Articles | Volume 10, issue 17
https://doi.org/10.5194/acp-10-8563-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-10-8563-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E)
N. Bègue
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
H. Bencherif
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
V. Sivakumar
National Laser Centre (NLC), Council for Scientific and Industrial Research, Pretoria, South Africa
Department of Geography, Geo-informatics and~Meteorology, University of Pretoria, Pretoria, South Africa
G. Kirgis
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
N. Mze
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
J. Leclair de Bellevue
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Gravity waves excited during a minor sudden stratospheric warming
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Age and gravitational separation of the stratospheric air over Indonesia
Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
A comparison of Loon balloon observations and stratospheric reanalysis products
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Comparing turbulent parameters obtained from LITOS and radiosonde measurements
Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends
On the structural changes in the Brewer-Dobson circulation after 2000
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024, https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology, developed in recent years, that can capture atmospheric fine-structure information via three-stage (rising, flat-floating, and falling) detection. Based on the RTISS, we developed a method to quantify stratospheric atmospheric disturbance information; this method shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Satoshi Sugawara, Shigeyuki Ishidoya, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Sakae Toyoda, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, Daisuke Goto, and Fanny A. Putri
Atmos. Chem. Phys., 18, 1819–1833, https://doi.org/10.5194/acp-18-1819-2018, https://doi.org/10.5194/acp-18-1819-2018, 2018
Short summary
Short summary
This is the first research that shows concrete evidence of gravitational separation in the tropical stratosphere. This implies that gravitational separation occurs within the entire stratosphere, which gives us new insight into atmospheric dynamics.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Andreas Schneider, Johannes Wagner, Jens Faber, Michael Gerding, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017, https://doi.org/10.5194/acp-17-7941-2017, 2017
Short summary
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Fabrice Chane Ming, Damien Vignelles, Fabrice Jegou, Gwenael Berthet, Jean-Baptiste Renard, François Gheusi, and Yuriy Kuleshov
Atmos. Chem. Phys., 16, 8023–8042, https://doi.org/10.5194/acp-16-8023-2016, https://doi.org/10.5194/acp-16-8023-2016, 2016
Short summary
Short summary
Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological GPS sondes, ozonesondes, and GPS radio occultation data are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
Fuqing Zhang, Junhong Wei, Meng Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy
Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015, https://doi.org/10.5194/acp-15-7667-2015, 2015
Short summary
Short summary
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations, this study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS) region. The focus is on the second research flight (RF02), which was dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
M. Kozubek, P. Krizan, and J. Lastovicka
Atmos. Chem. Phys., 15, 2203–2213, https://doi.org/10.5194/acp-15-2203-2015, https://doi.org/10.5194/acp-15-2203-2015, 2015
Short summary
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
H. Bönisch, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, https://doi.org/10.5194/acp-11-3937-2011, 2011
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009, https://doi.org/10.5194/acp-9-9349-2009, 2009
J. M. Castanheira, J. A. Añel, C. A. F. Marques, J. C. Antuña, M. L. R. Liberato, L. de la Torre, and L. Gimeno
Atmos. Chem. Phys., 9, 9143–9153, https://doi.org/10.5194/acp-9-9143-2009, https://doi.org/10.5194/acp-9-9143-2009, 2009
Cited articles
Angell, J. K.: Variations and trends in tropospheric and stratospheric global temperatures, 1958–87, J. Climate, 1(12), 1296–1313, 1988.
Baray, J.-L., Ancellet, G., Taupin, G., Bessafi, M., Baldy, S., and Keckhut, P.: Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere, J. Atmos. Sol.-Terr. Phys., 60, 27–36, 1998.
Behera, K. S. and Yamagata, T: Influence of the Indian Ocean Dipole on the Southern Oscillation, J. Meteorol. Soc. Jpn., 81(1), 169–177, 2002.
Bencherif, H., Portafaix, T., Baray, J. L., Morel, B., Baldy, S., Leveau, J., Moorgawa, A., Michaelis, M. M., Hauchecorne, A., Keckhut, P., and Diab, R.: LIDAR observations of lower stratosphericaerosols over South Africa linked to large scale transport across the southern subtropical barrier, J. Atmos. Sol.-Terr. Phys., 65, 707–715, 2003.
Bencherif, H., Diab, R., Portafaix, T., Morel, B., Keckhut, P., and Moorgawa, A.: Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa, Atmos. Chem. Phys., 6, 5121–5128, 2006.
Clain, G., Baray, J.-L., Delmas, R., Diab, R., Leclair de Bellevue, J., Keckhut, P., Posny, F., Metzger, J. M., and Cammas, J. P.: Tropospheric ozone climatology at two southern Hemisphere tropical/subtropical site, (Reunion Island and Irene, South Africa) from ozone sondes, LIDAR, and in situ aircraft measurements, Atmos. Chem. Phys., 9, 1723–1734, 2009.
Finger, F. G., Nagatani, R. M., Gelman, M. E., Long, C. S., and Miller, A. J: Consistency between variations of ozone and temperature in the stratosphere, Geophys. Res. Lett., 22, 3477–3480, 1995.
Gaffen, D. J: Historical changes in radiosonde instruments and practices, WMO/TD-No: 541, Instruments and Observing Methods Report 50, World Meteorological Organisation, 123 pp., 1993.
Gaffen, D.J: A digitized metadata set of global upper-air station histories, NOAA Tech. Memo. ERL-ARL 211, Silver Spring, MD, 38 pp., 1996.
Guirlet M., Keckhut, P., Godin, S., and Megie, G.: Description of the long-term ozone data series obtained from different instrumental techniques at a single location: the Observatoire de Haute-Provence (43.9° N, 5.7° E), Ann. Geophys., 18, 1325–1339, https://doi.org/10.5194/angeo-18-1325-2000, 2000.
Hauchecorne, A., Chanin, M. L., and Keckhut, P.: Climatology and trends of the middle atmospheric temperature (33–37 km) as seen by Rayleigh lidar over the south of France, J. Geophys. Res., 96, 15297–15309, 1991.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys, 33, 403–439, 1995.
Izumo, T., Valariad, J., Lengaigne, M., Boyer Montegut, C., Behera, K., Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T: Influence of the state of the Indian Ocean Dipole on the following year's El Niño, Nat. Geosci., 168–172, https://doi.org/10.1038/NGEO 760, 2010.
Keckhut, P., Hauchecorne, A., and Chanin, M. L.: Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes, J. Geophys. Res, 100(D9), 18887–18897, 1995.
Kerzenmacher, T. E., Keckhut, P., Hauchecorne, A., and Chanin, M.-L: Methodological uncertainties in multi-regression analyses of middle-atmospheric data series, J. Environ. Monit, 8, 682–690, 2006.
Langematz, U., Kunze, K., Krüger, K. M., Labitze, K., and Roff, G. L: Thermal and dynamical changes of stratosphere since 1979 and their link to ozone and CO2 changes, J. Geophys. Res, 108(D1), 4027, https://doi.org/10.1029/2002JD002069, 2003.
Logan, J. A: Trends in vertical distribution of ozone: An analysis of ozonesonde data, J. Geosphys. Res., 99(D12), 25553–25586, 1994
Li, T., Leblanc, T., and McDermid, I. S.: Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5° N, 155.6° W), J. Geophys. Res., 113, D14109, https://doi.org/10.1029/2007JD009764, 2008.
McCormick, P., Thomason, L. W., and Trepte, C. R.: Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399–404, 1995.
Morioka, K., Tomoki, T. and Yamagata, T: Climate variability in the southern Indian Ocean as revealed by self-organizing maps, Clim. Dynam., https://doi.org/10.1007/s00382-010-0843-x, 2010.
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. W., Gille, J. C., Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell III, J. M., and Waters, J. W.: An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys{. Res}., 101, 3989–4006, 1996.
Naujokat, B.: An update of the observed quasi-biennale oscillation of the stratospheric wind over the tropic, J. Atmos. Sci., 43, 1873–1877, 1986
Oort, A. H. and Liu, H.: Upper-air temperature trends over the globe, 1958–1989, J. Clim., 6, 292–307, 1993.
Pan, L. L, Randel, W. J., Gary, B. L., Mahoney, M. J.,, and Hinsta, E. J: Definitions and sharpness of the extratopical tropopause: A trace gas perspective, J. Geophys. Res., 109, D23103, doi.10.1029/2004JD004982, 2004.
Parker, D. E.: On the detection of temperature changes induced by increasing atmospheric carbon dioxide, Q. J. Roy. Meteor. Soc., 111, 587–601, 1985.
Parker, D. E. and Cox, D. I: Towards a consistent global climatological rawinsonde data-base, Int. J. Climatol., 15, 473–496, 1995.
Parker, D. E., Gordan, M., Cullum, D. P. N., Sexton, D. M. H., Folland, C. K., and Rayner, N.: A new global gridded radiosonde temperature database and recent temperature trends, Geophys. Res. Lett., 24, 1499–1502, 1997.
Pastel, M., Goutail, F., Pazmiño, A., Pommereau, J. P., and Held, G.: Proceedings of Reunion Island International symposium, 143-146, 2007. Pitari, G., Palermi, S. and Visconiti, G : Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry, J. Geophys. Res., 97(D5), 5953–5962, 1992.
Politowitcz, P. A. and Hitchman, M. H : Exploring the effect of forcing quasi-biennal oscillations in a two model, J. Geophys. Res., 102, 16481–16497, 1997.
Posny, F., Metzger, J. M., and Baray, J. L.: A successful change at la Reunion Island station (21° S, 55.5° E), SHADOZ Newsletter, No. 11, 2010.
Ramaswamy, V., Chanin, M.-L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Koshelkov, Y., Labitzke, K., Lin, J.-J. R., O'Neill, A., Nash, J., Randel, W., Rood, R., Shine, K., Shiotani, M., and Swinbank, R.: Stratospheric temperature trends: observations and model simulations, Rev. Geophys., 39(1), 71–122, 2001.
Randel, W. J. and Cobb, J. B.: Coherent variations of monthly mean column ozone and lower stratospheric temperature, J. Geophys. Res., 99(D3), 5433–5447, 1994.
Randel, W. J., Wu, F., and Gaffen, D. J : Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses, J. Geophys. Res., 105, 15509–15523, 2000.
Randel, W. J., F. Wu, Oltmans, S. J., Rosenlof, K. H., and Nedoluha, G. E: Interannual changes of stratospheric Water vapour and correlations with tropical tropopause temperature, J. Atmos. Sci., 61, 2133–2148, 2004.
Randel, W. J, Wu, F., Vomel, H., Nedoluha, G. E., and Forster, P : Decreases in stratospheric water vapour after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation, J. Geophys. Res., 111(D12), D12312, https://doi.org/10.1029/2005JD006744, 2006.
Randel, W. J, Shine, K. S, Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J, Thompson, D. W. J, Wu, F., Yoden, S.: An update of observed stratospheric temperature trends, J. Geosphys. Res., 114, D02107, https://doi.org/10.1029/2008JD010421, 2009.
Reid, G. C. and Gage, K. S.: On the annual variation in height of the tropical tropopause, J. Atmos. Sci., 38, 1928–1938, 1981.
Reid, G. C. and Gage, K. S: Inter-annual Variations in the height of the tropical tropopause, J. Geophys. Res., 90(D3), 5629–5635, 1985.
Rosenlof, K. H., Kley, D., Russell III, J. M, Chiou, E. W, Johnson, D. G, Kelly, K. K., Michelsen, H. A., Nedohula, G. E., Remsberg, E. E., Toon, G. C., and McCormick, M. P.: Stratospheric water vapour increases over the past half century, Geosphys. Res. Lett., 28, 1195–1199, 2001.
Rosenlof, K. H. and Reid, G. C.: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection, J. Geophys. Res., 113, D06107, https://doi.org/10.1029/2007JD009109, 2008.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, 1999.
Seidel, D. J., Ross, R. J., and Angell, J. K.: Climatological characteristics of the tropical tropopause as revealed by radiosonde, J. Geophys. Res., 106, 7857–7878, 2001.
Sivakumar, V., Baray, J. L., Baldy, S., and Bencherif, H.: Tropopause characteristics over a southern subtropical site, Reunion Island (21° S, 55° E): Using radiosonde-ozonesonde data, J. Geophys. Res., https://doi.org/10.1029/2005JD006430, 2006.
Sivakumar, V, Portafaix, T., Bencherif, H., Godin-Beekmann, S. and Baldy, S: Stratospheric ozone climatology and variability over a southern subtropical site: Reunion Island (21° S; 55° E), Ann. Geophys., 25, 2321–2334, https://doi.org/10.5194/angeo-25-2321-2007, 2007.
Sorensen, J. H. and Nielsen, N. W.: Intrusion of stratospheric ozone to the free troposphere through tropopause folds-A case study, Phys. Chem. Earth (B), 26, 801–806, 2001.
Tiao, G. C., Daming, X., Pedrick, J. H., Xiaodong, Z., and Reinsel, G. C.: Effect of autocorrelation and temporal schemes on estimates of trend and spatial correlation, J. Geophys{. Res}., 95, 20507–20517, 1990.
Thompson, A. M., Witte, J. C., McPeters, R. D., Oltmans, S. J., Schmidlin, F. J., Logan, J. A., Fujiwara, M., Kirchhoff, V. W. J. H., Posny, F., Coetzee, G. J. R., Hoegger, B., Kawakami, S., Ogawa, T., Johnson, B. J., Vömel, H., and Labow, G : Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1.Comparison with Total Ozone Mapping Spectrometer (TOMS)and ground-based measurements, J. Geophys. Res., 108(D2), 8238, https://doi.org/10.1029/2001JD000967, 2003
Thompson, A. M., Witte, J. C., Oltmans, S. J., Schmidlin, F. J., Logan, J. A., Fujiwara, M., Kirchhoff, V. W. J. H., Posny, F., Coetzee, G. J. R., Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J. P. F., and Kelder, H. M.: South Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 2.tropospheric variability and the zonal wave-one, J. Geophys. Res, 108(D2), 8241, https://doi.org/10.1029/2002JD002241, 2003.
Thompson, A, Witte, J. C., Herman, G. J., Oltmans, S. J., Johnson, B. J., Volker W. J., Kirchoff, V. W. J. H., and Schmidlin, F. J.: Soutern Hemisphere Additionnal Ozonesonde (SHADOZ) 1998-2004 tropicale ozone climatology: 3. Instrumentation, station to station variability, and evaluation with simulated flight profiles, J. Geophys. Res., 112(D3), D03304,, https://doi.org/10.1029/2005JD007042, 2007.
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X., Choi, D., Cheang, W., Keller, T., DeLuis, J., Wuebbles, D. J., Kerr, J. B, Miller, A. J, Oltmans, S. J., and Frederick, J. E.: Factor affecting the detection of trends: Statistical considerations and application to environmental data, J.Geophys.Res., 103(D14), 17149–17161, 1998.
WMO: A three dimensional science: Second session of the commission for aerology, WMO bull, IV, (4), 134–138, 1957.
WMO: Scientific assessment of ozone depletion: 1994, Global Ozone Res. Monit. Proj., Rep. 37, 1995.
WMO: Scientific assessment of ozone depletion: 2006, Global Ozone Res. Monit. Proj., Rep. 50, 2007.
Yamagata, T., Behera, S. K., Luo, J. J, Masson, S., Jury, M. R., and Rao, S. A: Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean., American Geophysical Union Book Ocean-Atmosphere Interaction and Climate Variability, Washington DC, USA, 189–212, 2004.
Altmetrics
Final-revised paper
Preprint