Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-15415-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-15415-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability in BVOC emissions and air quality impacts among urban trees in Montreal and Helsinki
Kaisa Rissanen
CORRESPONDING AUTHOR
Département des Sciences Biologiques/Centre for Forest Research, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
currently at: Institute for Atmospheric and Earth System Research/Department of Forest Sciences, University of Helsinki, Helsinki, 00014, Finland
Juho Aalto
Institute for Atmospheric and Earth System Research/Department of Forest Sciences, University of Helsinki, Helsinki, 00014, Finland
Jaana Bäck
Institute for Atmospheric and Earth System Research/Department of Forest Sciences, University of Helsinki, Helsinki, 00014, Finland
Heidi Hellén
Atmospheric Composition Research Unit, Finnish Meteorological Institute, Helsinki, 00101, Finland
Toni Tykkä
Atmospheric Composition Research Unit, Finnish Meteorological Institute, Helsinki, 00101, Finland
Alain Paquette
Département des Sciences Biologiques/Centre for Forest Research, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
Related authors
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Ilona Ylivinkka, Helmi-Marja Keskinen, Lauri R. Ahonen, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-16, https://doi.org/10.5194/ar-2025-16, 2025
Revised manuscript accepted for AR
Short summary
Short summary
Three different particulate matter (PM) measurement techniques were compared in Finland, showing good correlation (R about 0.8). Although the measured PM concentrations were low, decreasing trends were observed in all seasons. The decrease followed the trends observed in concentrations of anthropogenic pollutants, resulting from the EU legislation to improve air quality. The highest PM concentrations were measured in summer, indicating of the dominance of organic compounds to the PM mass.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Ulrike Proske, Michael P. Adams, Grace C. E. Porter, Mark A. Holden, Jaana Bäck, and Benjamin J. Murray
Atmos. Chem. Phys., 25, 979–995, https://doi.org/10.5194/acp-25-979-2025, https://doi.org/10.5194/acp-25-979-2025, 2025
Short summary
Short summary
Ice-nucleating particles (INPs) aid the freezing of water droplets in clouds and thus modify cloud properties. In a campaign in a Finnish boreal forest, biological INPs were observed, despite many of their potential biological sources being snow-covered. We sampled tree-dwelling lichens that were not covered in snow and tested their ice nucleation ability in the laboratory. We found that the lichen harbours INPs, which may be important in similar snowy environments.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Otso Peräkylä, Erkka Rinne, Ekaterina Ezhova, Anna Lintunen, Annalea Lohila, Juho Aalto, Mika Aurela, Pasi Kolari, and Markku Kulmala
Biogeosciences, 22, 153–179, https://doi.org/10.5194/bg-22-153-2025, https://doi.org/10.5194/bg-22-153-2025, 2025
Short summary
Short summary
Forests are seen as good for climate. Yet, in areas with snow, trees break up the white snow surface and absorb more sunlight than open areas. This has a warming effect, negating some of the climate benefit of trees. We studied two site pairs in Finland, both with an open peatland and a forest. We found that the later the snow melts, the more extra energy the forest absorbs as compared to the peatland. This has implications for the future, as snow cover duration is affected by global warming.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Heidi Hellén, Toni Tykkä, Simon Schallhart, Evdokia Stratigou, Thérèse Salameh, and Maitane Iturrate-Garcia
Atmos. Meas. Tech., 17, 315–333, https://doi.org/10.5194/amt-17-315-2024, https://doi.org/10.5194/amt-17-315-2024, 2024
Short summary
Short summary
Even though online measurements of biogenic volatile organic compounds (BVOCs) are becoming more common, the use of sorbent tubes is expected to continue because they offer greater spatial coverage and no infrastructure is required for sampling. In this study the sorbent tube sampling method was optimized and evaluated for the determination of BVOCs in gas-phase samples. Tenax TA sorbent tubes were found to be suitable for the quantitative measurements of C10–C15 BVOCs.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Steven Job Thomas, Toni Tykkä, Heidi Hellén, Federico Bianchi, and Arnaud P. Praplan
Atmos. Chem. Phys., 23, 14627–14642, https://doi.org/10.5194/acp-23-14627-2023, https://doi.org/10.5194/acp-23-14627-2023, 2023
Short summary
Short summary
The study employed total ozone reactivity to demonstrate how emissions of Norway spruce readily react with ozone and could be a major ozone sink, particularly under stress. Additionally, this approach provided insight into the limitations of current analytical techniques that measure the compounds present or emitted into the atmosphere. The study shows how the technique used was not enough to measure all compounds emitted, and this could potentially underestimate various atmospheric processes.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Sanna Saarikoski, Heidi Hellén, Arnaud P. Praplan, Simon Schallhart, Petri Clusius, Jarkko V. Niemi, Anu Kousa, Toni Tykkä, Rostislav Kouznetsov, Minna Aurela, Laura Salo, Topi Rönkkö, Luis M. F. Barreira, Liisa Pirjola, and Hilkka Timonen
Atmos. Chem. Phys., 23, 2963–2982, https://doi.org/10.5194/acp-23-2963-2023, https://doi.org/10.5194/acp-23-2963-2023, 2023
Short summary
Short summary
This study elucidates properties and sources of volatile organic compounds (VOCs) and organic aerosol (OA) in a traffic environment. Anthropogenic VOCs (aVOCs) were clearly higher than biogenic VOCs (bVOCs), but bVOCs produced a larger portion of oxidation products. OA consisted mostly of oxygenated OA, representing secondary OA (SOA). SOA was partly associated with bVOCs, but it was also related to long-range transport. Primary OA originated mostly from traffic.
Hannele Hakola, Ditte Taipale, Arnaud Praplan, Simon Schallhart, Steven Thomas, Toni Tykkä, Aku Helin, Jaana Bäck, and Heidi Hellén
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-478, https://doi.org/10.5194/acp-2022-478, 2022
Revised manuscript not accepted
Short summary
Short summary
Norway spruce is one of the main tree species growing in the boreal area. We show that volatile organic compound emission potentials and compound composition vary a lot. We have investigated if e.g. growing location or age of a tree could explain the variations. Recognizing this observed large variability in spruce BVOC emissions (precursors for new particle formation processes), we also tested the consequences of this variability in simulations of aerosol formation.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Yang Liu, Simon Schallhart, Ditte Taipale, Toni Tykkä, Matti Räsänen, Lutz Merbold, Heidi Hellén, and Petri Pellikka
Atmos. Chem. Phys., 21, 14761–14787, https://doi.org/10.5194/acp-21-14761-2021, https://doi.org/10.5194/acp-21-14761-2021, 2021
Short summary
Short summary
We studied the mixing ratio of biogenic volatile organic compounds (BVOCs) in a humid highland and dry lowland African ecosystem in Kenya. The mixing ratio of monoterpenoids was similar to that measured in the relevant ecosystems in western and southern Africa, while that of isoprene was lower. Modeling the emission factors (EFs) for BVOCs from the lowlands, the EFs for isoprene and β-pinene agreed well with what is assumed in the MEGAN, while those of α-pinene and limonene were higher.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Jose Ruiz-Jimenez, Magdalena Okuljar, Outi-Maaria Sietiö, Giorgia Demaria, Thanaporn Liangsupree, Elisa Zagatti, Juho Aalto, Kari Hartonen, Jussi Heinonsalo, Jaana Bäck, Tuukka Petäjä, and Marja-Liisa Riekkola
Atmos. Chem. Phys., 21, 8775–8790, https://doi.org/10.5194/acp-21-8775-2021, https://doi.org/10.5194/acp-21-8775-2021, 2021
Short summary
Short summary
Altogether, 84 size-segregated aerosol samples from four particle size fractions were collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations, Hyytiälä, Finland, in autumn 2017 for the clarification of the complex interrelationships between airborne and particulate chemical traces, amino acids and saccharides, gene copy numbers (16S and 18S for bacteria and fungi, respectively), gas-phase chemistry, and the particle size distribution.
Heidi Hellén, Arnaud P. Praplan, Toni Tykkä, Aku Helin, Simon Schallhart, Piia P. Schiestl-Aalto, Jaana Bäck, and Hannele Hakola
Atmos. Chem. Phys., 21, 8045–8066, https://doi.org/10.5194/acp-21-8045-2021, https://doi.org/10.5194/acp-21-8045-2021, 2021
Short summary
Short summary
Even though terpene emissions of boreal needle trees have been studied quite intensively, there is less knowledge of the emissions of broadleaved deciduous trees and emissions of larger terpenes and oxygenated volatile organic compounds. Here we studied downy birch (Betula pubescens) emissions, and especially sesquiterpene and oxygenated sesquiterpene emissions were found to be high. These emissions may have significant effects on secondary organic aerosol formation in boreal areas.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Helmi-Marja Keskinen, Ilona Ylivinkka, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Lauri R. Ahonen, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-447, https://doi.org/10.5194/amt-2020-447, 2020
Publication in AMT not foreseen
Short summary
Short summary
Long-term (2005–2017) aerosol particulate matter (PM) concentration measurements at Finland at Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II, Hyytiälä) have been measured with three different measurement equipment. The comparison revealed an equivalence among the three methods. Mass concentrations were generally highest in summer. The descending trend was visible here in spring, summer and winter. This might have resulted at least partly from air quality legislation.
Cited articles
Abhijith, K. V, Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., and Pulvirenti, B.: Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review, Atmos. Environ., 162, 71–86, https://doi.org/10.1016/j.atmosenv.2017.05.014, 2017.
Atkinson, R.: Atmospheric chemistry of VOCs and NO(x), Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.: Chemodiversity of a Scots pine stand and implications for terpene air concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Bao, X., Zhou, W., Xu, L., and Zheng, Z.: A meta-analysis on plant volatile organic compound emissions of different plant species and responses to environmental stress, Environ. Pollut., 318, 120886, https://doi.org/10.1016/j.envpol.2022.120886, 2023.
Bao, X., Zhou, W., Wang, W., Yao, Y., and Xu, L.: Tree species classification improves the estimation of BVOCs from urban greenspace, Sci. Total Environ., 914, 169762, https://doi.org/10.1016/j.scitotenv.2023.169762, 2024.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bell, M. and Ellis, H.: Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region, Atmos. Environ., 38, 1879–1889, https://doi.org/10.1016/j.atmosenv.2004.01.012, 2004.
Bellucci, M., Locato, V., Sharkey, T. D., De Gara, L., and Loreto, F.: Isoprene emission by plants in polluted environments, J. Plant Interact., 18, 2266463, https://doi.org/10.1080/17429145.2023.2266463, 2023.
Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential of urban trees and shrubs, Atmos. Environ., 32, 53–68, https://doi.org/10.1016/S1352-2310(97)00176-3, 1998.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rates, Atmos. Environ., 30, 1437–1452, https://doi.org/10.1016/1352-2310(95)00439-4, 1996.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban greening to cool towns and cities: A systematic review of the empirical evidence, Landsc. Urban Plan., 97, 147–155, https://doi.org/10.1016/j.landurbplan.2010.05.006, 2010.
Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., and Loreto, F.: Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review, Environ. Pollut., 183, 71–80, https://doi.org/10.1016/j.envpol.2013.03.012, 2013.
Calfapietra, C., Morani, A., Sgrigna, G., Di Giovanni, S., Muzzini, V., Pallozzi, E., Guidolotti, G., Nowak, D., and Fares, S.: Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling Approaches, J. Environ. Qual., 45, 224–233, https://doi.org/10.2134/jeq2015.01.0061, 2016.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Carter, W. P. L.: Development of Ozone Reactivity Scales for Volatile Organic Compounds, Air Waste, 44, 881–899, https://doi.org/10.1080/1073161X.1994.10467290, 1994.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Cekstere, G., Osvalde, A., Elferts, D., Rose, C., Lucas, F., and Vollenweider, P.: Salt accumulation and effects within foliage of Tilia × vulgaris trees from the street greenery of Riga, Latvia, Sci. Total Environ., 747, 140921, https://doi.org/10.1016/j.scitotenv.2020.140921, 2020.
Centre on Emission Inventories and Projections EMEP Database: Data viewer – reported emissions data [data set], https://www.ceip.at/data-viewer-2/officially-reported-emissions-data, last access: 6 May 2025.
Cho, K. S., Lim, Y., Lee, K., Lee, J., Lee, J. H., and Lee, I.-S.: Terpenes from Forests and Human Health, Toxicol. Res., 33, 97–106, https://doi.org/10.5487/TR.2017.33.2.097, 2017.
Churkina, G., Grote, R., Butler, T. M., and Lawrence, M.: Natural selection? Picking the right trees for urban greening, Environ. Sci. Policy, 47, 12–17, https://doi.org/10.1016/j.envsci.2014.10.014, 2015.
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., and Butler, T. M.: Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave, Environ. Sci. Technol., 51, 6120–6130, https://doi.org/10.1021/acs.est.6b06514, 2017.
City of Helsinki open data: Urban tree database of the City of Helsinki [data set], https://hri.fi/data/en/dataset/helsingin-kaupungin-puurekisteri, last access: 30 April 2025.
City of Montreal open data: Arbres publics sur le territoire de la Ville [data set], https://donnees.montreal.ca/fr/dataset/arbres?, last access: 30 April 2025a.
City of Montreal open data: Taux de végétalisation et de minéralisation des surfaces [data set], https://donnees.montreal.ca/dataset/taux-vegetalisation-mineralisation-surfaceslast, last access: 14 August 2025b.
City of Montreal open data: Canopée [data set], https://donnees.montreal.ca/dataset/canopee, last access: 30 April 2025c.
Cui, B., Xian, C., Han, B., Shu, C., Qian, Y., Ouyang, Z., and Wang, X.: High-resolution emission inventory of biogenic volatile organic compounds for rapidly urbanizing areas: A case of Shenzhen megacity, China, J. Environ. Manage., 351, 119754, https://doi.org/10.1016/j.jenvman.2023.119754, 2024.
Czaja, M., Kołton, A., and Muras, P.: The Complex Issue of Urban Trees–Stress Factor Accumulation and Ecological Service Possibilities, Forests, 11, https://doi.org/10.3390/f11090932, 2020.
Datta, S., Sharma, A., Parkar, V., Hakkim, H., Kumar, A., Chauhan, A., Tomar, S. S., and Sinha, B.: A new index to assess the air quality impact of urban tree plantation, Urban Clim., 40, 100995, https://doi.org/10.1016/j.uclim.2021.100995, 2021.
Delmas, R., Serça, D., and Jambert, C.: Global inventory of NOx sources, Nutr. Cycl. Agroecosystems, 48, 51–60, https://doi.org/10.1023/A:1009793806086, 1997.
Donovan, R. G., Stewart, H. E., Owen, S. M., MacKenzie, A. R., and Hewitt, C. N.: Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study, Environ. Sci. Technol., 39, 6730–6738, https://doi.org/10.1021/es050581y, 2005.
Duan, C., Wu, Z., Liao, H., and Ren, Y.: Interaction Processes of Environment and Plant Ecophysiology with BVOC Emissions from Dominant Greening Trees, Forests, 14, https://doi.org/10.3390/f14030523, 2023.
Duhl, T. R., Helmig, D., and Guenther, A.: Sesquiterpene emissions from vegetation: a review, Biogeosciences, 5, 761–777, https://doi.org/10.5194/bg-5-761-2008, 2008.
Dunn-Johnston, K. A., Kreuzwieser, J., Hirabayashi, S., Plant, L., Rennenberg, H., and Schmidt, S.: Isoprene Emission Factors for Subtropical Street Trees for Regional Air Quality Modeling, J. Environ. Qual., 45, 234–243, https://doi.org/10.2134/jeq2015.01.0051, 2016.
Environment and Climate Change Canada: Historical Climate Data [data set], https://climate.weather.gc.ca/, last access: 30 April 2025.
Finnish Meteorological Institute: Download observations-service [data set], https://en.ilmatieteenlaitos.fi/download-observations, last access: 30 April 2025.
Fitzky, A., Sandén, H., Karl, T., Fares, S., Calfapietra, C., Grote, R., Amélie, S., and Rewald, B.: The Interplay Between Ozone and Urban Vegetation–BVOC Emissions, Ozone Deposition, and Tree Ecophysiology, 2, 50, https://doi.org/10.3389/ffgc.2019.00050, 2019.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd ed., Sage Publications, Thousand Oaks, USA [code], ISBN 9781412975148, 2019.
Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., and Schnitzler, J.-P.: Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing, Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, 2016.
Gratani, L. and Varone, L.: Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome, Landsc. Urban Plan., 81, 282–286, https://doi.org/10.1016/j.landurbplan.2007.01.006, 2007.
Gratani, L. and Varone, L.: Atmospheric carbon dioxide concentration variations in Rome: relationship with traffic level and urban park size, Urban Ecosyst., 17, 501–511, https://doi.org/10.1007/s11252-013-0340-1, 2014.
Griffin, R. J., Cocker III, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res. Atmos., 104, 3555–3567, https://doi.org/10.1029/1998JD100049, 1999.
Grosjean, D.: In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality, Atmos. Environ. Part A. Gen. Top., 26, 953–963, https://doi.org/10.1016/0960-1686(92)90027-I, 1992.
Grosjean, D. and Seinfeld, J. H.: Parameterization of the formation potential of secondary organic aerosols, Atmos. Environ., 23, 1733–1747, https://doi.org/10.1016/0004-6981(89)90058-9, 1989.
Guenther, A.: Seasonal and spatial variations in natural volatile organic compound emissions, Ecol. Appl., 7, 34–45, https://doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2, 1997.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Harrison, S. P., Morfopoulos, C., Dani, K. G. S., Prentice, I. C., Arneth, A., Atwell, B. J., Barkley, M. P., Leishman, M. R., Loreto, F., Medlyn, B. E., Niinemets, Ü., Possell, M., Peñuelas, J., and Wright, I. J.: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197, 49–57, https://doi.org/10.1111/nph.12021, 2013.
Helama, S., Läänelaid, A., Raisio, J., Sohar, K., and Mäkelä, A.: Growth patterns of roadside Tilia spp. affected by climate and street maintenance in Helsinki, Urban For. Urban Green., 53, 126707, https://doi.org/10.1016/j.ufug.2020.126707, 2020.
Helin, A., Hakola, H., and Hellén, H.: Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes, Atmos. Meas. Tech., 13, 3543–3560, https://doi.org/10.5194/amt-13-3543-2020, 2020.
Hellén, H., Tykkä, T., and Hakola, H.: Importance of monoterpenes and isoprene in urban air in northern Europe, Atmos. Environ., 59, 59–66, https://doi.org/10.1016/j.atmosenv.2012.04.049, 2012.
Hellén, H., Tykkä, T., Schallhart, S., Stratigou, E., Salameh, T., and Iturrate-Garcia, M.: Measurements of atmospheric C10–C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes, Atmos. Meas. Tech., 17, 315–333, https://doi.org/10.5194/amt-17-315-2024, 2024.
Helsinki Region Environmental Services HSY open data: Helsinki region land cover dataset [data set], https://www.hsy.fi/en/environmental-information/open-data/avoin-data---sivut/helsinki-region-land-cover-dataset/, last access: 30 April 2025.
Hoffmann, T., Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R., and Seinfeld, J. H.: Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons, J. Atmos. Chem., 26, 189–222, https://doi.org/10.1023/A:1005734301837, 1997.
Holopainen, J. K. and Gershenzon, J.: Multiple stress factors and the emission of plant VOCs, Trends Plant Sci., 3, 176–184, https://doi.org/10.1016/j.tplants.2010.01.006, 2010.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Jokinen, P., Pirinen, P., Kaukoranta, J.-P., Kangas, A., Alenius, P., Eriksson, P., Johansson, M., and Wilkman, S.: Tilastoja Suomen ilmastosta 1991–2020, Reports 2021:8, 169 pp., https://doi.org/10.35614/isbn.9789523361485, 2021.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models, Biogeosciences, 6, 1059–1087, https://doi.org/10.5194/bg-6-1059-2009, 2009.
Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., and Järvi, L.: Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations – A case study from a city-boulevard, Atmos. Environ., 6, 100073, https://doi.org/10.1016/j.aeaoa.2020.100073, 2020.
Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. Atmos. Chem., 33, 23–88, https://doi.org/10.1023/A:1006127516791, 1999.
Khedive, E., Shirvany, A., Assareh, M. H., and Sharkey, T. D.: In situ emission of BVOCs by three urban woody species, Urban For. Urban Green., 21, 153–157, https://doi.org/10.1016/j.ufug.2016.11.018, 2017.
Lahr, E. C., Schade, G. W., Crossett, C. C., and Watson, M. R.: Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas, Glob. Chang. Biol., 21, 4221–4236, https://doi.org/10.1111/gcb.13010, 2015.
Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., and Münzel, T.: Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective, Cardiovasc. Res., 116, 1910–1917, https://doi.org/10.1093/cvr/cvaa025, 2020.
Lim, Y. J., Kwak, M. J., Lee, J., Kang, D., Je, S. M., and Woo, S. Y.: Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission, Hortic. Environ. Biotechnol., 65, 1025–1042, https://doi.org/10.1007/s13580-024-00628-0, 2024.
Loreto, F.: Distribution of isoprenoid emitters in the Quercus genus around the world: chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait, Perspect. Plant Ecol. Evol. Syst., 5, 185–192, https://doi.org/10.1078/1433-8319-00033, 2002.
Loreto, F. and Schnitzler, J. P.: Abiotic stresses and induced BVOCs, Trends Plant Sci., 15, 154–166, https://doi.org/10.1016/j.tplants.2009.12.006, 2010.
Lüttge, U. and Buckeridge, M.: Trees: structure and function and the challenges of urbanization, Trees, 37, 9–16, https://doi.org/10.1007/s00468-020-01964-1, 2020.
Maison, A., Lugon, L., Park, S.-J., Boissard, C., Faucheux, A., Gros, V., Kalalian, C., Kim, Y., Leymarie, J., Petit, J.-E., Roustan, Y., Sanchez, O., Squarcioni, A., Valari, M., Viatte, C., Vigneron, J., Tuzet, A., and Sartelet, K.: Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities, Sci. Total Environ., 946, 174116, https://doi.org/10.1016/j.scitotenv.2024.174116, 2024.
Manzini, J., Hoshika, Y., Carrari, E., Sicard, P., Watanabe, M., Tanaka, R., Badea, O., Nicese, F. P., Ferrini, F., and Paoletti, E.: FlorTree: A unifying modelling framework for estimating the species-specific pollution removal by individual trees and shrubs, Urban For. Urban Green., 85, 127967, https://doi.org/10.1016/j.ufug.2023.127967, 2023.
Niinemets, Ü.: Mild versus severe stress and BVOCs: thresholds, priming and consequences, Trends Plant Sci., 15, 145–153, https://doi.org/10.1016/j.tplants.2009.11.008, 2010.
Noe, S. M., Peñuelas, J., and Niinemets, Ü.: Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain, Plant Biol., 10, 163–169, https://doi.org/10.1111/j.1438-8677.2007.00014.x, 2008.
Nowak, D. J., Hirabayashi, S., Bodine, A., and Greenfield, E.: Tree and forest effects on air quality and human health in the United States, Environ. Pollut., 193, 119–129, https://doi.org/10.1016/j.envpol.2014.05.028, 2014.
O'Brien, L. E., Urbanek, R. E., and Gregory, J. D.: Ecological functions and human benefits of urban forests, Urban For. Urban Green., 75, 127707, https://doi.org/10.1016/j.ufug.2022.127707, 2022.
Oderbolz, D. C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher, R., Skjøth, C. A., Plaß-Dülmer, C., and Prévôt, A. S. H.: A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover, Atmos. Chem. Phys., 13, 1689–1712, https://doi.org/10.5194/acp-13-1689-2013, 2013.
Owen, S. M., MacKenzie, A. R., Stewart, H., Donovan, R., and Hewitt, C. N.: Biogenic volatile organic compound (VOC) emission estimates from urban tree canopy, Ecol. Appl., 13, 927–938, https://doi.org/10.1890/01-5177, 2003.
Panthee, S., Ashton, L. A., Tani, A., Sharma, B., and Nakamura, A.: Mechanical Branch Wounding Alters the BVOC Emission Patterns of Ficus Plants, Forests, 13, 1931, https://doi.org/10.3390/f13111931, 2022.
Papiez, M. R., Potosnak, M. J., Goliff, W. S., Guenther, A. B., Matsunaga, S. N., and Stockwell, W. R.: The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada, Atmos. Environ., 43, 4109–4123, https://doi.org/10.1016/j.atmosenv.2009.05.048, 2009.
Pataki, D. E., Alberti, M., Cadenasso, M. L., Felson, A. J., McDonnell, M. J., Pincetl, S., Pouyat, R. V, Setälä, H., and Whitlow, T. H.: The Benefits and Limits of Urban Tree Planting for Environmental and Human Health, Front. Ecol. Evol., 9, https://doi.org/10.3389/fevo.2021.603757, 2021.
Peñuelas, J. and Munné-Bosch, S.: Isoprenoids: an evolutionary pool for photoprotection, Trends Plant Sci., 10, 166–169, https://doi.org/10.1016/j.tplants.2005.02.005, 2005.
Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S., and Saphores, J.-D.: Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns, GeoJournal, 78, 475–493, https://doi.org/10.1007/s10708-012-9446-x, 2013.
Pollastri, S., Baccelli, I., and Loreto, F.: Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants?, Antioxidants, 10, 684, https://doi.org/10.3390/antiox10050684, 2021.
Portillo-Estrada, M., Kazantsev, T., Talts, E., Tosens, T., and Niinemets, Ü.: Emission Timetable and Quantitative Patterns of Wound-Induced Volatiles Across Different Leaf Damage Treatments in Aspen (Populus Tremula), J. Chem. Ecol., 41, 1105–1117, https://doi.org/10.1007/s10886-015-0646-y, 2015.
Préndez, M., Carvajal, V., Corada, K., Morales, J., Alarcón, F., and Peralta, H.: Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile, Environ. Pollut., 183, 143–150, https://doi.org/10.1016/j.envpol.2013.04.003, 2013.
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [code], https://www.R-project.org (last access: 30 August 2025), 2022.
Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X., Tani, A., Guo, P., Ge, Y., and Chang, J.: Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies, Environ. Pollut., 230, 849–861, https://doi.org/10.1016/j.envpol.2017.06.049, 2017.
Rissanen, K.: BVOC emission potentials for street and park trees of five common species is Montreal (Canada) and Helsinki (Finland), Zenodo [data set], https://doi.org/10.5281/zenodo.15379394, 2025.
Saarikoski, S., Hellén, H., Praplan, A. P., Schallhart, S., Clusius, P., Niemi, J. V., Kousa, A., Tykkä, T., Kouznetsov, R., Aurela, M., Salo, L., Rönkkö, T., Barreira, L. M. F., Pirjola, L., and Timonen, H.: Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment, Atmos. Chem. Phys., 23, 2963–2982, https://doi.org/10.5194/acp-23-2963-2023, 2023.
Simon, H., Fallmann, J., Kropp, T., Tost, H., and Bruse, M.: Urban Trees and Their Impact on Local Ozone Concentration–A Microclimate Modeling Study, Atmosphere (Basel), 10, https://doi.org/10.3390/atmos10030154, 2019.
Simpson, J. R. and McPherson, E. G.: The tree BVOC index, Environ. Pollut., 159, 2088–2093, https://doi.org/10.1016/j.envpol.2011.02.034, 2011.
Sousa-Silva, R., Lambry, T., Cameron, E., Belluau, M., and Paquette, A.: Urban forests – Different ownership translates to greater diversity of trees, Urban For. Urban Green., 88, 128084, https://doi.org/10.1016/j.ufug.2023.128084, 2023.
Staudt, M. and Visnadi, I.: High chemodiversity in the structural and enantiomeric composition of volatiles emitted by Kermes oak populations in Southern France, Elem. Sci. Anthr., 11, 43, https://doi.org/10.1525/elementa.2023.00043, 2023.
Steinbrecher, R., Hauff, K., Rabong, R., and Steinbrecher, J.: Isoprenoid emission of oak species typical for the Mediterranean area: Source strength and controlling variables, Atmos. Environ., 31, 79–88, https://doi.org/10.1016/S1352-2310(97)00076-9, 1997.
Su, B. F., Xue, J. R., Xie, C. Y., Fang, Y. L., Song, Y. Y., and Fuentes, S.: Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies, Int. J. Agric. Biol. Eng., 9, 119–130, https://doi.org/10.3965/j.ijabe.20160906.2908, 2016.
Université du Québec à Montréal/ESCER – Centre pour l'étude et la simulation du climat à l'échelle régionale, https://escer.uqam.ca/donnees/, last access: 30 December 2024.
Vedel-Petersen, I., Schollert, M., Nymand, J., and Rinnan, R.: Volatile organic compound emission profiles of four common arctic plants, Atmos. Environ., 120, 117–126, https://doi.org/10.1016/j.atmosenv.2015.08.082, 2015.
Venter, Z. S., Hassani, A., Stange, E., Schneider, P., and Castell, N.: Reassessing the role of urban green space in air pollution control, Proc. Natl. Acad. Sci., 121, e2306200121, https://doi.org/10.1073/pnas.2306200121, 2024.
Wang, C.-T., Wiedinmyer, C., Ashworth, K., Harley, P. C., Ortega, J., and Vizuete, W.: Leaf enclosure measurements for determining volatile organic compound emission capacity from Cannabis spp., Atmos. Environ., 199, 80–87, https://doi.org/10.1016/j.atmosenv.2018.10.049, 2019.
WHO: World health statistics 2016: monitoring health for the SDGs, sustainable development goals, 121 pp., ISBN 9789241565264, 2016.
Winbourne, J. B., Jones, T. S., Garvey, S. M., Harrison, J. L., Wang, L., Li, D., Templer, P. H., and Hutyra, L. R.: Tree Transpiration and Urban Temperatures: Current Understanding, Implications, and Future Research Directions, Bioscience, 70, 576–588, https://doi.org/10.1093/biosci/biaa055, 2020.
Wolf, K. L., Lam, S. T., McKeen, J. K., Richardson, G. R. A., van den Bosch, M., and Bardekjian, A. C.: Urban Trees and Human Health: A Scoping Review, Int. J. Environ. Res. Public Health, 17, https://doi.org/10.3390/ijerph17124371, 2020.
Wu, J., Long, J., Liu, H., Sun, G., Li, J., Xu, L., and Xu, C.: Biogenic volatile organic compounds from 14 landscape woody species: Tree species selection in the construction of urban greenspace with forest healthcare effects, J. Environ. Manage., 300, 113761, https://doi.org/10.1016/j.jenvman.2021.113761, 2021.
Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., Xie, B., and Peng, C.: A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass, Forests, 13, https://doi.org/10.3390/f13040616, 2022.
Yang, W., Zhang, B., Wu, Y., Liu, S., Kong, F., and Li, L.: Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii, Environ. Pollut., 316, 120693, https://doi.org/10.1016/j.envpol.2022.120693, 2023.
Yu, S.: Emission characteristics of biogenic volatile organic compounds from species in major forests and urban forests, MSc thesis, Division of Earth Environmental System Science, Pukyong National University, South-Korea, 84 pp., https://pknu.dcollection.net/public_resource/pdf/200000665372_20251110024202.pdf (last access: 30 April 2025), 2023.
Yuan, X., Xu, Y., Calatayud, V., Li, Z., Feng, Z., and Loreto, F.: Emissions of isoprene and monoterpenes from urban tree species in China and relationships with their driving factors, Atmos. Environ., 314, 120096, https://doi.org/10.1016/j.atmosenv.2023.120096, 2023.
Zhang, B., Jia, Y., Bai, G., Han, H., Yang, W., Xie, W., and Li, L.: Characterizing BVOC emissions of common plant species in northern China using real world measurements: Towards strategic species selection to minimize ozone forming potential of urban greening, Urban For. Urban Green., 96, 128341, https://doi.org/10.1016/j.ufug.2024.128341, 2024.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605, https://doi.org/10.1039/C2CS35122F, 2012.
Short summary
Urban trees emit biogenic volatile organic compounds (BVOC) that affect air quality through the formation of ozone and particulate matter. Trees in Montreal and Helsinki did not emit more BVOCs than expected based on measurements from forest trees, but the emissions varied between individual trees and growth environments. Avoiding high-BVOC emitting tree species and management strategies that protect trees from BVOC-inducing stress factors would help minimise their negative air quality impacts.
Urban trees emit biogenic volatile organic compounds (BVOC) that affect air quality through the...
Altmetrics
Final-revised paper
Preprint