Articles | Volume 25, issue 17
https://doi.org/10.5194/acp-25-9645-2025
https://doi.org/10.5194/acp-25-9645-2025
Research article
 | 
01 Sep 2025
Research article |  | 01 Sep 2025

Constraining elemental mercury air–sea exchange using long-term ground-based observations

Koketso M. Molepo, Johannes Bieser, Alkuin M. Koenig, Ian M. Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Related authors

Bioaccumulation as a driver of high MeHg in the North and Baltic Seas
David J. Amptmeijer, Elena Mikheeva, Ute Daewel, Johannes Bieser, and Corinna Schrum
Biogeosciences, 22, 7929–7960, https://doi.org/10.5194/bg-22-7929-2025,https://doi.org/10.5194/bg-22-7929-2025, 2025
Short summary
Stability and selectivity of pre-concentration methods for gaseous oxidized mercury in the air
Sreekanth Vijayakumaran Nair, Saeed Waqar Ali, Jan Gačnik, Igor Živković, Teodor-Daniel Andron, Oleg Travnikov, and Milena Horvat
EGUsphere, https://doi.org/10.5194/egusphere-2025-2451,https://doi.org/10.5194/egusphere-2025-2451, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Feeding strategy as a key driver of the bioaccumulation of MeHg in megabenthos
David J. Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
Biogeosciences, 22, 7483–7503, https://doi.org/10.5194/bg-22-7483-2025,https://doi.org/10.5194/bg-22-7483-2025, 2025
Short summary
Bioconcentration as a key driver of Hg bioaccumulation in high-trophic-level fish
David J. Amptmeijer and Johannes Bieser
Biogeosciences, 22, 7425–7440, https://doi.org/10.5194/bg-22-7425-2025,https://doi.org/10.5194/bg-22-7425-2025, 2025
Short summary
Quantifying CO emissions from boreal wildfires by assimilating TROPOMI and TCCON observations
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
Atmos. Chem. Phys., 25, 15527–15565, https://doi.org/10.5194/acp-25-15527-2025,https://doi.org/10.5194/acp-25-15527-2025, 2025
Short summary

Cited articles

Adams, H. M., Cui, X., Lamborg, C. H., and Schartup, A. T.: Dimethylmercury as a Source of Monomethylmercury in a Highly Productive Upwelling System, Environ. Sci. Technol., 58, 10591–10600, https://doi.org/10.1021/acs.est.4c01112, 2024. 
Al-Sulaiti, M. M., Soubra, L., and Al-Ghouti, M. A.: The causes and effects of mercury and methylmercury contamination in the marine environment: A review, Current Pollution Reports, 8, 249–272, https://doi.org/10.1007/s40726-022-00226-7, 2022. 
AMAP/UN Environment: Technical Background Report to the Global Mercury Assessment 2018, Arctic Monitoring and Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland, https://www.amap.no/documents/doc/technical-background-report-for-the-global-mercury-assessment-2018/1815 (last access: 25 January 2023), 2019. 
Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cy., 27, 410–421, https://doi.org/10.1002/gbc.20040, 2013. 
Amos, H. M., Jacob, D. J., Kocman, D., Horowitz, H. M., Zhang, Y., Dutkiewicz, S., Horvat, M., Corbitt, E. S., Krabbenhoft, D. P., and Sunderland, E. M.: Global biogeochemical implications of mercury discharges from rivers and sediment burial, Environ. Sci. Technol., 48, 9514–9522, https://doi.org/10.1021/es502134t, 2014. 
Download
Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean Hg emissions. This finding indicates that ocean emissions directly influence atmospheric Hg levels and enables us to estimate these emissions on a global scale.
Share
Altmetrics
Final-revised paper
Preprint