Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5935-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-5935-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the impact of thunder on cloud ice crystals and droplets
Konstantinos Kourtidis
CORRESPONDING AUTHOR
Department of Environmental Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece
Stavros Stathopoulos
Department of Environmental Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece
Vassilis Amiridis
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 152 36 Athens, Greece
Related authors
Anna Maria Neroladaki, Maria Tsagkaraki, Kyriaki Papoutsidaki, Kalliopi Tavernaraki, Filothei Boufidou, Pavlos Zarmpas, Irini Tsiodra, Eleni Liakakou, Aikaterini Bougiatioti, Giorgos Kouvarakis, Nikos Kalivitis, Christos Kaltsonoudis, Athanasios Karagioras, Dimitrios Balis, Konstantinos Mihailidis, Konstantinos Kourtidis, Stelios Myriokefalitakis, Nikos Hatzianastassiou, Spyros N. Pandis, Athanasios Nenes, Nikolaos Mihalopoulos, and Maria Kanakidou
EGUsphere, https://doi.org/10.5194/egusphere-2025-3223, https://doi.org/10.5194/egusphere-2025-3223, 2025
Short summary
Short summary
Aerosol acidity affects aerosol composition and properties, and therefore climate, human health and ecosystems. We use summer and winter fine aerosol observations at 6 sites across Greece, and a thermodynamic model to calculate the spatial and seasonal variability of aerosol acidity. Aerosols were acidic to moderately acidic and more acidic during summer than winter. The importance of organics for aerosol acidity was small. Depending on location different factors controlled aerosol acidity.
Peristera Paschou, Nikolaos Siomos, Eleni Marinou, Antonis Gkikas, Samira M. Idrissa, Daniel T. Quaye, Désiré D. Fiogbe Attannon, Kalliopi Artemis Voudouri, Charikleia Meleti, David P. Donovan, George Georgoussis, Tommaso Parrinello, Thorsten Fehr, Jonas von Bismarck, and Vassilis Amiridis
Atmos. Meas. Tech., 18, 4731–4754, https://doi.org/10.5194/amt-18-4731-2025, https://doi.org/10.5194/amt-18-4731-2025, 2025
Short summary
Short summary
This study presents the results from a validation study on the Level 2A products (aerosol optical properties) of the ESA's (European Space Agency) Aeolus mission. Measurements from the eVe lidar, a combined linear/circular polarization and Raman lidar and ESA's ground reference system, that have been collected during the Joint Aeolus Tropical Atlantic Campaign are compared with collocated Aeolus Level 2A profiles obtained from the latest version (Baseline 16) of the Aeolus algorithms.
Emmanouil Proestakis, Vassilis Amiridis, Carlos Pérez García-Pando, Svetlana Tsyro, Jan Griesfeller, Antonis Gkikas, Thanasis Georgiou, María Gonçalves Ageitos, Jeronimo Escribano, Stelios Myriokefalitakis, Elisa Bergas Masso, Enza Di Tomaso, Sara Basart, Jan-Berend W. Stuut, and Angela Benedetti
Earth Syst. Sci. Data, 17, 4351–4395, https://doi.org/10.5194/essd-17-4351-2025, https://doi.org/10.5194/essd-17-4351-2025, 2025
Short summary
Short summary
Quantification of dust deposition into the broader Atlantic Ocean is provided, with the estimates established based on Earth observations. The dataset is considered unique with respect to a range of applications, including compensating for spatiotemporal gaps of sediment-trap measurements, assessments of model simulations, shedding light on physical processes related to the dust cycle, and improving the understanding of dust biogeochemical impacts on oceanic ecosystems, weather, and climate.
Alkistis Papetta, Maria Kezoudi, Holger Baars, Athina Floutsi, Eleni Drakaki, Konrad Kandler, Elena Louca, Theodoros Christoudias, Eleni Marinou, Chris Stopford, Troy Thornberry, Vassilis Amiridis, Jean Sciare, and Franco Marenco
EGUsphere, https://doi.org/10.5194/egusphere-2025-3404, https://doi.org/10.5194/egusphere-2025-3404, 2025
Short summary
Short summary
Dust in the atmosphere affects air quality, weather, and climate, but measuring it is challenging. We used drones and ground-based instruments to study how dust particles interact with light and relate this to their mass. Current methods often underestimate large dust particles, leading to errors in dust quantity. Our results show that regional differences in dust must be considered to improve climate models and satellite observations.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Anna Maria Neroladaki, Maria Tsagkaraki, Kyriaki Papoutsidaki, Kalliopi Tavernaraki, Filothei Boufidou, Pavlos Zarmpas, Irini Tsiodra, Eleni Liakakou, Aikaterini Bougiatioti, Giorgos Kouvarakis, Nikos Kalivitis, Christos Kaltsonoudis, Athanasios Karagioras, Dimitrios Balis, Konstantinos Mihailidis, Konstantinos Kourtidis, Stelios Myriokefalitakis, Nikos Hatzianastassiou, Spyros N. Pandis, Athanasios Nenes, Nikolaos Mihalopoulos, and Maria Kanakidou
EGUsphere, https://doi.org/10.5194/egusphere-2025-3223, https://doi.org/10.5194/egusphere-2025-3223, 2025
Short summary
Short summary
Aerosol acidity affects aerosol composition and properties, and therefore climate, human health and ecosystems. We use summer and winter fine aerosol observations at 6 sites across Greece, and a thermodynamic model to calculate the spatial and seasonal variability of aerosol acidity. Aerosols were acidic to moderately acidic and more acidic during summer than winter. The importance of organics for aerosol acidity was small. Depending on location different factors controlled aerosol acidity.
Emmanouil Proestakis, Kyriakoula Papachristopoulou, Thanasis Georgiou, Sofia Eirini Chatoutsidou, Mihalis Lazaridis, Antonis Gkikas, Ilias Fountoulakis, Ioanna Tsikοudi, Manolis P. Petrakis, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1841, https://doi.org/10.5194/egusphere-2025-1841, 2025
Short summary
Short summary
Based on Earth observations of dust the study addresses the questions: To what extent have the fine and coarse modes of atmospheric dust within the planetary boundary layer (PBL) changed over major cities worldwide? Which areas experience fine-mode and coarse-mode dust mass concentrations within the PBL that exceed World Health Organization air quality guidelines, and which areas are projected to exceed these guidelines in the near future? Can we quantify associated impacts on human health?
Konstantinos Rizos, Emmanouil Proestakis, Thanasis Georgiou, Antonis Gkikas, Eleni Marinou, Peristera Paschou, Kalliopi Artemis Voudouri, Athanasios Tsikerdekis, David Donovan, Gerd-Jan van Zadelhoff, Angela Benedetti, Holger Baars, Athena Augusta Floutsi, Nikos Benas, Martin Stengel, Christian Retscher, Edward Malina, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1175, https://doi.org/10.5194/egusphere-2025-1175, 2025
Short summary
Short summary
The Aeolus satellite's lidar system had limitations in detecting certain atmospheric layers and distinguishing between aerosol and cloud types. To improve accuracy, a new dust detection product was developed. By combining data from various sources and validating it with ground-based measurements, this enhanced product performs better than the original. It helps improve dust transport models and weather predictions, making it a valuable tool for atmospheric monitoring and forecasting.
Anna Moustaka, Stelios Kazadzis, Emmanouil Proestakis, Anton Lopatin, Oleg Dubovik, Kleareti Tourpali, Christos Zerefos, Vassilis Amiridis, and Antonis Gkikas
EGUsphere, https://doi.org/10.5194/egusphere-2025-888, https://doi.org/10.5194/egusphere-2025-888, 2025
Short summary
Short summary
North Africa and the Middle East are home to the world’s most active dust sources, but accurately monitoring airborne dust remains challenging. We refine satellite-based dust retrievals by improving the lidar ratio, a key parameter in aerosol observations, using data from multiple sensors. Our findings reveal regional variations in dust optical depth (DOD), leading to improved climatological assessments. These results enhance climate models and air quality studies.
Ioanna Tsikoudi, Eleni Marinou, Maria Tombrou, Eleni Giannakaki, Emmanouil Proestakis, Konstantinos Rizos, Ville Vakkari, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1105, https://doi.org/10.5194/egusphere-2025-1105, 2025
Short summary
Short summary
The lowest part of the atmosphere plays a critical role in weather and climate. Using groundbased and space lidar, radiosondes and model data, we analyzed how dust and local wind conditions influence its height over the tropical Atlantic. We found that different conditions, as well as different methods yield varying results, highlighting challenges in defining the boundary layer top. Understanding these differences improves climate models and our knowledge of atmospheric dynamics in this region.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Short summary
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024, https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
Short summary
In our study we provide an assessment, through a sensitivity study, of the limitations of models to calculate the dust direct radiative effect (DRE) due to the underrepresentation of its size, refractive index (RI), and shape. Our results indicate the necessity of including more realistic sizes and RIs for dust particles in dust models, in order to derive better estimations of the dust direct radiative effects.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Eleni Marinou, Nikos Hatzianastassiou, Jasper F. Kok, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 3553–3578, https://doi.org/10.5194/acp-22-3553-2022, https://doi.org/10.5194/acp-22-3553-2022, 2022
Short summary
Short summary
We present a comprehensive climatological analysis of dust optical depth (DOD) relying on the MIDAS dataset. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (0.1° × 0.1°) over a 15-year period (2003–2017). In the current study, the analysis is performed at various spatial (from regional to global) and temporal (from months to years) scales. More specifically, focus is given to specific regions hosting the major dust sources as well as downwind areas of the planet.
Jerónimo Escribano, Enza Di Tomaso, Oriol Jorba, Martina Klose, Maria Gonçalves Ageitos, Francesca Macchia, Vassilis Amiridis, Holger Baars, Eleni Marinou, Emmanouil Proestakis, Claudia Urbanneck, Dietrich Althausen, Johannes Bühl, Rodanthi-Elisavet Mamouri, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022, https://doi.org/10.5194/acp-22-535-2022, 2022
Short summary
Short summary
We explore the benefits and consistency in adding lidar dust observations in a dust optical depth assimilation. We show that adding lidar data to a dust optical depth assimilation has valuable benefits and the dust analysis improves. We discuss the impact of the narrow satellite footprint of the lidar dust observations on the assimilation.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Stavros-Andreas Logothetis, Vasileios Salamalikis, Antonis Gkikas, Stelios Kazadzis, Vassilis Amiridis, and Andreas Kazantzidis
Atmos. Chem. Phys., 21, 16499–16529, https://doi.org/10.5194/acp-21-16499-2021, https://doi.org/10.5194/acp-21-16499-2021, 2021
Short summary
Short summary
This study investigates the temporal trends of dust optical depth (DOD; 550 nm) on global, regional and seasonal scales over a 15-year period (2003–2017) using the MIDAS (ModIs Dust AeroSol) dataset. The findings of this study revealed that the DOD was increased across the central Sahara and the Arabian Peninsula, with opposite trends over the eastern and western Sahara, the Thar and Gobi deserts, in the Bodélé Depression, and in the southern Mediterranean.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Vasiliki Daskalopoulou, Sotirios A. Mallios, Zbigniew Ulanowski, George Hloupis, Anna Gialitaki, Ioanna Tsikoudi, Konstantinos Tassis, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, https://doi.org/10.5194/acp-21-927-2021, 2021
Short summary
Short summary
This research highlights the detection of charged Saharan dust in Greece and provides indications of charge separation in the plumes through the first-ever co-located ground electric field measurements and sophisticated lidar observations. We provide a robust methodology for the extraction of a fair-weather proxy field used to assess the effect of lofted dust particles to the electric field and insert a realistic modelling aspect to the charge accumulation areas within electrically active dust.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Short summary
We present the development of the MIDAS (ModIs Dust AeroSol) data set, providing daily dust optical depth (DOD; 550 nm) at a global scale and fine spatial resolution (0.1° x 0.1°) over a 15-year period (2003–2017). It has been developed via the synergy of MODIS-Aqua and MERRA-2 data, while CALIOP and AERONET retrievals are used for its assessment. MIDAS upgrades existing dust observational capabilities, and it is suitable for dust climatological studies, model evaluation, and data assimilation.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Cited articles
Abegunawardana, S., Sonnadara, U., Bodhika, J. A. P., Fernando, M., Nanayakkara, S., and Cooray, V.: Audible Frequency Analysis of Ground Flashes, in 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018, IEEE, 1–6, https://doi.org/10.1109/ICLP.2018.8503403, 2018.
Bai, W., Shi, Y., Zhao, Z., and Wei, J.: Investigation of critical response characteristics of micro-droplets under the action of low-frequency acoustic waves, Front. Environ. Sci., 10, 972648, https://doi.org/10.3389/fenvs.2022.972648, 2022.
Barthlott, C., Zarboo, A., Matsunobu, T., and Keil, C.: Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation, Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022, 2022.
Bestard, D., Coulouvrat, F., Farges, T., and Mlynarczyk, J.: Acoustical power of lightning flashes, J. Geophys. Res.-Atmos., 128, e2023JD038714, https://doi.org/10.1029/2023JD038714, 2023.
Bhuiyan, M. H. U., Saidur, R., Amalina, M. A., and Mostafizur, R. M.: Effect of surface tension on SiO2-methanol nanofluids, IOP Conf. Ser.-Mat. Sci., 88, 012056, https://doi.org/10.1088/1757-899X/88/1/012056, 2015.
Bodhika, J. A. P., Dharmarathna, W. G. D., Fernando, M., and Cooray, V.: A preliminary study on characteristics of thunder pulses of lightning, 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014, IEEE, 2014, 260–264, https://doi.org/10.1109/ICLP.2014.6973132, 2014.
Bodhika, J. A. P., Dharmarathna, W. G. D., Fernando, M., and Cooray, V.: Characteristics of thunder pertinent to tropical lightning, in 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018, IEEE, 2018, 1–5, https://doi.org/10.1109/ICLP.2018.8503455, 2018.
Boggs, L. D., Liu, N., Nag, A., Walker, T. D., Christian, H. J., da Silva, C. L., Austin, M., Aguirre, F.,and Rassoul, H. K.: Vertical temperature profile of natural lightning return strokes derived from optical spectra, J. Geophys. Res.-Atmos., 126, e2020JD034438, https://doi.org/10.1029/2020JD034438, 2021.
Borovsky, J. E.: Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes, J. Geophys. Res., 103, 11537–11553, https://doi.org/10.1029/97JD03230, 1998.
Brandt, O., Freund, H., and Hiedemann, E.: Zur theorie der akustischen koagulation, Kolloid Z, 77, 103–115, https://doi.org/10.1007/BF01422153, 1936.
Clark, S. K., Ward, D. S., and Mahowald, N. M.: Parameterization-based uncertainty in future lightning flash density, Geophys. Res. Lett., 44, 2893–2901, https://doi.org/10.1002/2017GL073017, 2017.
Depasse, P.: Lightning acoustic signature, J. Geophys. Res., 99, 25933–25940, https://doi.org/10.1029/94JD01986, 1994.
de Sarabia, E., Elvira-Segura, E., González-Gómez, I., Rodrìguez-Maroto, J. J., Muñoz-Bueno, R., and Dorronsoro-Areal, J. L.: Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts, Ultrasonics, 41, 277–281, https://doi.org/10.1016/s0041-624x(02)00452-3, 2003.
Dong, S., Lipkens, B., and Cameron, T. M.: The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols, J. Aerosol Sci., 37, 540–553, https://doi.org/10.1016/j.jaerosci.2005.05.008, 2006.
Farges, T., Hupe, P., Le Pichon, A., Ceranna, L., Listowski, C., and Diawara, A.: Infrasound Thunder Detections across 15 Years over Ivory Coast: Localization, Propagation, and Link with the Stratospheric Semi-Annual Oscillation, Atmosphere, 12, 1188, https://doi.org/10.3390/atmos12091188, 2021.
Few, A. A.: Acoustic radiations from lightning, in: Handbook of atmospheric electrodynamics, edited by: Volland, H., CRC Press, Boca Raton, Florida, 111–131, https://doi.org/10.1201/9780203713297, 1995.
Few, A. A., Dessler, A. J., Latham, D. J., and Brook, M.: A dominant 200-hertz peak in the acoustic spectrum of thunder, J. Geophys. Res., 72, 6149–6154, https://doi.org/10.1029/JZ072i024p06149, 1967.
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C., Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T., Connolly, P., Bühl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P., Flossmann, A. I., Heymsfield, A. J., Huang, Y. H., Kalesse, H., Kanji, Z. A., Korolev, A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G., Phillips, V., Stith, J., and Sullivan, S.: Secondary Ice Production – current state of the science and recommendations for the future, Meteor. Mon., 58, 7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017.
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., and Blyth, A. M.: A projected decrease in lightning under climate change, Nat. Clim. Change, 8, 210, https://doi.org/10.1038/s41558-018-0072-6, 2018.
Fleishauer, R. P., Larson, V. E., and Haar, T. H. V.: Observed microphysical structure of midlevel, mixed-phase clouds, J. Atmos. Sci., 59, 1.779–1.804, 2002.
Gallego-Juárez, J. A., De Sarabia, E., RodrÍguez-Corral, G., Hoffmann, T. L., Gálvez-Moraleda, J. C., RodrÍguez-Maroto, J. J., Gómez-Moreno, F. J., Bahillo-Ruiz, A., MartÍn-Espigares, M., and Acha, M.: Application of Acoustic Agglomeration to Reduce Fine Particle Emissions from Coal Combustion Plants, Environ. Sci. Technol., 33, 3843–3849, https://doi.org/10.1021/es990002n, 1999.
Gini, M., Manousakas, M., Karydas, A. G., and Eleftheriadis, K.: Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks, Environ. Pollut., 298, 118768, https://doi.org/10.1016/j.envpol.2021.118768, 2022.
González, I., Hofmann, T. L., and Gallego-Juarez, J.: Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz, J. Aerosol Sci., 31, 1461–1468, https://doi.org/10.1016/S0021-8502(00)00046-X, 2000.
Goyer, G. G. and Plooster, M. N.: On the role of shock waves and adiabatic cooling in the nucleation of crystals by the lightning discharge, J. Atmos. Sci., 25, 857–862, https://doi.org/10.1175/1520-0469(1968)025<0857:OTROSW>2.0.CO;2, 1968.
Goyer, G. G., Bhadra, T. C., and Gitlin, S.: Shock induced freezing of supercooled water, J. Appl. Meteorol., 4, 156–160, https://doi.org/10.1175/1520-0450(1965)004<0156:SIFOSW>2.0.CO;2, 1965.
Guildenbecher, D. R., López-Rivera, C., and Sojka, P. E.: Droplet Deformation and Breakup, in: Handbook of Atomization and Sprays, edited by: Ashgriz, N., Springer, Boston, MA, https://doi.org/10.1007/978-1-4419-7264-4_6, 2011.
Gundlach, B. and Blum, J.: The stickiness of micrometer-sized water-ice particles, Astrophys. J., 798, 34, https://iopscience.iop.org/article/10.1088/0004-637X/798/1/34, 2015.
Gundlach, B., Kilias, S., Beitz, E., and Blum, J.: Micrometer-sized ice particles for planetary-science experiments – I. Preparation, critical rolling friction force, and specific surface energy, Icarus, 214, 717–723, https://doi.org/10.1016/j.icarus.2011.05.005, 2011.
Hanson, A. R., Domich, E. G., and Adams, H. S.: Shock Tube Investigation of the Breakup of Drops by Air Blasts, Phys. Fluids, 6, 1070–1080, https://doi.org/10.1063/1.1706864, 1963.
Heil, J., Mohammadian, B., Sarayloo, M., Bruns, K., and Sojoudi, H.: Relationships between Surface Properties and Snow Adhesion and Its Shedding Mechanisms, Appl. Sci., 10, 5407, https://doi.org/10.3390/app10165407, 2020.
Heymsfield, A. J., Schmitt, C., Chen, C.-C.-J., Bansemer, A., Gettelman, A., Field, P. R., and Liu, C.: Contributions of the Liquid and Ice Phases to Global Surface Precipitation: Observations and Global Climate Modeling, J. Atmos. Sci., 77, 2629–2648, https://doi.org/10.1175/JAS-D-19-0352.1, 2020.
Hoffmann, T. L. and Koopmann, G. H.: Visualization of acoustic particle interaction and agglomeration: Theory and experiments, J. Acoust. Soc. Am., 99, 2130, https://doi.org/10.1121/1.415400, 1996.
Hoffmann, T. L. and Koopmann, G. H.: Visualization of acoustic particle interaction and agglomeration: Theory evaluation, J. Acoust. Soc. Am., 101, 3421, https://doi.org/10.1121/1.418352, 1997.
Holmes, C. R., Brook, M., Krehbiel, P., and McCrory, R.: On the power spectrum and mechanism of thunder, J. Geophys. Res., 76, 2106–2115, https://doi.org/10.1029/JC076i009p02106, 1971.
Jain, M., Prakash, R. S., Tomar, G., and Ravikrishna, R. V.: Secondary breakup of a drop at moderate Weber numbers, P. Roy. Soc. A, 471, 20140930, https://doi.org/10.1098/rspa.2014.0930, 2015.
Jenkins, C. M., Ripley, R.C., Wu, C.-Y., Horie, Y., Powers, K., and Wilson, W. H.: Explosively driven particle fields imaged using a high speed framing camera and particle image velocimetry, Int. J. Multiph. Flow, 51, 73–86, https://doi.org/10.1016/j.ijmultiphaseflow.2012.08.008, 2013.
Jia, Y.-H., Li, F.-F., Fang, K., Wang, G.-Q., and Qiu, J.: Interaction between Strong Sound Waves and Cloud Droplets: Theoretical Analysis, J. Appl. Meteorol. Clim., 60, 1373–1386, https://doi.org/10.1175/JAMC-D-20-0278.1, 2021.
Karch, C., Schreiner, M., Honke, R., and Wolfrum, J.: Shock Waves from a Lightning Discharge, 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018, 1–6, https://doi.org/10.1109/ICLP.2018.8503327, 2018.
Ketcham, W. M. and Hobbs, P. V.: An experimental determination of the surface energies of ice, Philos. Mag., 19, 1161–1173, 1969.
Krzeczkowski, S. A.: Measurement of Liquid Droplet Disintegration Mechanisms, Int. J. Multiph. Flow, 6, 227–239, 1980.
Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020.
Kourtidis, K. and Andrikopoulou, A.: On the Impact of Bell Sound on Ambient Particulates, J. Atmos. Sci. Res., 5, 29–34, https://doi.org/10.30564/jasr.v5i4.5121, 2022.
Kourtidis, K., Stathopoulos, S., and Amiridis, V.: On the impact of thunder on cloud ice crystals and droplets, Mendeley Data [data set], https://doi.org/10.17632/n76d4jxz8r.1, 2025.
Lacroix, A., Farges, T., Marchiano, R., and Coulouvrat, F.: Acoustical measurement of natural lightning flashes: Reconstructions and statistical analysis of energy spectra, J. Geophys. Res.-Atmos., 123, 12040–12065, https://doi.org/10.1029/2018JD028814, 2018.
Lacroix, A., Coulouvrat, F., Marchiano, R., Farges, T., and Ripoll, J.-F.: Acoustical energy of return strokes: A comparison between a statistical model and measurements, Geophys. Res. Lett., 46, 11479–11489, https://doi.org/10.1029/2019GL085369, 2019.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L.: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE, J. Geophys. Res-Atmos., 106, 14989–15014, 2001.
Liu, C., Yang, P., Minnis, P., Loeb, N., Kato, S., Heymsfield, A., and Schmitt, C.: A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719–13737, https://doi.org/10.5194/acp-14-13719-2014, 2014.
Liu, C., Zhao, Y., Tian, Z., and Zhou, H.: Numerical Simulation of Condensation of Natural Fog Aerosol under Acoustic Wave Action, Aerosol Air Qual. Res., 21, 200361, https://doi.org/10.4209/aaqr.2020.06.0361, 2020.
Liu, Q. and Zhang, Y.: Shock wave generated by high-energy electric spark discharge, J. Appl. Phys., 116, 153302, https://doi.org/10.1063/1.4898141, 2014.
Löffler, F.: Staubascheiden, George Thieme Verlag, ISBN 3–13–712201–5, 1988.
Mednikov, E. P.: Acoustic Coagulation and Precipitation of Aerosols, Consultants Bureau, New York, 1965.
Navarro-González, R., Villagrán-Muniz, M., Sobral, H., Molina, L. T., and Molina, M. J.: The physical mechanism of nitric oxide formation in simulated lightning, Geophys. Res. Lett., 28, 3867–3870, https://doi.org/10.1029/2001GL013170, 2001.
Ng, B. F., Xiong, J. W., and Wan, M. P.: Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems, Plos one, 8 June 2017, 12, e0178851, https://doi.org/10.1371/journal.pone.0178851, 2017.
Noorpoor, A. R., Sadighzadeh, A., and Habibnejad, H.: Experimental Study on Diesel Exhaust Particles Agglomeration Using Acoustic Waves, Int. J. Automot. Eng., 2, 252–260, 2012.
Qiu, J., Tang, L.-J., Cheng, L., Wang, G.-Q., and Li, F.-F.: Interaction between strong sound waves and cloud droplets: Cloud chamber experiment, Appl. Acoust., 176, 107891, https://doi.org/10.1016/j.apacoust.2020.107891, 2021.
Riera, E., González, I., Rodríguez-Corral, G., and Gallego-Juárez, J. A.: Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications, in: Power Ultrasonics, edited by: Gallego-Juárez, J. A. and Graff, K. F., 1023–1058, https://doi.org/10.1016/B978-1-78242-028-6.00034-X, 2015.
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected increase in lightning strikes in the United States due to global warming, Science, 346, 851, https://doi.org/10.1126/science.1259100, 2014.
Sauter, J.: Die Grössenbestimmung der in Gemischnebeln von Verbrennungskraftmaschinen vorhandenen Brennstoffteilchen [The determination of the size of the fuel particles present in the mixture mist of internal combustion engines], VDI Verlag, Berlin, Heft 279, 74 pp., 257620968, 1926 (in German).
Scott, D. S.: A new approach to the acoustic conditioning of industrial aerosol emissions, J. Sound Vib., 43, 607–619, https://doi.org/10.1016/0022-460X(75)90223-0, 1975.
Shi, Y., Wei, J., Qiao, Z., Shen, W., Yin, J., Hou, M., Ayantobo, O. O., and Wang, G. N.: Investigation of strong acoustic interference on clouds and precipitation in the source region of the Yellow River using KaKu radar, Atmos. Res., 267, 105992, https://doi.org/10.1016/j.atmosres.2021.105992, 2022.
Shi, Y., Wei, J., Bai, W., Zhao, Z., Ayantobo, O. O., and Wang, G.: Theoretical analysis of acoustic and turbulent agglomeration of droplet aerosols, Adv. Powder Technol., 34, 104145, https://doi.org/10.1016/j.apt.2023.104145, 2023.
Stark, M. S., Harrison, J. T. H., and Anastasi, C.: Formation of nitrogen oxides by electrical discharges and implications for atmospheric lightning, J. Geophys. Res., 101, 6963–6969, https://doi.org/10.1029/95JD03008, 1996.
Stier, P., van den Heever, S. C., Christensen, M. W., Gryspeerdt, E., Dagan, G., Saleeby, S. M., Bollasina, M., Donner, L., Emanuel, K., Ekman, A. M. L., Feingold, G., Field, P., Forster, P., Haywood, J., Kahn, R., Koren, I., Kummerow, C., L’Ecuyer, T. Lohmann, U., Ming, Y., Myhre, G., Quaas, J., Rosenfeld, D., Samset, B., Seifert, A., Stephens, G., and Tao, W.-K.: Multifaceted aerosol effects on precipitation, Nat. Geosci. 17, 719–732, https://doi.org/10.1038/s41561-024-01482-6, 2024.
Takagi, N., Wang, D., Watanabe, T., Arima, I., Takeuchi, T., Simizu, M., Katuragi, Y., Yokoya, M., and Kawashima, Y.: Expansion of the luminous region of the lightning return stroke channel, J. Geophys. Res.-Atmos., 103, 14131–14134, https://doi.org/10.1029/97JD02152, 1998.
Temkin, S.: Cloud Droplet Collision Induced by Thunder, J. Atmos. Sci., 26, 776, https://doi.org/10.1175/1520-0469.26.4.a.1, 1969.
Temkin, S. and Leung, C.-M.: On the velocity of a rigid sphere in a sound wave, J. Sound Vib., 49, 75–92, https://doi.org/10.1016/0022-460X(76)90758-6, 1976.
Temkin, S.: Gasdynamic agglomeration of aerosols. I. Acoustic waves, Phys. Fluids, 6, 2294–2303, https://doi.org/10.1063/1.868180, 1994.
Temkin, S.: Rapid Droplet Coalescence Produced by Thunder, J. Atmos. Sci., 78, 17–28, https://doi.org/10.1175/JAS-D-20-0040.1, 2021.
Temkin, S.: Raincloud conditioning by thunder, Q. J. Roy. Meteor. Soc., 149, 757, https://doi.org/10.1002/qj.4580, 2023.
Wang, Y., Su, H., Jiang, J. H., Xu, F., and Yung, Y. L.: Impact of cloud ice particle size uncertainty in a climate model and implications for future satellite missions, J. Geophys. Res.-Atmos., 125, e2019JD032119, https://doi.org/10.1029/2019JD032119, 2020.
Wei, J. H., Qiu, J., Li, T. J., Huang, Y. F., Qiao, Z., Cao, J. W., Zhong, D. Y., and Wang, G. Q.: Cloud and precipitation interference by strong low-frequency sound wave, Sci. China Technol. Sci., 64, 261–272, https://doi.org/10.1007/s11431-019-1564-9, 2021.
Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K., Kandler, K., Schütz, L., Koepke, P., and Fiebig, M.: Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006, Tellus B, 61, 96–117, https://doi.org/10.1111/j.1600-0889.2008.00392.x, 2009.
Wierzba, A.: Deformation and Breakup of Liquid Drops in a Gas Stream at Nearly Critical Weber Numbers, Exp. Fluids, 9, 59–64, https://doi.org/10.1007/BF00575336, 1990.
Yang, P., Liou, K. N., Bi, L., Liu, C., Yi, B., and Baum, B. A.: On the radiative properties of ice clouds: light scattering, remote sensing and radiation parameterization, Adv. Atmos. Sci., 32, 32–63, https://doi.org/10.1007/s00376-014-0011-z, 2015.
Yuhua, O. and Ping, Y.: Audible thunder characteristic and the relation between peak frequency and lightning parameters, J. Earth Syst. Sci., 121, 211–220, https://doi.org/10.1007/s12040-012-0147-0, 2012.
Zhao, H., Nguyen, D., Duke, D. J., Edgington-Mitchell, D., Soria, J., Liu, H.-F., and Honnery, D.: Effect of turbulence on drop breakup in counter air flow, Int. J. Multiphas. Flow, 120, 103108, https://doi.org/10.1016/j.ijmultiphaseflow.2019.103108, 2019.
Zilch, L. W., Maze, J. T., Smith, J. W., Ewing, G. E., and Jarrold, M. F.: Charge Separation in the Aerodynamic Breakup of Micrometer-Sized Water Droplets, J. Phys. Chem. A, 112, 13352–13363, https://doi.org/10.1021/jp806995h, 2008.
Short summary
The sound of thunder induces mechanical effects on cloud droplets and ice particles, causing changes in their size distribution. A shock wave near the lightning channel causes extensive shattering of cloud particles. At a distance, the audio wave will cause agglomeration of particles. So, thunder may influence the rain generation process and the radiative properties of clouds. As global warming may influence the occurrence rate of lightning, a climate feedback may be induced by these mechanisms.
The sound of thunder induces mechanical effects on cloud droplets and ice particles, causing...
Altmetrics
Final-revised paper
Preprint