation and the sensitivity to its precursors in the upper tropical troposphere based on model simulations by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We find that NO𝑥 emissions from lightning most importantly affect ozone chemistry at these altitudes.
Alba Badia, Veronica Vidal, Sergi Ventura, Roger Curcoll, Ricard Segura, and Gara Villalba
Atmos. Chem. Phys., 23, 10751–10774, https://doi.org/10.5194/acp-23-10751-2023, https://doi.org/10.5194/acp-23-10751-2023, 2023
Short summary
Short summary
Improving air quality is a top priority in urban areas. In this study, we used an air quality model to analyse the air quality changes occurring over the metropolitan area of Barcelona and other rural areas affected by transport of the atmospheric plume from the city during mobility restrictions. Our results show that mitigation strategies intended to reduce O3 should be designed according to the local meteorology, air transport, and particular ozone chemistry of the urban area.
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Glenn-Michael Oomen, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, Thomas Blumenstock, Rigel Kivi, Maria Makarova, Mathias Palm, Amelie Röhling, Yao Té, Corinne Vigouroux, Martina M. Friedrich, Udo Frieß, François Hendrick, Alexis Merlaud, Ankie Piters, Andreas Richter, Michel Van Roozendael, and Thomas Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2023-1972, https://doi.org/10.5194/egusphere-2023-1972, 2023
Short summary
Short summary
Natural emissions from vegetation have a profound impact on air quality for their role in the formation of harmful tropospheric ozone and organic aerosols, yet these emissions are highly uncertain. In this study, we quantify emissions of organic gases over Europe using high-quality satellite measurements of formaldehyde. These satellite observations suggest that emissions from vegetation are much higher than predicted by models, especially in southern Europe.
Michael P. Cartwright, Richard J. Pope, Jeremy J. Harrison, Martyn P. Chipperfield, Chris Wilson, Wuhu Feng, David P. Moore, and Parvadha Suntharalingam
Atmos. Chem. Phys., 23, 10035–10056, https://doi.org/10.5194/acp-23-10035-2023, https://doi.org/10.5194/acp-23-10035-2023, 2023
Short summary
Short summary
A 3-D chemical transport model, TOMCAT, is used to simulate global atmospheric carbonyl sulfide (OCS) distribution. Modelled OCS compares well with satellite observations of OCS from limb-sounding satellite observations. Model simulations also compare adequately with surface and atmospheric observations and suitably capture the seasonality of OCS and background concentrations.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
Atmos. Chem. Phys., 23, 9685–9723, https://doi.org/10.5194/acp-23-9685-2023, https://doi.org/10.5194/acp-23-9685-2023, 2023
Short summary
Short summary
The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period.
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Atmos. Chem. Phys., 23, 9745–9763, https://doi.org/10.5194/acp-23-9745-2023, https://doi.org/10.5194/acp-23-9745-2023, 2023
Short summary
Short summary
Ozone Monitoring Instrument (OMI) and surface O3 observations are used to investigate the changes in tropospheric O3 in the USA and Europe in 2005–2020. The surface-based assimilations show limited changes in surface and tropospheric column O3. The OMI-based assimilations show larger decreases in tropospheric O3 columns in 2010–2014, related to a decline in free-tropospheric NO2. Analysis suggests limited impacts of local emissions decline on tropospheric O3 over the USA and Europe in 2005–2020.
R. Bradley Pierce, Monica Harkey, Allen Lenzen, Lee M. Cronce, Jason A. Otkin, Jonathan L. Case, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 9613–9635, https://doi.org/10.5194/acp-23-9613-2023, https://doi.org/10.5194/acp-23-9613-2023, 2023
Short summary
Short summary
We evaluate two high-resolution model simulations with different meteorological inputs but identical chemistry and anthropogenic emissions, with the goal of identifying a model configuration best suited for characterizing air quality in locations where lake breezes commonly affect local air quality along the Lake Michigan shoreline. This analysis complements other studies in evaluating the impact of meteorological inputs and parameterizations on air quality in a complex environment.
Shreta Ghimire, Zachary J. Lebo, Shane Murphy, Stefan Rahimi, and Trang Tran
Atmos. Chem. Phys., 23, 9413–9438, https://doi.org/10.5194/acp-23-9413-2023, https://doi.org/10.5194/acp-23-9413-2023, 2023
Short summary
Short summary
High wintertime ozone levels have occurred often in recent years in mountain basins with oil and gas production facilities. Photochemical modeling of ozone production serves as a basis for understanding the mechanism by which it occurs and for predictive capability. We present photochemical model simulations of ozone formation and accumulation in the Upper Green River basin, Wyoming, demonstrating the model's ability to simulate wintertime ozone and the sensitivity of ozone to its precursors.
Christian Rödenbeck, Karina E. Adcock, Markus Eritt, Maksym Gachkivsky, Christoph Gerbig, Samuel Hammer, Armin Jordan, Ralph F. Keeling, Ingeborg Levin, Fabian Maier, Andrew C. Manning, Heiko Moossen, Saqr Munassar, Penelope A. Pickers, Michael Rothe, Yasunori Tohjima, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-767, https://doi.org/10.5194/egusphere-2023-767, 2023
Short summary
Short summary
The carbon dioxide content of the Earth atmosphere is increasing due to human emissions from burning of fossil fuels, causing global climate change. The strength of the fossil-fuel emissions is estimated by inventories based on energy data, but independent validation of these inventories has been recommended by the Intergovernmental Panel on Climate Change. Here we investigate the potential to validate inventories based on measurements of small changes in the atmospheric oxygen content.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
Bryan K. Place, William T. Hutzell, K. Wyat Appel, Sara Farrell, Lukas Valin, Benjamin N. Murphy, Karl M. Seltzer, Golam Sarwar, Christine Allen, Ivan R. Piletic, Emma L. D'Ambro, Emily Saunders, Heather Simon, Ana Torres-Vasquez, Jonathan Pleim, Rebecca H. Schwantes, Matthew M. Coggon, Lu Xu, William R. Stockwell, and Havala O. T. Pye
Atmos. Chem. Phys., 23, 9173–9190, https://doi.org/10.5194/acp-23-9173-2023, https://doi.org/10.5194/acp-23-9173-2023, 2023
Short summary
Short summary
Ground-level ozone is a pollutant with adverse human health and ecosystem effects. Air quality models allow scientists to understand the chemical production of ozone and demonstrate impacts of air quality management plans. In this work, the role of multiple systems in ozone production was investigated for the northeastern US in summer. Model updates to chemical reaction rates and monoterpene chemistry were most influential in decreasing predicted ozone and improving agreement with observations.
Yongliang She, Jingyi Li, Xiaopu Lyu, Hai Guo, Momei Qin, Xiaodong Xie, Kangjia Gong, Fei Ye, Jianjiong Mao, Lin Huang, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1358, https://doi.org/10.5194/egusphere-2023-1358, 2023
Short summary
Short summary
The evaluation of predicted VOC in current chemical transport model is limited in China due to the lack of routine measurements at multiple sites. In this study, we use multi-site VOC measurements to evaluate the CMAQ model predicted VOC and assess the impacts of VOC bias on O3 simulation. Our results demonstrate that current modelling setups and emission inventories are likely to underpredict VOC concentrations, and this underprediction of VOC contributes to lower O3 predictions in China.
Alfred W. Mayhew, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 23, 8473–8485, https://doi.org/10.5194/acp-23-8473-2023, https://doi.org/10.5194/acp-23-8473-2023, 2023
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper investigates modelled changes to daytime isoprene nitrate concentrations resulting from changes in NOx and O3. The results highlight the complex, nonlinear chemistry of this group of species under typical conditions for megacities such as Beijing, with many species showing increased concentrations when NOx is decreased and/or ozone is increased.
Alice Drinkwater, Paul I. Palmer, Liang Feng, Tim Arnold, Xin Lan, Sylvia E. Michel, Robert Parker, and Hartmut Boesch
Atmos. Chem. Phys., 23, 8429–8452, https://doi.org/10.5194/acp-23-8429-2023, https://doi.org/10.5194/acp-23-8429-2023, 2023
Short summary
Short summary
Changes in atmospheric methane over the last few decades are largely unexplained. Previous studies have proposed different hypotheses to explain short-term changes in atmospheric methane. We interpret observed changes in atmospheric methane and stable isotope source signatures (2004–2020). We argue that changes over this period are part of a large-scale shift from high-northern-latitude thermogenic energy emissions to tropical biogenic emissions, particularly from North Africa and South America.
Claudio A. Belis and Rita Van Dingenen
Atmos. Chem. Phys., 23, 8225–8240, https://doi.org/10.5194/acp-23-8225-2023, https://doi.org/10.5194/acp-23-8225-2023, 2023
Short summary
Short summary
The study assesses the influence that abating emissions in the rest of the world have on exposure and mortality due to ozone and fine particulate matter in the region covered by the Gothenburg protocol (UNECE, mainly Europe and North America). To that end, the impacts of pollutants derived from different geographic areas and anthropogenic sources are analysed in a series of scenarios including measures to abate air pollutants and greenhouse gas emissions with different levels of ambition.
Xuewei Hou, Oliver Wild, Bin Zhu, and James Lee
EGUsphere, https://doi.org/10.5194/egusphere-2023-1592, https://doi.org/10.5194/egusphere-2023-1592, 2023
Short summary
Short summary
In response to the climate crisis, many countries have committed to net zero in a certain future year. The impacts of net zero scenario on tropospheric O3 are less well studied and remain unclear. In this study, we quantified the changes of tropospheric O3 budgets, spatiotemporal distributions of future surface O3 in East Asia and regional O3 source contributions for 2060 under a net zero scenario, using the NCAR Community Earth System Model (CESM) and online O3 tagging methods.
Ruosi Liang, Yuzhong Zhang, Wei Chen, Peixuan Zhang, Jingran Liu, Cuihong Chen, Huiqin Mao, Guofeng Shen, Zhen Qu, Zichong Chen, Minqiang Zhou, Pucai Wang, Robert J. Parker, Hartmut Boesch, Alba Lorente, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 8039–8057, https://doi.org/10.5194/acp-23-8039-2023, https://doi.org/10.5194/acp-23-8039-2023, 2023
Short summary
Short summary
We compare and evaluate East Asian methane emissions inferred from different satellite observations (GOSAT and TROPOMI). The results show discrepancies over northern India and eastern China. Independent ground-based observations are more consistent with TROPOMI-derived emissions in northern India and GOSAT-derived emissions in eastern China.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8081–8101, https://doi.org/10.5194/acp-23-8081-2023, https://doi.org/10.5194/acp-23-8081-2023, 2023
Short summary
Short summary
This study provides an intercomparison of European 2020 emission changes derived from official inventories, which are reported by countries under the framework of several international conventions and directives, and non-official near-real-time estimates, the use of which has significantly grown since the COVID-19 outbreak. The results of the work are used to produce recommendations on how best to approach and make use of near-real-time emissions for modelling and monitoring applications.
Seyed Omid Nabavi, Theodoros Christoudias, Yiannis Proestos, Christos Fountoukis, Huda Al-Sulaiti, and Jos Lelieveld
Atmos. Chem. Phys., 23, 7719–7739, https://doi.org/10.5194/acp-23-7719-2023, https://doi.org/10.5194/acp-23-7719-2023, 2023
Short summary
Short summary
The objective of our study is to comprehensively assess the timing of radioactive material transportation and deposition, along with the associated population exposure in the designated region. We employed diverse meteorological inputs, emission specifics, and simulation codes, aiming to quantify the level of uncertainty.
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Alison L. Redington, Alistair J. Manning, Stephan Henne, Francesco Graziosi, Luke M. Western, Jgor Arduini, Anita L. Ganesan, Christina M. Harth, Michela Maione, Jens Mühle, Simon O'Doherty, Joseph Pitt, Stefan Reimann, Matthew Rigby, Peter K. Salameh, Peter G. Simmonds, T. Gerard Spain, Kieran Stanley, Martin K. Vollmer, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 23, 7383–7398, https://doi.org/10.5194/acp-23-7383-2023, https://doi.org/10.5194/acp-23-7383-2023, 2023
Short summary
Short summary
Chlorofluorocarbons (CFCs) were used in Europe pre-1990, damaging the stratospheric ozone layer. Legislation has controlled production and use, and global emissions have decreased sharply. The global rate of decline in CFC-11 recently slowed and was partly attributed to illegal emission in eastern China. This study concludes that emissions of CFC-11 in western Europe have not contributed to the unexplained part of the global increase in CFC-11 observed in the last decade.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
EGUsphere, https://doi.org/10.5194/egusphere-2023-1161, https://doi.org/10.5194/egusphere-2023-1161, 2023
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models are generally underpredicting the concentrations of these gases in the Arctic troposphere.
Peiyang Cheng, Arastoo Pour-Biazar, Yuling Wu, Shi Kuang, Richard T. McNider, and William J. Koshak
EGUsphere, https://doi.org/10.5194/egusphere-2023-901, https://doi.org/10.5194/egusphere-2023-901, 2023
Short summary
Short summary
Lightning-induced nitrogen monoxide (LNO) emission can be estimated from geostationary satellite observations. The present study uses the LNO emission estimates derived from geostationary satellite observations in an air quality modeling system to investigate the impact of LNO to air quality. Results indicate that significant ozone increase could be due to long-distance chemical transport, lightning activity in the upwind direction, and the mixing of high LNO (or ozone) plumes.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, Joël Thanwerdas, Adrien Martinez, Jean-Daniel Paris, Toshinobu Machida, Motoki Sasakawa, Douglas E. J. Worthy, Xin Lan, Rona L. Thompson, Espen Sollum, and Mikhail Arshinov
Atmos. Chem. Phys., 23, 6457–6485, https://doi.org/10.5194/acp-23-6457-2023, https://doi.org/10.5194/acp-23-6457-2023, 2023
Short summary
Short summary
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic from 2008 to 2019. We study the magnitude, seasonal patterns and trends from different sources during recent years. We also assess how the current observation network helps to constrain fluxes. We find that constraints are only significant for North America and, to a lesser extent, West Siberia, where the observation network is relatively dense. We find no clear trend over the period of inversion.
Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, and Jun Wang
Atmos. Chem. Phys., 23, 6271–6284, https://doi.org/10.5194/acp-23-6271-2023, https://doi.org/10.5194/acp-23-6271-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to better understand the magnitude and trend in free tropospheric NO2 over the contiguous US. Model underestimate of background NO2 is largely corrected by considering aerosol nitrate photolysis. Increase in aircraft emissions affects satellite retrievals by altering the NO2 shape factor, and this effect is expected to increase in future. We show the importance of properly accounting for the free tropospheric background in interpreting NO2 observations from space.
Maria Rosa Russo, Brian John Kerridge, Nathan Luke Abraham, James Keeble, Barry Graham Latter, Richard Siddans, James Weber, Paul Thomas Griffiths, John Adrian Pyle, and Alexander Thomas Archibald
Atmos. Chem. Phys., 23, 6169–6196, https://doi.org/10.5194/acp-23-6169-2023, https://doi.org/10.5194/acp-23-6169-2023, 2023
Short summary
Short summary
Tropospheric ozone is an important component of the Earth system as it can affect both climate and air quality. In this work we use observed tropospheric ozone derived from satellite observations and compare it to tropospheric ozone from model simulations. Our aim is to investigate recent changes (2005–2018) in tropospheric ozone in the North Atlantic region and to understand what factors are driving such changes.
Zachary Barkley, Kenneth Davis, Natasha Miles, Scott Richardson, Aijun Deng, Benjamin Hmiel, David Lyon, and Thomas Lauvaux
Atmos. Chem. Phys., 23, 6127–6144, https://doi.org/10.5194/acp-23-6127-2023, https://doi.org/10.5194/acp-23-6127-2023, 2023
Short summary
Short summary
Using methane monitoring instruments attached to towers, we measure methane concentrations and quantify methane emissions coming from the Marcellus and Permian oil and gas basins. In the Marcellus, emissions were 3 times higher than the state inventory across the entire monitoring period. In the Permian, we see a sharp decline in emissions aligning with the onset of the COVID-19 pandemic. Tower observational networks can be utilized in other basins for long-term monitoring of emissions.
Ling Huang, Jiong Fang, Jiaqiang Liao, Yarwood Greg, Hui Chen, Yangjun Wang, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-990, https://doi.org/10.5194/egusphere-2023-990, 2023
Short summary
Short summary
Surface ozone concentrations have emerged as a major environmental issue in China. Although control strategies aimed at reducing NOx emissions from conventional combustion sources are widely recognized, soil NOx emissions have received little attention. The impact of soil NO emissions on ground-level ozone concentration is yet to be evaluated. In this study, we estimated the soil NO emissions and evaluated its impact on ozone formation in China.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 23, 6083–6112, https://doi.org/10.5194/acp-23-6083-2023, https://doi.org/10.5194/acp-23-6083-2023, 2023
Short summary
Short summary
The sensitivity of fine particles and reactive N and S species to reductions in precursor emissions is investigated using the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West) atmospheric chemistry transport model. This study reveals that the individual emissions reduction has multiple and geographically varying co-benefits and small disbenefits on different species, demonstrating the importance of prioritizing regional emissions controls.
Roger Teoh, Zebediah Engberg, Marc Shapiro, Lynnette Dray, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2023-724, https://doi.org/10.5194/egusphere-2023-724, 2023
Short summary
Short summary
Emissions from aircraft contribute to climate change and degrade air quality. We describe an up-to-date 4D emissions inventory of global aviation from 2019 to 2021 based on actual flown trajectories. In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel. Long-haul flights were responsible for 43 % of CO2. The emissions inventory is made available for use in future studies to evaluate the negative externalities arising from global aviation.
Scott Archer-Nicholls, Rachel Allen, Nathan L. Abraham, Paul T. Griffiths, and Alex T. Archibald
Atmos. Chem. Phys., 23, 5801–5813, https://doi.org/10.5194/acp-23-5801-2023, https://doi.org/10.5194/acp-23-5801-2023, 2023
Short summary
Short summary
The nitrate radical is a major oxidant at nighttime, but much less is known about it than about the other oxidants ozone and OH. We use Earth system model calculations to show how the nitrate radical has changed in abundance from 1850–2014 and to 2100 under a range of different climate and emission scenarios. Depending on the emissions and climate scenario, significant increases are projected with implications for the oxidation of volatile organic compounds and the formation of fine aerosol.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Pengwei Li, Yang Yang, Hailong Wang, Su Li, Ke Li, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 23, 5403–5417, https://doi.org/10.5194/acp-23-5403-2023, https://doi.org/10.5194/acp-23-5403-2023, 2023
Short summary
Short summary
We use a novel technique that can attribute O3 to precursors to investigate O3 changes in the United States during 1995–2019. We found that the US domestic energy and surface transportation emission reductions are primarily responsible for the O3 decrease in summer. In winter, factors such as nitrogen oxide emission reduction in the context of its inhibition of ozone production, increased aviation and shipping activities, and large-scale circulation changes contribute to the O3 increases.
Glen Chua, Vaishali Naik, and Larry Wayne Horowitz
Atmos. Chem. Phys., 23, 4955–4975, https://doi.org/10.5194/acp-23-4955-2023, https://doi.org/10.5194/acp-23-4955-2023, 2023
Short summary
Short summary
The hydroxyl radical (OH) is an atmospheric
detergent, removing air pollutants and greenhouse gases like methane from the atmosphere. Thus, understanding how it is changing and responding to its various drivers is important for air quality and climate. We found that OH has increased by about 5 % globally from 1980 to 2014 in our model, mostly driven by increasing nitrogen oxide (NOx) emissions. This suggests potential climate tradeoffs from air quality policies solely targeting NOx emissions.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
EGUsphere, https://doi.org/10.5194/egusphere-2023-652, https://doi.org/10.5194/egusphere-2023-652, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species have been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Yifan Wen, Shaojun Zhang, Ye Wu, and Jiming Hao
Atmos. Chem. Phys., 23, 3819–3828, https://doi.org/10.5194/acp-23-3819-2023, https://doi.org/10.5194/acp-23-3819-2023, 2023
Short summary
Short summary
This study established a high-resolution vehicular NH3 emission inventory for mainland China to quantify the absolute value and relative importance of on-road NH3 emissions for different regions, seasons and population densities. Our results indicate that the significant role of on-road NH3 emissions in populated urban areas may have been underappreciated, suggesting the control of vehicular NH3 emission can be a feasible and cost-effective way of mitigating haze pollution in urban areas.
Lei Shu, Lei Zhu, Juseon Bak, Peter Zoogman, Han Han, Song Liu, Xicheng Li, Shuai Sun, Juan Li, Yuyang Chen, Dongchuan Pu, Xiaoxing Zuo, Weitao Fu, Xin Yang, and Tzung-May Fu
Atmos. Chem. Phys., 23, 3731–3748, https://doi.org/10.5194/acp-23-3731-2023, https://doi.org/10.5194/acp-23-3731-2023, 2023
Short summary
Short summary
We quantify the benefit of multisource observations (GEMS, LEO satellite, and surface) on ozone simulations in Asia. Data assimilation improves the monitoring of exceedance, spatial pattern, and diurnal variation of surface ozone, with the regional mean bias reduced from −2.1 to −0.2 ppbv. Data assimilation also better represents ozone vertical distributions in the middle to upper troposphere at low latitudes. Our results offer a valuable reference for future ozone simulations.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Cited articles
Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A. S. H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., and Yttri, K. E.: Lessons learnt from the first EMEP intensive measurement periods, Atmos. Chem. Phys., 12, 8073–8094, https://doi.org/10.5194/acp-12-8073-2012, 2012.
Angove, D., Azzi, M., Tibbett, A., and Campbell, I.: An investigation into the photochemistry of monoethanolamine (MEA) in NOx. in: Recent Advances in Post-Combustion CO2 Capture Chemistry, ACS Symposium Series, Washington, DC, vol. 1097, chap. 14, 265–273, 2012.
Berge, E. and Jakobsen, H. A.: A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe, Tellus, 50, 205–223, 1998.
Briggs, G. A.: Plume Rise, US Atomic Energy Commission, Springfield, USA, 1–81, 1969.
Briggs, G. A.: Some recent analyses of plume rise observation, in: Proceedings of the Second International Clean Air Congress, edited by: Englund, H. M. and Berry, W. T., Academic Press, Washington, USA, 6–11 December 1970, 1029–1032, 1971.
Briggs, G. A.: Plume rise predictions, in: Lectures on Air Pollution and Environmental Impact Analysis, edited by: Haugen, D. A., Amer. Meteor. Soc., Boston, MA, 59–111, 1975.
California EPA: Public Health Goal for N-nitrosodimethylamine in Drinking Water, California Environmental Protection Agency, Pesticide and Environmental Toxicology Branch, available at: http://oehha.ca.gov/water/phg/pdf/122206NDMAphg.pdf (last access: 29 June 2014), 2006.
Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri, A., Bessagnet, B., D'Angiola, A., D'Isidoro, M., Gauss, M., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L., Russo, F., Solberg, S., Stordal, F., and Tampieri, F.: Air quality trends in Europe over the past decade: a first multi-model assessment, Atmos. Chem. Phys., 11, 11657–11678, https://doi.org/10.5194/acp-11-11657-2011, 2011.
Dai, N., Shah, A. D., Hu, L., Plewa, M. J., McKague, B., and Mitch, W. A.: Measurement of nitrosamine and nitramines formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol., 46, 9793–9801, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
de Koeijer, G., Talstad, V. R., Nepstad, S., Tønnesen, D., Falk-Pedersen, O., Maree, Y., and Nielsen, C.: Health risk analysis of emissions to air from CO2 Technology Center Mongstad, Int. J. Greenh. Gas Con., 18, 200–207, 2013.
Drewes, J. E., Hoppe, C., and Jennings, T.: Fate and transport of n-nitrosamines under conditions simulating full-scale groundwater recharge operations, Water Environ. Res., 78, 2466–2473, https://doi.org/10.2175/106143006x115408, 2006.
Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980–2003, Environ. Pollut., 154, 448–461, 2008.
Fisher, B. E. A., Erbrink, J. J., Finardi, S., Jeannet, P., Joffre, S., Morselli, M. G., Pechinger, U., Seibert, P., and Thomson, D. J.: COST Action 710 – Final report, Harmonisation of the pre-processing of meteorological data for atmospheric dispersion models, EUR 18195, Office for Official Publications of the European Communities, Luxembourg, 431, 1998.
Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part 2: Thermodynamic properties and gas/particle partitioning, Atmos. Environ., 45, 561–577, 2011.
Goff, G. S. and Rochelle, G. T.: Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions, Ind. Eng. Chem. Res., 43, 6400–6408, 2004.
Hanna, S. R., Briggs, G. A., and Hosker Jr., R. P.: Handbook on Atmospheric Diffusion, edited by: Smith, J. S., DOE/TIC-11223, Technical Information Center, US Department of Energy, Springfield, USA, 1982.
Högström, U.: Review of some basic characteristics of the atmospheric surface layer, Bound.-Lay. Meteorol., 78, 215–246, 1996.
Holmes, N. S. and Morawska, L.: A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available, Atmos. Environ., 40, 5902–5928, 2006.
Hurley, P., Physick, W., and Luhar, A.: TAPM – a practical approach to prognostic meteorological and air pollution modelling, Environ. Modell. Softw., 20, 737–752, https://doi.org/10.1016/j.envsoft.2004.04.006, 2005.
Hutchings, J. W., Ervens, B., Straub, D., and Herckes, P. N.: Nitrosodimethylamine occurrence, formation, and cycling in clouds and fogs, Environ. Sci. Technol., 41, 393–399, 2010.
IPCC: Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, UK, 2005.
Jonson, J. E., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem. Phys., 6, 51–66, https://doi.org/10.5194/acp-6-51-2006, 2006.
Kaplan, D. L. and Kaplan, A. M.: Biodegradation of n-nitrosodimethylamine in aqueous and soil systems, Appl. Environ. Microb., 50, 1077–1086, 1985.
Karl, M., Wright, R. F., Berglen, T. F., and Denby, B.: Worst case scenario study to assess the environmental impact of amine emissions from a CO2 capture plant, Int. J. Greenh. Gas Con., 5, 439–447, 2011.
Karl, M., Dye, C., Schmidbauer, N., Wisthaler, A., Mikoviny, T., D'Anna, B., Müller, M., Borrás, E., Clemente, E., Muñoz, A., Porras, R., Ródenas, M., Vázquez, M., and Brauers, T.: Study of OH-initiated degradation of 2-aminoethanol, Atmos. Chem. Phys., 12, 1881–1901, https://doi.org/10.5194/acp-12-1881-2012, 2012.
Karl, M., Svendby, T., Walker, S.-E., Velken, A. V. S., Castell, N., and Solberg, S.: Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem, Sci. Total Environ., in preparation, 2014.
Kuenen, J., Denier van der Gon, H., Visschedijk, A., and van der Brugh, H.: High resolution European emission inventory for the years 2003–2007, TNO report TNO-060-UT-2011-00588, Utrecht, the Netherlands, 2011.
Låg, M., Lindeman, B., Instanes, C., Brunborg, G., and Schwarze, P.: Health effects of amines and derivatives associated with CO2 capture, Norwegian Institute of Public Health, available at: http://www.fhi.no/dokumenter/ca838717be.pdf (last access: 29 June 2014), 2011.
Lazarou, Y. G., Kambanis, K. G., and Papagiannakopoulos, P.: Gas phase reactions of (CH3)2N radicals with NO and NO2, J. Phys. Chem., 98, 2110–2115, 1994.
Lee, D. and Wexler, A. S.: Atmospheric amines – Part 3: Photochemistry and toxicity, Atmos. Environ., 71, 95–103, https://doi.org/10.1016/j.atmosenv.2013.01.058, 2013.
Mackay, D.: Multimedia Environmental Models: the Fugacity Approach, 2nd Edn., CRC press, Boca Raton, FL, 2001.
Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., and Cowan, C. E.: Assessing the fate of new and existing chemicals: a five-stage process, Environ. Toxicol. Chem., 15, 1618–1626, 1996.
MacLeod, M. and Mackay, D.: An assessment of the environmental fate and exposure of benzene and the chlorobenzenes in Canada, Chemosphere, 38, 1777–1796, 1999.
MacLeod, M., Fraser, A. J., and Mackay, D.: Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models, Environ. Toxicol. Chem., 21, 700–709, 2002.
Malloy, Q. G. J., Li Qi, Warren, B., Cocker III, D. R., Erupe, M. E., and Silva, P. J.: Secondary organic aerosol formation from primary aliphatic amines with NO3 radical, Atmos. Chem. Phys., 9, 2051–2060, https://doi.org/10.5194/acp-9-2051-2009, 2009.
Nielsen, C. J., D'Anna, B., Dye, C., Graus, M., Karl, M., King, S., Musabila, M., Müller, M., Schmidbauer, N., Stenstrøm, Y., Wisthaler, A., and Pedersen, S.: Atmospheric chemistry of 2-aminoethanol (MEA), Energy Procedia, 4, 2245–2252, 2011.
Nielsen, C. J., D'Anna, B., Bossi, R., Bunkan, A. J. C., Dithmer, L., Glasius, M., Hallquist, M., Hansen, A. M. K., Lutz, A., Salo, K., Maguta, M. M., Nguyen, Q., Mikoviny, T., Müller, M., Skov, H., Sarrasin, E., Stenstrøm, Y., Tang, Y., Westerlund, J., and Wisthaler, A.: Atmospheric Degradation of Amines (ADA): summary report from atmospheric chemistry studies of amines, nitrosamines, nitramines and amides, University of Oslo, Oslo, 2012a.
Nielsen, C. J., Herrmann, H., and Weller, C.: Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS), Chem. Soc. Rev., 41, 6684–6704, 2012b.
Norwegian Climate and Pollution Agency: Permit for Activities Pursuant to the Pollution Control Act for CO2 Technology Centre Mongstad DA, available at: http://www.tcmda.com/Global/Dokumenter/Klif_TCM_Discharge
Onel, L., Blitz, M. A., and Seakins, P. W.: Direct determination of the rate coefficient for the reaction of OH radicals with monoethanol amine (MEA) from 296 to 510 K, J. Phys. Chem. Lett. 3, 853–856, 2012.
Owen, B., Edmunds, H. A., Carruthers, D. J., and Singles, R. J.: Prediction of total oxides of nitrogen and nitrogen dioxide concentrations in a large urban area using a new generation urban scale dispersion model with integral chemistry model, Atmos. Environ., 34, 397–406, 2000.
Pitts, J. N., Grosjean, D., Vanmcauwenberghe, K., Schmidt, J. P., and Fitz, D. R.: Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides, and photochemical oxidant, Environ. Sci. Technol., 12, 946–953, 1978.
Plumlee, M. H. and Reinhard, M.: Photochemical attenuation of n-nitrosodimethylamine (NDMA) and other nitrosamines in surface water, Environ. Sci. Technol., 41, 6170–6176, 2007.
Price, D. J.: Field and Smog Chamber Studies of Agricultural Emissions and Reaction Products, Master's thesis, All Graduate Theses and Dissertations, Paper 592, Utah State University, available at: http://digitalcommons.usu.edu/etd/592 (last access: 10 December 2013), 2010.
Rao, A. B. and Rubin, E. S.: A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol., 36, 4467–4475, 2002.
Reynolds, A. J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., and Feron, P.: Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts, Environ. Sci. Technol., 46, 3643–3654, 2012.
Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., and DeMarini, D. M.: Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res.-Rev. Mutat, 636, 178–242, https://doi.org/10.1016/j.mrrev.2007.09.001, 2007.
Rochelle, G. T.: Amine scrubbing for CO2 capture, Science, 325, 1652–1653, 2009.
Salo, K., Westerlund, J., Andersson, P. U., Nielsen, C. J., D'Anna, B., and Hallquist, M.: Thermal characterization of alkyl aminium nitrate nanoparticles, J. Phys. Chem. A, 115, 11671–11677, 2011.
Saloranta, T. M., Armitage, J. M., Haario, H., Næs, K., Cousins, I. T., and Barton, D. N.: Modeling the effects and uncertainties of contaminated sediment remediation scenarios in a Norwegian Fjord by Markov chain Monte Carlo simulation, Environ. Sci. Technol., 42, 200–206, 2007.
Simpson, D., Fagerli, H., Hellsten, S., Knulst, J. C., and Westling, O.: Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe, Biogeosciences, 3, 337–355, https://doi.org/10.5194/bg-3-337-2006, 2006a.
Simpson, D., Butterbach-Bahl, K., Fagerli, H., Kesik, M., Skiba, U., and Tang, S.: Deposition and emissions of reactive nitrogen over European forests: a modelling study, Atmos. Environ., 40, 5712–5726, 2006b.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3, NCAR Technical note, NCAR/TN-475+STR, available at: http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (last access: 29 June 2014), 2008.
Solberg, S. and Svendby, T.: Development of a nested WRF/EMEP modelling system at NILU, in: Transboundary acidification, eutrophication and ground level ozone in Europe in 2010, edited by: Fagerli, H., Gauss, M., Benedictow, A., Jonson, J. E., Nyíri, A., Schulz, M., Simpson, D., Steensen, B. M., Tsyro, S., Valdebenito, A., Wind, P., Shamsudheen, S. V., Aas, W., Hjelbrekke, A.-G., Mareckova, K., Wankmuller, R., Solberg, S., Svendby, T., Vieno, M., Thunis, P., Cuvelier, K., Koffi, B., and Bergtström, R., Norwegian Meteorological Institute – MSC-W (EMEP status report 1/2012), Oslo, 81–89, 2012.
Strazisar, B. R., Anderson, R. R., and White, C. M.: Degradation pathways of monoethanolamine in a CO2 capture facility, Energ. Fuel., 17, 1034–1039, 2003.
Tang, Y., Hanrath, M., and Nielsen, C. J.: Do primary nitrosamines form and exist in the gas phase? A computational study of CH3NHNO and (CH3)2NNO, Phys. Chem. Chem. Phys., 14, 16365–16370, 2012.
Tønnesen, D., Dye, C., and Bøhler, T.: Baseline study on air and precipitation quality for CO2 Technology Centre Mongstad, Norwegian Institute for Air Research, NILU OR 73/2011, Kjeller, Norway, 2011.
US EPA: Estimation Programs Interface Suite for Microsoft Windows, v 4.00, United States Environmental Protection Agency, Washington, DC, USA, available at: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm (last access: 29 June 2014), 2012.
Verwer, J. and Simpson, D.: Explicit methods for stiff ODEs from atmospheric chemistry, Appl. Numer. Math., 18, 413–430, 1995.
Verwer, J. G., Blom, J. G., and Hundsdorfer, W.: An implicit explicit approach for atmospheric transport-chemistry problems, Appl. Numer. Math., 20, 191–209, 1996.
Vieno, M., Dore, A. J., Wind, P., Di Marco, C., Nemitz, E., Phillips, G., Tarrason, L., and Sutton, M. A.: Application of the EMEP Unified Model to the UK with a Horizontal Resolution of 5 × 5 km^2, in: Atmospheric Ammonia – Detecting Emission Changes and Environmental Impacts, edited by: Sutton, M. A., Reid, S., and Baker, S. M. H., Springer, Berlin, Heidelberg, Germany, 367–372, 2009.
Vieno, M., Dore, A. J., Stevenson, D. S., Doherty, R., Heal, M. R., Reis, S., Hallsworth, S., Tarrason, L., Wind, P., Fowler, D., Simpson, D., and Sutton, M. A.: Modelling surface ozone during the 2003 heat-wave in the UK, Atmos. Chem. Phys., 10, 7963–7978, https://doi.org/10.5194/acp-10-7963-2010, 2010.
Wieringa, J.: Updating the Davenport roughness classification, J. Wind Eng. Ind. Aerod., 41–44, 357–368, 1992.
Wolke, R., Knoth, O., Hellmuth, O., Schroder, W., and Renner, E.: The parallel model system LM/MUSCAT for chemistry transport simulations: coupling scheme, parallelization and applications, Adv. Par. Com., 13, 363–369, 2004.
Yang, W. C., Gan, J., Liu, W. P., and Green, R.: Degradation of n-nitrosodimethylamine (NDMA) in landscape soils, J. Environ. Qual., 34, 336–341, 2005.
Zhou, Q. L., McCraven, S., Garcia, J., Gasca, M., Johnson, T. A., and Motzer, W. E.: Field evidence of biodegradation of n-nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge, Water Res., 43, 793–805, https://doi.org/10.1016/j.watres.2008.11.011, 2009.
Altmetrics
Final-revised paper
Preprint