Articles | Volume 11, issue 16
https://doi.org/10.5194/acp-11-8721-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-11-8721-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry
M. Vaïtilingom
CNRS, UMR6016, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique (LaMP), BP 10448, 63000 Clermont-Ferrand, France
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
T. Charbouillot
Clermont Université, Université Blaise Pascal, Laboratoire de Photochimie Moléculaire et Macromoléculaire (LPMM), BP 10448, 63000 Clermont-Ferrand, France
CNRS, UMR6016, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique (LaMP), BP 10448, 63000 Clermont-Ferrand, France
CNRS, UMR6505, 63177 Aubière, France
L. Deguillaume
CNRS, UMR6016, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique (LaMP), BP 10448, 63000 Clermont-Ferrand, France
R. Maisonobe
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
M. Parazols
Clermont Université, Université Blaise Pascal, Laboratoire de Photochimie Moléculaire et Macromoléculaire (LPMM), BP 10448, 63000 Clermont-Ferrand, France
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
CNRS, UMR6505, 63177 Aubière, France
P. Amato
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
M. Sancelme
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
A.-M. Delort
CNRS, UMR6504, 63177 Aubière, France
Clermont Université, Université Blaise Pascal, Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, BP 10448, 63000 Clermont-Ferrand, France
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Direct formation of HONO through aqueous-phase photolysis of organic nitrates
On the importance of multiphase photolysis of organic nitrates on their global atmospheric removal
Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: implications for microbial activity in acidic cloud water
Towards a chemical mechanism of the oxidation of aqueous sulfur dioxide via isoprene hydroxyl hydroperoxides (ISOPOOH)
On the importance of atmospheric loss of organic nitrates by aqueous-phase ●OH oxidation
Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing
Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates
Aqueous reactions of organic triplet excited states with atmospheric alkenes
The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline
Direct molecular-level characterization of different heterogeneous freezing modes on mica – Part 1
Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents
Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)
Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants
Comparing contact and immersion freezing from continuous flow diffusion chambers
A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates
Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash
Organic matter matters for ice nuclei of agricultural soil origin
Effect of atmospheric organic complexation on iron-bearing dust solubility
Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN
Ice nucleation efficiency of clay minerals in the immersion mode
Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice
In-cloud processes of methacrolein under simulated conditions – Part 1: Aqueous phase photooxidation
In-cloud processes of methacrolein under simulated conditions – Part 2: Formation of secondary organic aerosol
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, https://doi.org/10.5194/acp-23-5851-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work investigated for the first time their reactivity with light in the aqueous phase (cloud and fog and wet aerosol), proving it slower than in the gas phase. Therefore, our findings reveal that partitioning of organic nitrates in the aqueous phase leads to longer atmospheric lifetimes of these compounds and thus a broader spatial distribution of their related pollution.
Yushuo Liu, Chee Kent Lim, Zhiyong Shen, Patrick K. H. Lee, and Theodora Nah
Atmos. Chem. Phys., 23, 1731–1747, https://doi.org/10.5194/acp-23-1731-2023, https://doi.org/10.5194/acp-23-1731-2023, 2023
Short summary
Short summary
We investigated how cloud water pH and solar radiation impact the survival and energetic metabolism of two neutrophilic bacteria species and their biodegradation of organic acids. Experiments were performed using artificial cloud water that mimicked the pH and composition of cloud water in South China. We found that there is a minimum cloud water pH threshold at which neutrophilic bacteria will survive and biodegrade organic compounds in cloud water during the daytime and/or nighttime.
Eleni Dovrou, Kelvin H. Bates, Jean C. Rivera-Rios, Joshua L. Cox, Joshua D. Shutter, and Frank N. Keutsch
Atmos. Chem. Phys., 21, 8999–9008, https://doi.org/10.5194/acp-21-8999-2021, https://doi.org/10.5194/acp-21-8999-2021, 2021
Short summary
Short summary
We examined the mechanism and products of oxidation of dissolved sulfur dioxide with the main isomers of isoprene hydroxyl hydroperoxides, via laboratory and model analysis. Two chemical mechanism pathways are proposed and the results provide an improved understanding of the broader atmospheric chemistry and role of multifunctional organic hydroperoxides, which should be the dominant VOC oxidation products under low-NO conditions, highlighting their significant contribution to sulfate formation.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Saly Jaber, Audrey Lallement, Martine Sancelme, Martin Leremboure, Gilles Mailhot, Barbara Ervens, and Anne-Marie Delort
Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, https://doi.org/10.5194/acp-20-4987-2020, 2020
Short summary
Short summary
Current atmospheric multiphase models do not include biotransformations of organic compounds by bacteria, although many previous studies of our and other research groups have shown microbial activity in cloud water. The current lab/model study shows that for water-soluble aromatic compounds, biodegradation by bacteria may be as efficient as chemical reactions in cloud water.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Richie Kaur, Brandi M. Hudson, Joseph Draper, Dean J. Tantillo, and Cort Anastasio
Atmos. Chem. Phys., 19, 5021–5032, https://doi.org/10.5194/acp-19-5021-2019, https://doi.org/10.5194/acp-19-5021-2019, 2019
Short summary
Short summary
Organic triplets are an important class of aqueous photooxidants, but little is known about their reactions with most atmospheric organic compounds. We measured the reaction rate constants of a model triplet with 17 aliphatic alkenes; using their correlation with oxidation potential, we predicted rate constants for some atmospherically relevant alkenes. Depending on their reactivities, triplets can be minor to important sinks for isoprene- and limonene-derived alkenes in cloud or fog drops.
Julián Gelman Constantin, Melisa M. Gianetti, María P. Longinotti, and Horacio R. Corti
Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, https://doi.org/10.5194/acp-18-14965-2018, 2018
Short summary
Short summary
Numerous studies have shown that ice surface is actually coated by a thin layer of water even for temperatures below melting temperature. This quasi-liquid layer is relevant in the atmospheric chemistry of clouds, polar regions, glaciers, and other cold regions. We present new results of atomic force microscopy on pure ice, which suggests a thickness for this layer below 1 nm between -7 ºC and -2 ºC. We propose that in many cases previous authors have overestimated this thickness.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ahmed Abdelmonem
Atmos. Chem. Phys., 17, 10733–10741, https://doi.org/10.5194/acp-17-10733-2017, https://doi.org/10.5194/acp-17-10733-2017, 2017
Short summary
Short summary
On the basis of supercooled SHG spectroscopy, I report molecular-level evidence for the existence of one- and two-step deposition freezing depending on the surface type and the supersaturation conditions. In addition, immersion freezing shows a transient ice phase with a lifetime of c. 1 min. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change, weather modification, and tracing water in the hydrosphere.
Alexander Jost, Miklós Szakáll, Karoline Diehl, Subir K. Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 17, 9717–9732, https://doi.org/10.5194/acp-17-9717-2017, https://doi.org/10.5194/acp-17-9717-2017, 2017
Short summary
Short summary
During riming of graupel and hail, soluble chemical trace constituents contained in the liquid droplets could be retained while freezing onto the glaciated particle, or released back to the air potentially at other altitudes as retained. Quantification of retention constitutes a major uncertainty in numerical models for atmospheric chemistry and improvements hinge upon experimental determination of retention for carboxylic acids, aldehydes, SO2, H2O2, NH2, and others, as presented in this paper.
Ahmed Abdelmonem, Ellen H. G. Backus, Nadine Hoffmann, M. Alejandra Sánchez, Jenée D. Cyran, Alexei Kiselev, and Mischa Bonn
Atmos. Chem. Phys., 17, 7827–7837, https://doi.org/10.5194/acp-17-7827-2017, https://doi.org/10.5194/acp-17-7827-2017, 2017
Short summary
Short summary
We report the effect of surface charge on heterogeneous immersion freezing for the atmospherically relevant sapphire surface. Combining linear and nonlinear optical techniques and investigating isolated drops, we find that charge-induced surface templating is detrimental for ice nucleation on α-alumina surface. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change and tracing of water in the hydrosphere.
Pascal Renard, Isabelle Canet, Martine Sancelme, Nolwenn Wirgot, Laurent Deguillaume, and Anne-Marie Delort
Atmos. Chem. Phys., 16, 12347–12358, https://doi.org/10.5194/acp-16-12347-2016, https://doi.org/10.5194/acp-16-12347-2016, 2016
Short summary
Short summary
A total of 480 microorganisms collected from 39 clouds sampled in France were isolated and identified. This unique collection was screened for biosurfactant production by measuring the surface tension. 41 % of the tested strains were active producers. Pseudomonas, the most frequently detected genus in clouds, was the dominant group for the production of biosurfactants. Further, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
A. Bianco, M. Passananti, H. Perroux, G. Voyard, C. Mouchel-Vallon, N. Chaumerliac, G. Mailhot, L. Deguillaume, and M. Brigante
Atmos. Chem. Phys., 15, 9191–9202, https://doi.org/10.5194/acp-15-9191-2015, https://doi.org/10.5194/acp-15-9191-2015, 2015
G. P. Schill, K. Genareau, and M. A. Tolbert
Atmos. Chem. Phys., 15, 7523–7536, https://doi.org/10.5194/acp-15-7523-2015, https://doi.org/10.5194/acp-15-7523-2015, 2015
Short summary
Short summary
Fine volcanic ash can influence cloud glaciation and, therefore, global climate. In this work we examined the heterogeneous ice nucleation properties of three distinct types of volcanic ash. We find that, in contrast to previous studies, these volcanic ash samples have different ice nucleation properties in the immersion mode. In the deposition mode, however, they nucleate ice with similar efficiency. We show that this behavior may be due to their mineralogy.
Y. Tobo, P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis
Atmos. Chem. Phys., 14, 8521–8531, https://doi.org/10.5194/acp-14-8521-2014, https://doi.org/10.5194/acp-14-8521-2014, 2014
R. Paris and K. V. Desboeufs
Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, https://doi.org/10.5194/acp-13-4895-2013, 2013
X. Tang, D. R. Cocker III, and A. Asa-Awuku
Atmos. Chem. Phys., 12, 8377–8388, https://doi.org/10.5194/acp-12-8377-2012, https://doi.org/10.5194/acp-12-8377-2012, 2012
V. Pinti, C. Marcolli, B. Zobrist, C. R. Hoyle, and T. Peter
Atmos. Chem. Phys., 12, 5859–5878, https://doi.org/10.5194/acp-12-5859-2012, https://doi.org/10.5194/acp-12-5859-2012, 2012
T. Hullar and C. Anastasio
Atmos. Chem. Phys., 11, 7209–7222, https://doi.org/10.5194/acp-11-7209-2011, https://doi.org/10.5194/acp-11-7209-2011, 2011
Yao Liu, I. El Haddad, M. Scarfogliero, L. Nieto-Gligorovski, B. Temime-Roussel, E. Quivet, N. Marchand, B. Picquet-Varrault, and A. Monod
Atmos. Chem. Phys., 9, 5093–5105, https://doi.org/10.5194/acp-9-5093-2009, https://doi.org/10.5194/acp-9-5093-2009, 2009
I. El Haddad, Yao Liu, L. Nieto-Gligorovski, V. Michaud, B. Temime-Roussel, E. Quivet, N. Marchand, K. Sellegri, and A. Monod
Atmos. Chem. Phys., 9, 5107–5117, https://doi.org/10.5194/acp-9-5107-2009, https://doi.org/10.5194/acp-9-5107-2009, 2009
Cited articles
Ahern, H. E., Walsh, K. A., Hill, T. C. J., and Moffett, B. F.: Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation, Biogeosciences, 4, 115–124, https://doi.org/10.5194/bg-4-115-2007, 2007.
Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microbial population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds, Atmos. Environ., 39, 4143–4153, 2005.
Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A.-S., Sancelme, M., Laj, P., and Delort, A.-M.: A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms, Atmos. Chem. Phys., 7, 4159–4169, https://doi.org/10.5194/acp-7-4159-2007, 2007a.
Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures., FEMS Microbiol. Ecol., 59, 242–254, 2007b.
Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A.-M.: An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France), Atmos. Environ., 41, 8253–8263, 2007c.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 2077–2081, 2002.
Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., and Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109–119, 2002.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, 2000.
Burrows, S. M., Elbert, W., Lawrence, M. G., and Pöschl, U.: Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems, Atmos. Chem. Phys., 9, 9263–9280, https://doi.org/10.5194/acp-9-9263-2009, 2009.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim, H.-J., and Ervens, B.: Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41, 7588–7602, 2007.
Casareto, B. E., Suzuki, Y., Okada, K., and Morita, M.: Biological micro-particles in rain water, Geophys. Res. Lett., 23, 173–176, 1996.
Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, Atmos. Environ., 30, 4233–4249, 1996.
Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous phase reactions of OH radicals with formate, formic acid, acetate, acetic acid and hydrated formaldehyde, in: Aquatic and Surface Photochemistry, edited by: Helz, G. R., Zepp, R. G., and Crosby, D. G, Lewis Publishers, Boca Raton, 85–96, 1994.
Côté, V., Kos, G., Mortazavi, R., and Ariya, P. A.: Microbial and "de novo" transformation of dicarboxylic acids by three airborne fungi, Sci. Total Environ., 390, 530–537, 2008.
Deguillaume, L., Leriche, M., Monod, A., and Chaumerliac, N.: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry, Atmos. Chem. Phys., 4, 95–110, https://doi.org/10.5194/acp-4-95-2004, 2004.
Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A.-M., Pöschl, U., Chaumerliac, N., Bauer, H., Flossmann, A. I., and Morris, C. E.: Microbiology and atmospheric processes: chemical interactions of primary biological aerosols, Biogeosciences, 5, 1073–1084, https://doi.org/10.5194/bg-5-1073-2008, 2008.
Deguillaume, L., Desboeufs, K. V., Leriche, M., Long, Y., and Chaumerliac, N.: Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results, Atmos. Pol. Res., 1, 220–228, 2010.
Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M., Mailhot, G., Laj, P., and Deguillaume, L.: A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes, Atmos. Res., 98, 249–260, https://doi.org/10.1016/j.physletb.2003.10.071, 2010.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res., 108, 4426, https://doi.org/10.1029/2002jd002202, 2003a.
Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811–1824, https://doi.org/10.1039/b300072a, 2003b.
Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis, S. M.: A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production, J. Geophys. Res., 109, D15205, https://doi.org/10.1029/2003JD004387, 2004.
Fuzzi, S., Mandrioli, P., and Perfetto, A.: Fog droplets-An atmospheric source of secondary biological aerosol particles, Atmos. Environ., 31, 287–290, 1997.
Fuzzi, S., Facchini, M. C., Decesari, S., Matta, E., and Mircea, M.: Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years?, Atmos. Res., 64, 89–98, 2002.
Graedel, T. E., Mandich, M. L., and Weschler, C. J.: Kinetic model studies of Atmospheric Droplet Chemistry 2. Homogeneous Transition Metal Chemistry in Raindrops, J. Geophys. Res., 91, 5205–5221, https://doi.org/10.1029/JD091iD04p05205, 1986.
Hadi, D. A., Crossley, A., and Cape, J. N.: Particulate and dissolved organic carbon in cloud water in southern Scotland, Environ. Pollut., 88, 299–306, 1995.
Herlihy, L. J., Galloway, J. N., and Mills, A. L.: Bacterial utilization of formic and acetic acid in rainwater, Atmos. Environ., 21, 2397–2402, 1987.
Herrmann, H.: Kinetics of Aqueous Phase Reactions Relevant for Atmospheric Chemistry, Chem. Rev., 103, 4691–4716, 2003.
Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., and Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ., 39, 4351–4363, 2005.
Herrmann, H., Hoffmann, D., Schaefer, T., Bräuer, P., and Tilgner, A.: Tropospheric Aqueous-Phase Free-Radical Chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction Tools, Chem. Phys. Chem., 11, 3796–3822, 2010.
Jacob, D. J., Munger, J. W., Waldman, J. M., and Hoffmann, M. R.: The H2SO4,HNO3, NH3 System at High Humidities and in Fogs 1. Spatial and Temporal Patterns in the San Joaquin Valley of California, J. Geophys. Res., 91, 1073–1088, 1986.
Jacob, D. J., Gottlieb, E. W., and Prather, M. J.: Chemistry of a Polluted Cloudy Boundary Layer, J. Geophys. Res., 94, 12975–13002, https://doi.org/10.1029/JD094iD10p12975, 1989.
Jaenicke, R.: Abundance of Cellular Material and Proteins in the Atmosphere, Science, 308, p. 73, https://doi.org/10.1126/science.1106335, 2005.
Jaffrezo, J. L., Calas, N., and Bouchet, M.: Carboxylic acids measurements with ionic chromatography, Atmos. Environ., 32, 2705–2708, 1998.
Karpel Vel Leitner, N., and Doré, M.: Mechanism of the reaction between hydroxyl radicals and glycolic, glyoxylic, acetic and oxalic acids in aqueous solution: Consequence on hydrogen peroxide consumption in the H2O2/UV and O3/H2O2 systems, Water Res., 31, 1383–1397, 1997.
Kruisz, C., Berner, A., and Brandner, B.: A cloud water sampler for high wind speeds, Proceedings of the EUROTRAC Symposium 1992 SPB Academic Publishing bv, Den Haag, 523–525, 1993.
Laj, P., Fuzzi, S., Facchini, M. C., Lind, J. A., Orsi, G., Preiss, M., Maser, R., Jaeschke, W., Seyffer, E., Helas, G., Acker, K., Wieprecht, W., Möller, D., Arends, B. G., Mols, J. J., Colvile, R. N., Gallagher, M. W., Beswick, K. M., Hargreaves, K. J., Storeton-West, R. L., and Sutton, M. A.: Cloud processing of soluble gases, Atmos. Environ., 31, 2589–2598, 1997.
Lazrus, A. L., Kok, G. L., Gitlin, S. N., Lind, J. A., and McLaren, S. E.: Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation, Anal. Chem., 57, 917–922, 1985.
Legrand, M., Preunkert, S., Galy-Lacaux, C., Liousse, C., and Wagenbach, D.: Atmospheric year-round records of dicarboxylic acids and sulfate at three French sites located between 630 and 4360 m elevation, J. Geophys. Res., 110, D13302, https://doi.org/10.1029/2004JD005515, 2005.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
Leriche, M., Chaumerliac, N., and Monod, A.: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the Puy de Dôme mountain (France), Atmos. Environ., 35, 5411–5423, 2001.
Leriche, M., Curier, R., Deguillaume, L., Caro, D., Sellegri, K., and Chaumerliac, N.: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the Puy de Dôme station, J. Atmos. Chem., 57, 281–297, 2007.
Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521–10539, https://doi.org/10.5194/acp-10-10521-2010, 2010.
Löflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., and Puxbaum, H.: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water, Atmos. Environ., 36, 1553–1558, 2002.
Lurmann, F. W., Lloyd, A. C., and Atkinson, R.: A chemical mechanism for use in long-range transport/acid deposition computer modeling, J. Geophys. Res., 91, 1905–1936, 1986.
Mack, J. and Bolton, J. R.: Photochemistry of nitrite and nitrate in aqueous solution: a review, J. Photochem. Photobiol., A, 128, 1–13, 1999.
Madronich, S. and Calvert, J. G.: Permutation Reactions of Organic Peroxy Radicals in the Troposphere, J. Geophys. Res., 95, 5697–5715, 1990.
Marinoni, A., Laj, P., Sellegri, K., and Mailhot, G.: Cloud chemistry at the Puy de Dôme: variability and relationships with environmental factors, Atmos. Chem. Phys., 4, 715–728, https://doi.org/10.5194/acp-4-715-2004, 2004.
Marinoni, A., Parazols, M., Brigante, M., Deguillaume, L., Amato, P., Delort, A.-M., Laj, P., and Mailhot, G.: Hydrogen peroxide in natural cloud water: Sources and photoreactivity, Atmos. Res., 101, 256–263, 2011.
Matthias-Maser, S. and Jaenicke, R.: The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region, Atmos. Res., 39, 279–286, 1995.
Matthias-Maser, S., Bogs, B., and Jaenicke, R.: The size distribution of primary biological aerosol particles in cloud water on the mountain Kleiner Feldberg/Taunus (FRG), Atmos. Res., 54, 1–13, 2000.
Monod, A. and Carlier, P.: Impact of clouds on the tropospheric ozone budget: Direct effect of multiphase photochemistry of soluble organic compounds, Atmos. Environ., 33, 4431–4446, 1999.
Ravishankara, A. R.: Heterogeneous and Multiphase Chemistry in the Troposphere, Science, 276, 1058–1065, https://doi.org/10.1126/science.276.5315.1058, 1997.
Reasoner, D. J. and Geldreich, E. E.: A new medium for the enumeration and subculture of bacteria from potable water, Appl. Environ. Microbiol., 49, 1–7, 1985.
Sahin, N.: Oxalotrophic bacteria, Res. Microbiol., 154, 399–407, 2003.
Sattler, B., Puxbaum, H., and Psenner, R.: Bacterial growth in supercooled cloud droplets, Geophys. Res. Lett., 28, 239–242, 2001.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
Sellegri, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M., and Preunkert, S.: Contribution of gaseous and particulate species to droplet solute composition at the Puy de Dôme, France, Atmos. Chem. Phys., 3, 1509–1522, https://doi.org/10.5194/acp-3-1509-2003, 2003.
Sempéré, R. and Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere, Atmos. Environ., 28, 449–459, 1994.
Sun, Y. L., Zhang, Q., Anastasio, C., and Sun, J.: Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809–4822, https://doi.org/10.5194/acp-10-4809-2010, 2010.
Tan, Y., Carlton, A. G., Seitzinger, S. P., and Turpin, B. J.: SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218–5226, 2010.
Tilgner, A. and Herrmann, H.: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM, Atmos. Environ., 44, 5415–5422, https://doi.org/10.1016/j.atmosenv.2010.07.050, 2010.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and Delort, A.-M.: Contribution of microbial activity to carbon chemistry in clouds, Appl. Environ. Microbiol., 76, 23–29, https://doi.org/10.1128/aem.01127-09, 2010.
Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere, Atmos. Environ., 37, 2423–2427, 2003.
Winiwarter, W., Fierlinger, H., Puxbaum, H., Facchini, M. C., Arends, B. G., Fuzzi, S., Schell, D., Kaminski, U., Pahl, S., Schneider, T., Berner, A., Solly, I., and Kruisz, C.: Henry's law and the behavior of weak acids and bases in fog and cloud, J. Atmos. Chem., 19, 173–188, 1994.
Wolke, R., Sehili, A. M., Simmel, M., Knoth, O., Tilgner, A., and Herrmann, H.: SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry, Atmos. Environ., 39, 4375–4388, 2005.
Altmetrics
Final-revised paper
Preprint