Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5935-2025
https://doi.org/10.5194/acp-25-5935-2025
Research article
 | 
12 Jun 2025
Research article |  | 12 Jun 2025

On the impact of thunder on cloud ice crystals and droplets

Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis

Related authors

Spatial and temporal distribution of fine aerosol acidity in the Eastern Mediterranean
Anna Maria Neroladaki, Maria Tsagkaraki, Kyriaki Papoutsidaki, Kalliopi Tavernaraki, Filothei Boufidou, Pavlos Zarmpas, Irini Tsiodra, Eleni Liakakou, Aikaterini Bougiatioti, Giorgos Kouvarakis, Nikos Kalivitis, Christos Kaltsonoudis, Athanasios Karagioras, Dimitrios Balis, Konstantinos Mihailidis, Konstantinos Kourtidis, Stelios Myriokefalitakis, Nikos Hatzianastassiou, Spyros N. Pandis, Athanasios Nenes, Nikolaos Mihalopoulos, and Maria Kanakidou
EGUsphere, https://doi.org/10.5194/egusphere-2025-3223,https://doi.org/10.5194/egusphere-2025-3223, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018,https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017)
Larisa Sogacheva, Gerrit de Leeuw, Edith Rodriguez, Pekka Kolmonen, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, Emmanouil Proestakis, Eleni Marinou, Vassilis Amiridis, Yong Xue, and Ronald J. van der A
Atmos. Chem. Phys., 18, 11389–11407, https://doi.org/10.5194/acp-18-11389-2018,https://doi.org/10.5194/acp-18-11389-2018, 2018
Short summary
A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations
Aristeidis K. Georgoulias, Athanasios Tsikerdekis, Vassilis Amiridis, Eleni Marinou, Angela Benedetti, Prodromos Zanis, Georgia Alexandri, Lucia Mona, Konstantinos A. Kourtidis, and Jos Lelieveld
Atmos. Chem. Phys., 18, 8601–8620, https://doi.org/10.5194/acp-18-8601-2018,https://doi.org/10.5194/acp-18-8601-2018, 2018
Short summary
Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns
Gerrit de Leeuw, Larisa Sogacheva, Edith Rodriguez, Konstantinos Kourtidis, Aristeidis K. Georgoulias, Georgia Alexandri, Vassilis Amiridis, Emmanouil Proestakis, Eleni Marinou, Yong Xue, and Ronald van der A
Atmos. Chem. Phys., 18, 1573–1592, https://doi.org/10.5194/acp-18-1573-2018,https://doi.org/10.5194/acp-18-1573-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Building a comprehensive library of observed Lagrangian trajectories for testing modeled cloud evolution, aerosol–cloud interactions, and marine cloud brightening
Ehsan Erfani, Robert Wood, Peter Blossey, Sarah J. Doherty, and Ryan Eastman
Atmos. Chem. Phys., 25, 8743–8768, https://doi.org/10.5194/acp-25-8743-2025,https://doi.org/10.5194/acp-25-8743-2025, 2025
Short summary
On the processes determining the slope of cloud water adjustments in weakly and non-precipitating stratocumulus
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
Atmos. Chem. Phys., 25, 8657–8670, https://doi.org/10.5194/acp-25-8657-2025,https://doi.org/10.5194/acp-25-8657-2025, 2025
Short summary
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025,https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025,https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary

Cited articles

Abegunawardana, S., Sonnadara, U., Bodhika, J. A. P., Fernando, M., Nanayakkara, S., and Cooray, V.: Audible Frequency Analysis of Ground Flashes, in 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018, IEEE, 1–6, https://doi.org/10.1109/ICLP.2018.8503403, 2018. 
Bai, W., Shi, Y., Zhao, Z., and Wei, J.: Investigation of critical response characteristics of micro-droplets under the action of low-frequency acoustic waves, Front. Environ. Sci., 10, 972648, https://doi.org/10.3389/fenvs.2022.972648, 2022. 
Barthlott, C., Zarboo, A., Matsunobu, T., and Keil, C.: Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation, Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022, 2022. 
Bestard, D., Coulouvrat, F., Farges, T., and Mlynarczyk, J.: Acoustical power of lightning flashes, J. Geophys. Res.-Atmos., 128, e2023JD038714, https://doi.org/10.1029/2023JD038714, 2023. 
Bhuiyan, M. H. U., Saidur, R., Amalina, M. A., and Mostafizur, R. M.: Effect of surface tension on SiO2-methanol nanofluids, IOP Conf. Ser.-Mat. Sci., 88, 012056, https://doi.org/10.1088/1757-899X/88/1/012056, 2015. 
Download
Short summary
The sound of thunder induces mechanical effects on cloud droplets and ice particles, causing changes in their size distribution. A shock wave near the lightning channel causes extensive shattering of cloud particles. At a distance, the audio wave will cause agglomeration of particles. So, thunder may influence the rain generation process and the radiative properties of clouds. As global warming may influence the occurrence rate of lightning, a climate feedback may be induced by these mechanisms.
Share
Altmetrics
Final-revised paper
Preprint