Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-7447-2025
https://doi.org/10.5194/acp-25-7447-2025
Research article
 | 
15 Jul 2025
Research article |  | 15 Jul 2025

Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign

Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris

Related authors

Environmental Drivers of Arctic Low-Level Clouds: Analysis of the Regional and Seasonal Dependencies Using Space-Based Lidar and Radar
Aymeric Dziduch, Guillaume Mioche, Quentin Coopman, Clément Bazantay, Julien Delanoë, and Olivier Jourdan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2698,https://doi.org/10.5194/egusphere-2025-2698, 2025
Short summary
Vertical profiles of liquid water content in fog layers during the SOFOG3D experiment
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025,https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Evidence for the role of thermal and cloud merging in mesoscale convective organization
Sandrine Bony, Basile Poujol, Brett McKim, Nicolas Rochetin, Marie Lothon, Julia Windmiller, Nicolas Maury, Clarisse Dufaux, Louis Jaffeux, Patrick Chazette, and Julien Delanoë
EGUsphere, https://doi.org/10.5194/egusphere-2025-2839,https://doi.org/10.5194/egusphere-2025-2839, 2025
Short summary
Convolutional neural networks for specific and merged data sets of optical array probe images: compatibility of retrieved morphology-dependent size distributions
Louis Jaffeux, Jan Breiner, Pierre Coutris, and Alfons Schwarzenböck
Atmos. Meas. Tech., 18, 2311–2331, https://doi.org/10.5194/amt-18-2311-2025,https://doi.org/10.5194/amt-18-2311-2025, 2025
Short summary
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025,https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary

Cited articles

AERIS/ICARE Data and Services Center: The Atmospheric component of the French Data Terra data infrastructure, https://www.icare.univ-lille.fr/ (last access: September 2023), 2023. a
Arnault, J. and Roux, F.: Characteristics of African easterly waves associated with tropical cyclogenesis in the Cape Verde Islands region in July–August–September of 2004–2008, Atmos. Res., 100, 61–82, https://doi.org/10.1016/j.atmosres.2010.12.028, 2011. a, b, c
Braun, S. A.: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution, Mon. Weather Rev., 138, 2007–2037, https://doi.org/10.1175/2009MWR3135.1, 2010. a, b
Burpee, R. W.: The origin and structure of easterly waves in the lower troposphere of north Africa, J. Atmos. Sci., 29, 77–90, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2, 1972. a
Carlson, T. N. and Prospero, J. M.: Radiative heating rates for Saharan dust, J. Appl. Meteorol., 11, 283–288, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2, 1972. a
Download
Short summary
Saharan air at the trade wind layer, cold pools, and dry upper troposphere has these three main factors inhibiting the cyclogenesis of the Pierre Henri mesoscale convective system. The findings were obtained through observations made during two flights of the Clouds-Atmospheric Dynamics-Dust Interactions in West Africa (CADDIWA) campaign and a convection-permitting simulation run with the Meso-NH model. They provide new insights into the complex dynamics of cyclogenesis in the Cabo Verde region and challenge the existing model of the Saharan Air Layer (SAL).
Share
Altmetrics
Final-revised paper
Preprint