Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-14967-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-14967-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of oceanic ventilation and terrestrial transport on the atmospheric volatile chlorinated hydrocarbons over the Western Pacific
Shan-Shan Liu
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Jie Ni
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Jin-Ming Song
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Xu-Xu Gao
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Zhen He
CORRESPONDING AUTHOR
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
Related authors
No articles found.
Detong Tian, Xuegang Li, Jinming Song, Jun Ma, Huamao Yuan, and Liqin Duan
Ocean Sci., 21, 1627–1639, https://doi.org/10.5194/os-21-1627-2025, https://doi.org/10.5194/os-21-1627-2025, 2025
Short summary
Short summary
Particulate organic carbon plays a vital role in the ocean's carbon cycle, yet its transformation involves complex processes that are not fully understood. This study examines the vertical distribution of stable carbon isotopes in the Tropical Northwestern Pacific, identifying three distinct biogeochemical layers of POC transformation, and contributes to a deeper understanding of the ocean's carbon cycle.
Lin Yang, Peiyi Bian, Jing Zhang, Anja Engel, Bin Yang, and Gui-Peng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2429, https://doi.org/10.5194/egusphere-2025-2429, 2025
Short summary
Short summary
CO, CDOM, and FDOM were more frequently enriched in the higher temperature and salinity off-shore regions. Marine-humic like CDOM tends to inhibit the sea-to-air flux of CO in the SML. The enrichment and photochemical process of CO in the SML were more active during the daytime. The photochemical production and microbial consumption rates of CO in the SML were more active than in the SSW.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Lin Yang, Jing Zhang, Anja Engel, and Gui-Peng Yang
Biogeosciences, 19, 5251–5268, https://doi.org/10.5194/bg-19-5251-2022, https://doi.org/10.5194/bg-19-5251-2022, 2022
Short summary
Short summary
Enrichment factors of dissolved organic matter (DOM) in the eastern marginal seas of China exhibited a significant spatio-temporal variation. Photochemical and enrichment processes co-regulated DOM enrichment in the sea-surface microlayer (SML). Autochthonous DOM was more frequently enriched in the SML than terrestrial DOM. DOM in the sub-surface water exhibited higher aromaticity than that in the SML.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Cited articles
Abrahamsson, K. and Ekdahl, A.: Volatile halogenated compounds and chlorophenols in the Skagerrak, J. Sea Res., 35, 73–79, https://doi.org/10.1016/S1385-1101(96)90736-4, 1996.
Abrahamsson, K., Ekdahl, A., Collén, J., and Pedersén, M.: Marine algae – a source of trichloroethylene and perchloroethylene, Limnol. Oceanogr., 40, 1321–1326, https://doi.org/10.4319/lo.1995.40.7.1321, 1995.
Abrahamsson, K., Bertilsson, S., Chierici, M., Fransson, A., Froneman, P. W., Lorén, A., and Pakhomov, E. A.: Variations of biochemical parameters along a transect in the Southern Ocean, with special emphasis on volatile halogenated organic compounds, Deep-Sea Res. Part II: Top. Stud. Oceanogr., 51, 2745–2756, https://doi.org/10.1016/j.dsr2.2004.09.004, 2004a.
Abrahamsson, K., Lorén, A., Wulff, A., and Wängberg, S. Å.: Air–sea exchange of halocarbons: the influence of diurnal and regional variations and distribution of pigments, Deep-Sea Res. Part II: Top. Stud. Oceanogr., 51, 2789–2805, https://doi.org/10.1016/j.dsr2.2004.09.005, 2004b.
An, M., Western, L. M., Say, D., Chen, L., Claxton, T., Ganesan, A. L., Hossaini, R., Krummel, P. B., Manning, A. J., and Mühle, J.: Rapid increase in dichloromethane emissions from China inferred through atmospheric observations, Nat. Commun., 12, 7279, https://doi.org/10.1038/s41467-021-27592-y, 2021.
An, M., Western, L. M., Hu, J., Yao, B., Mühle, J., Ganesan, A. L., Prinn, R. G., Krummel, P. B., Hossaini, R., Fang, X., O'Doherty, A., Weiss, R. F., Young, D., and Rigby, M.: Anthropogenic chloroform emissions from China drive changes in global emissions, Environ. Sci. Technol., 57, 13925–13936, https://doi.org/10.1021/acs.est.3c01898, 2023.
Blake, N. J., Blake, D. R., Simpson, I. J., Meinardi, S., Swanson, A. L., Lopez, J. P., Katzenstein, A., Barletta, B., Shirai, T., Atlas, E., Sachse, G., Avery, M., Vay, S., Fuelberg, H., Kiley, C. M., Kita, K., and Rowland, F. S.: NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) field campaign: Comparison with PEM-West B, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD003367, 2003.
Bravo-Linares, C. M., Mudge, S. M., and Loyola-Sepulveda, R. H.: Occurrence of volatile organic compounds (VOCs) in Liverpool Bay, Irish Sea, Mar. Pollut. Bull., 54, 1742–1753, https://doi.org/10.1016/j.marpolbul.2007.07.013, 2007.
Butler, J. H., Yvon-Lewis, S. A., Lobert, J. M., King, D. B., Montzka, S. A., Bullister, J. L., Koropalov, V., Elkins, J. W., Hall, B. D., Hu, L., and Liu, Y.: A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean, Atmos. Chem. Phys., 16, 10899–10910, https://doi.org/10.5194/acp-16-10899-2016, 2016.
Byčenkienė, S., Dudoitis, V., and Ulevicius, V.: The use of trajectory cluster analysis to evaluate the long-range transport of black carbon aerosol in the south-eastern Baltic region, Adv. Meteorol., 2014, 137694, https://doi.org/10.1155/2014/137694, 2014.
Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B. D., Hossaini, R., Laube, J., and Yvon-Lewis, S.: Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol, in: Scientific Assessment of Ozone Depletion: 2014, edited by: Ayité-Lô, N. A., Newman, P. A., Pyle, J. A., and Ravishankara, A. R., World Meteorological Organization, Geneva, Switzerland, 101 pp., ISBN 9789966076014, 2014.
Chang, C. Y., Wang, J. L., Chen, Y. C., Pan, X. X., Chen, W. N., Lin, M. R., Ho, Y. J., Chuang, M. T., Liu, W. T., and Chang, C. C.: A study of the vertical homogeneity of trace gases in East Asian continental outflow, Chemosphere, 297, 134165, https://doi.org/10.1016/j.chemosphere.2022.134165, 2022.
Chipperfield, M. P., Hossaini, R., Montzka, S. A., Reimann, S., Sherry, D., and Tegtmeier, S.: Renewed and emerging concerns over the production and emission of ozone-depleting substances, Nat. Rev. Earth Environ., 1, 251–263, https://doi.org/10.1038/s43017-020-0048-8, 2020.
Christof, O., Seifert, R., and Michaelis, W.: Volatile halogenated organic compounds in European estuaries, Biogeochemistry, 59, 143–160, https://doi.org/10.1023/A:1015592115435, 2002.
Chuck, A. L., Turner, S. M., and Liss, P. S.: Oceanic distributions and air–sea fluxes of biogenic halocarbons in the open ocean, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002741, 2005.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.: Climate change impacts on marine ecosystems, Annu. Rev. Mar. Sci., 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611, 2012.
Ekdahl, A., Pedersén, M., and Abrahamsson, K.: A study of the diurnal variation of biogenic volatile halocarbons, Mar. Chem., 63, 1–8, https://doi.org/10.1016/S0304-4203(98)00047-4, 1998.
Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A. L., Rigby, M., Li, S., Yokouchi, Y., Fraser, P. J., Harth, C. M., Krummel, P. B., Mühle, J., O'Doherty, S., Salameh, P. K., Simmonds, P. G., Weiss, R. F., Young, D., Lunt, M. F., Manning, A. J., Gressent, A., and Prinn, R. G.: Rapid increase in ozone-depleting chloroform emissions from China, Nat. Geosci., 12, 89–93, https://doi.org/10.1038/s41561-018-0278-2, 2019.
Fogelqvist, E.: Carbon tetrachloride, tetrachloroethylene, 1,1,1-trichloroethane and bromoform in Arctic seawater, J. Geophys. Res.-Oceans, 90, 9181–9193, https://doi.org/10.1029/JC090iC05p09181, 1985.
Gossett, J. M.: Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, https://doi.org/10.1021/es00156a012, 1987.
Gschwend, P. M., MacFarlane, J. K., and Newman, K. A.: Volatile halogenated organic compounds released to seawater from temperate marine macroalgae, Science, 227, 1033–1035, https://doi.org/10.1126/science.227.4690.1033, 1985.
Gupta, M., Williams, R. G., Lauderdale, J. M., Jahn, O., Hill, C., Dutkiewicz, S., and Follows, M. J.: A nutrient relay sustains subtropical ocean productivity, Proc. Natl. Acad. Sci. USA, 119, e2206504119, https://doi.org/10.1073/pnas.2206504119, 2022.
He, Z., Yang, G. P., and Lu, X. L.: Distributions and sea-to-air fluxes of volatile halocarbons in the East China Sea in early winter, Chemosphere, 90, 747–757, https://doi.org/10.1016/j.chemosphere.2012.09.067, 2013a.
He, Z., Yang, G. P., Lu, X. L., Ding, Q. Y., and Zhang, H. H.: Halocarbons in the marine atmosphere and surface seawater of the South Yellow Sea during spring, Atmos. Environ., 80, 514–523, https://doi.org/10.1016/j.atmosenv.2013.08.025, 2013b.
He, Z., Yang, G. P., Lu, X. L., and Zhang, H.: Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring, Environ. Pollut., 177, 28–37, https://doi.org/10.1016/j.envpol.2013.02.008, 2013c.
He, Z., Liu, Q. L., Zhang, Y. J., and Yang, G. P.: Distribution and sea-to-air fluxes of volatile halocarbons in the Bohai Sea and North Yellow Sea during spring, Sci. Total Environ., 585, 546–553, https://doi.org/10.1016/j.scitotenv.2017.01.065, 2017.
He, Z., Liu, S. S., Ni, J., Chen, Y., and Yang, G. P.: Spatio-temporal variability and sources of volatile halocarbons in the South Yellow Sea and the East China Sea, Mar. Pollut. Bull., 149, 110583, https://doi.org/10.1016/j.marpolbul.2019.110583, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Harrison, J. J., von Glasow, R., Atlas, R., Navarro, E., Montzka, M., Feng, S. A., Dhomse, W., Harth, S., Mühle, C., Lunder, J., O'Doherty, C., Young, S., Reimann, D., Vollmer, S., Krummel, M. K., and Bernath, P. B.: Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol, Geophys. Res. Lett., 42, 4573–4580, https://doi.org/10.1002/2015GL063783, 2015.
Hossaini, R., Chipperfield, M. P., Montzka, S. A., Leeson, A. A., Dhomse, S. S., and Pyle, J. A.: The increasing threat to stratospheric ozone from dichloromethane, Nat. Commun., 8, 15962, https://doi.org/10.17863/CAM.21715, 2017.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., and Hu, S.: Pacific western boundary currents and their roles in climate, Nature, 522, 299–308, https://doi.org/10.1038/nature14504, 2015.
Hu, D., Wang, F., Sprintall, J., Wu, L., Riser, S., Cravatte, S., Gordon, A., Zhang, L., Chen, D., Zhou, L., Ando, K., Wang, J., Park, J.-H., Wang, S., Wang, J., Zhang, D., Feng, J., Villanoy, C., Kaluwin, C., Qu, T., and Yin, Y.: Review on observational studies of western tropical Pacific Ocean circulation and climate, J. Oceanol. Limnol., 38, 906–929, https://doi.org/10.1007/s00343-020-0240-1, 2020.
Hunter-Smith, R. J., Balls, P. W., and Liss, P. S.: Henry's law constants and the air–sea exchange of various low molecular weight halocarbon gases, Tellus B: Chem. Phys. Meteorol., 35, 170–176, https://doi.org/10.1111/j.1600-0889.1983.tb00021.x, 1983.
Jiao, Y., Ruecker, A., Deventer, M. J., Chow, A. T., and Rhew, R. C.: Halocarbon emissions from a degraded forested wetland in coastal South Carolina impacted by sea level rise, ACS Earth Space Chem., 2, 955–967, https://doi.org/10.1021/acsearthspacechem.8b00044, 2018.
Karlsson, A., Auer, N., Schulz-Bull, D., and Abrahamsson, K.: Cyanobacterial blooms in the Baltic – a source of halocarbons, Mar. Chem., 110, 129–139, https://doi.org/10.1016/j.marchem.2008.04.010, 2008.
Khalil, M. A. K., Moore, R. M., Harper, D. B., Lobert, J. M., Erickson, D. J., Koropalov, V., Sturges, W. T., and Keene, W. C.: Natural emissions of chlorine-containing gases: Reactive Chlorine Emissions Inventory, J. Geophys. Res.-Atmos., 104, 8333–8346, https://doi.org/10.1029/1998JD100079, 1999.
Khan, M. A. H., Rhew, R. C., Whelan, M. E., Zhou, K., and Deverel, S. J.: Methyl halide and chloroform emissions from a subsiding Sacramento–San Joaquin Delta island converted to rice fields, Atmos. Environ., 45, 977–985, https://doi.org/10.1016/j.atmosenv.2010.10.053, 2011.
Krysell, M., Fogelqvist, E., and Tanhua, T.: Apparent removal of the transient tracer carbon tetrachloride from anoxic seawater, Geophys. Res. Lett., 21, 2511–2514, https://doi.org/10.1029/94GL02336, 1994.
Kurihara, M. K., Kimura, M., Iwamoto, Y., Narita, Y., Ooki, A., Eum, Y. J., Tsuda, A., Suzuki, K., Tani, Y., and Yokouchi, Y.: Distributions of short-lived iodocarbons and biogenic trace gases in the open ocean and atmosphere in the western North Pacific, Mar. Chem., 118, 156–170, https://doi.org/10.1016/j.marchem.2009.12.001, 2010.
Li, B., Huang, J., Hu, X., Zhang, L., Ma, M., Hu, L., Chen, D., Du, Q., Sun, Y., and Cai, Z.: CCl4 emissions in eastern China during 2021–2022 and exploration of potential new sources, Nat. Commun., 15, 1725, https://doi.org/10.1038/s41467-024-45981-x, 2024.
Li, J. L., Zhai, X., Ma, Z., Zhang, H. H., and Yang, G. P.: Spatial distributions and sea-to-air fluxes of non-methane hydrocarbons in the atmosphere and seawater of the western Pacific, Sci. Total Environ., 672, 491–501, https://doi.org/10.1016/j.scitotenv.2019.04.019, 2019.
Liang, Q., Jaeglé, L., Jaffe, D. A., Weiss-Penzias, P., Heckman, A., and Snow, J. A.: Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide, J. Geophys. Res.-Atmos., 109, https://doi.org/10.1029/2003JD004402, 2004.
Liang, Q., Newman, P. A., Daniel, J. S., Reimann, S., Hall, B. D., Dutton, G., and Kuijpers, L. J.: Constraining the carbon tetrachloride (CCl4) budget using its global trend and inter-hemispheric gradient, Geophys. Res. Lett., 41, 5307–5315, https://doi.org/10.1002/2014GL060754, 2014.
Liang, Q., Newman, P. A., and Reimann, S.: SPARC Report on the Mystery of Carbon Tetrachloride, World Climate Research Programme, Geneva, Switzerland, 74 pp., https://doi.org/10.3929/ethz-a-010690647, 2016.
Lim, Y. K., Phang, S. M., Sturges, W. T., Malin, G., and Rahman, N. B. A.: Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture, J. Appl. Phycol., 30, 1–13, https://doi.org/10.1007/s10811-017-1250-z, 2018.
Liu, S. S.: Volatile chlorocarbon dataset in the western Pacific, Figshare [data set], https://doi.org/10.6084/m9.figshare.25639146.v1, 2025.
Liu, S. S., Yang, G. P., He, Z., Gao, X. X., and Xu, F.: Oceanic emissions of methyl halides and effect of nutrient concentration on their production: A case of the Northwest Pacific (2° N to 24° N), Sci. Total Environ., 769, 144488, https://doi.org/10.1016/j.scitotenv.2020.144488, 2021.
Liu, T., Gong, S., He, J., Yu, M., Wang, Q., Li, H., Liu, W., Zhang, J., Li, L., Wang, X., Li, S., Lu, Y., Du, H., Wang, Y., Zhou, C., Liu, H., and Zhao, Q.: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area, Atmos. Chem. Phys., 17, 2971–2980, https://doi.org/10.5194/acp-17-2971-2017, 2017.
Lunt, M. F., Park, S., Li, S., Henne, S., Manning, A. J., Ganesan, A. L., Simpson, I. J., Blake, D. R., Liang, Q., O'Doherty, S., Harth, C. M., Mühle, J., Salameh, P. K., Weiss, R. F., Krummel, P. B., Fraser, P. J., Prinn, R. G., Reimann, S., and Rigby, M.: Reconciling reported and unreported CFC-11 emissions with atmospheric observations, Geophys. Res. Lett., 45, 11423–11430, https://doi.org/10.1029/2018GL079500, 2018.
McCulloch, A.: Chloroform in the environment: occurrence, sources, sinks and effects, Chemosphere, 50, 1291–1308, https://doi.org/10.1016/S0045-6535(02)00697-5, 2003.
McGillicuddy Jr., D. J.: Mechanisms of physical–biological–biogeochemical interaction at the oceanic mesoscale, Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606, 2016.
Menemenlis, D., Campin, J. M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High-resolution global ocean and sea ice data synthesis, Mercator Ocean Q. Newsl., 31, 13–21, 2008.
Montzka, S. A., Reimann, S., Engel, A., Krüger, K., O'Doherty, S., and Sturges, W. T.: Ozone-depleting substances (ODSs) and related chemicals, in: Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project – Report No. 52, World Meteorological Organization, Geneva, Switzerland, ISBN: 9966731962, 2011.
Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere-Glob. Change Sci., 2, 95–99, https://doi.org/10.1016/S1465-9972(99)00045-8, 2000.
Moore, R. M.: Marine sources of volatile organohalogens, in: Natural Production of Organohalogen Compounds, The Handbook of Environmental Chemistry, edited by: Gribble, G. W., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/b10449, 2003.
NASA Ocean Biology Processing Group: Aqua MODIS Level 3 Mapped Chlorophyll Data, Version R2022.0, NASA Ocean Biology Distributed Active Archive Center [data set], https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022, 2022.
Ni, J., Liu, S. S., Lang, X. P., He, Z., and Yang, G. P.: Sulfur hexafluoride in the marine atmosphere and surface seawater of the western Pacific and eastern Indian Ocean, Environ. Pollut., 335, 122266, https://doi.org/10.1016/j.envpol.2023.122266, 2023.
Oram, D. E., Ashfold, M. J., Laube, J. C., Gooch, L. J., Humphrey, S., Sturges, W. T., Leedham Elvidge, E. C., Forster, G. L., Harris, N. R. P., Mead, M. I., Samah, A. A., Phang, S. M., Ou-Yang, C.-F., Lin, N.-H., Wang, J.-L., Baker, A. K., Brenninkmeijer, C. A. M., and Sherry, D.: A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons, Atmos. Chem. Phys., 17, 11929–11941, https://doi.org/10.5194/acp-17-11929-2017, 2017.
Ou-Yang, C. F., Chang, C. C., Wang, J. L., Shimada, K., Hatakeyama, S., Kato, S., Chiu, J. Y., Sheu, G. R., and Lin, N. H.: Characteristics of summertime volatile organic compounds in the lower free troposphere: background measurements at Mt. Fuji, Aerosol Air Qual. Res., 17, 3037–3051, https://doi.org/10.4209/aaqr.2017.04.0144, 2017.
Park, S., Li, S., Mühle, J., O'Doherty, S., Weiss, R. F., Fang, X., Reimann, S., and Prinn, R. G.: Toward resolving the budget discrepancy of ozone-depleting carbon tetrachloride (CCl4): an analysis of top-down emissions from China, Atmos. Chem. Phys., 18, 11729–11738, https://doi.org/10.5194/acp-18-11729-2018, 2018.
Plummer, J. D. and Edzwald, J. K.: Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation, J. Water Supply Res. Technol. Aqua, 51, 307–318, https://doi.org/10.2166/aqua.2002.0033, 2002.
Qu, T. and Meyers, G.: Seasonal variation of barrier layer in the south-eastern tropical Indian Ocean, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002816, 2005.
Quack, B. and Suess, E.: Volatile halogenated hydrocarbons over the western Pacific between 43° N and 4° N, J. Geophys. Res.-Atmos., 104, 1663–1678, https://doi.org/10.1029/98JD02730, 1999.
Rigby, M., Prinn, R. G., O'Doherty, S., Miller, B. R., Ivy, D., Mühle, J., Harth, C. M., Salameh, P. K., Arnold, T., Weiss, R. F., Krummel, P. B., Steele, L. P., Fraser, P. J., Young, D., and Simmonds, P. G.: Recent and future trends in synthetic greenhouse gas radiative forcing, Geophys. Res. Lett., 41, 2623–2630, https://doi.org/10.1002/2013GL059099, 2014.
Roy, R., Pratihary, A., Narvenkar, G., Mochemadkar, S., Gauns, M., and Naqvi, S. W. A.: The relationship between volatile halocarbons and phytoplankton pigments during a Trichodesmium bloom in the coastal eastern Arabian Sea, Estuar. Coast. Shelf Sci., 95, 110–118, https://doi.org/10.1016/j.ecss.2011.08.025, 2011.
Saiz-Lopez, A., Fernandez, R. P., Li, Q., Cuevas, C. A., Fu, X., Kinnison, D. E., Tilmes, S., Mahajan, A. S., Gómez Martín, J. C., Iglesias-Suarez, F., Hossaini, R., Plane, J. M. C., Myhre, G., and Lamarque, J.-F.: Natural short-lived halogens exert an indirect cooling effect on the climate, Nature, 618, 967–973, https://doi.org/10.1038/s41586-023-06119-z, 2023.
Say, D., Kuyper, B., Western, L., Khan, M. A. H., Lesch, T., Labuschagne, C., Martin, D., Young, D., Manning, A. J., O'Doherty, S., Rigby, M., Krummel, P. B., Davies-Coleman, M. T., Ganesan, A. L., and Shallcross, D. E.: Emissions and marine boundary layer concentrations of unregulated chlorocarbons measured at Cape Point, South Africa, Environ. Sci. Technol., 54, 10514–10523, https://doi.org/10.1021/acs.est.0c02057, 2020.
Scarratt, M. G. and Moore, R. M.: Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum, Limnol. Oceanogr., 44, 703–707, https://doi.org/10.4319/lo.1999.44.3.0703, 1999.
Schwardt, A., Dahmke, A., and Köber, R.: Henry's law constants of volatile organic compounds between 0 and 95 °C – data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129858, https://doi.org/10.1016/j.chemosphere.2021.129858, 2021.
Shechner, M., Guenther, A., Rhew, R., Wishkerman, A., Li, Q., Blake, D., Lerner, G., and Tas, E.: Emission of volatile halogenated organic compounds over various Dead Sea landscapes, Atmos. Chem. Phys., 19, 7667–7690, https://doi.org/10.5194/acp-19-7667-2019, 2019.
Sherry, D., McCulloch, A., Liang, Q., Reimann, S., and Newman, P. A.: Current sources of carbon tetrachloride (CCl4) in our atmosphere, Environ. Res. Lett., 13, 024004, https://doi.org/10.1088/1748-9326/aa9c87, 2018.
Shi, J., Jia, Q., Nürnberg, D., Li, T., Xiong, Z., and Qin, B.: Coupled nutricline and productivity variations during the Pliocene in the western Pacific warm pool and their paleoceanographic implications, Glob. Planet. Change, 212, 103810, https://doi.org/10.1016/j.gloplacha.2022.103810, 2022.
Shoemaker, D. P., Garland, G. W., and Steinfeld, J. I.: Propagation of errors, in: Experiments in Physical Chemistry, 3rd edn., McGraw-Hill, New York, USA, 51–58, ISBN: 9780070570030, 1974.
Smythe-Wright, D., Peckett, C., Boswell, S., and Harrison, R.: Controls on the production of organohalogens by phytoplankton: effect of nitrate concentration and grazing, J. Geophys. Res.-Biogeosci., 115, G03020, https://doi.org/10.1029/2009JG001036, 2010.
Squizzato, S. and Masiol, M.: Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: a case study in Venice (Italy), Atmos. Environ., 119, 69–81, https://doi.org/10.1016/j.atmosenv.2015.08.026, 2015.
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the pathways and timescales of intercontinental air pollution transport, J. Geophys. Res. Atmos., 107, ACH–6, https://doi.org/10.1029/2001JD001396, 2002.
Suntharalingam, P., Buitenhuis, E., Carpenter, L. J., Butler, J. H., Messias, M. J., Andrews, S. J., and Hackenberg, S. C.: Evaluating oceanic uptake of atmospheric CCl4: a combined analysis of model simulations and observations, Geophys. Res. Lett., 46, 472–482, https://doi.org/10.1029/2018GL080612, 2019.
Tang, C., Tao, X., Wei, Y., Tong, Z., Zhu, F., and Lin, H.: Analysis and prediction of wind speed effects in East Asia and the western Pacific based on multi-source data, Sustainability, 14, 12089, https://doi.org/10.3390/su141912089, 2022.
Tanhua, T. and Olsson, K. A.: Removal and bioaccumulation of anthropogenic, halogenated transient tracers in an anoxic fjord, Mar. Chem., 94, 27–41, https://doi.org/10.1016/j.marchem.2004.07.009, 2005.
Tsunogai, S.: The western North Pacific playing a key role in global biogeochemical fluxes, J. Oceanogr., 58, 245–257, https://doi.org/10.1023/A:1015805607724, 2002.
US EPA: Method TO-15A: determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography–mass spectrometry (GC–MS), United States Environmental Protection Agency, Washington, D.C., USA, https://nepis.epa.gov/Exe/ZyNET.exe/P100YDPO.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2016+Thru+2020 (last access: 8 October 2025), 2019.
Wan, S., Xiang, R., Steinke, S., Du, Y., Yang, Y., Wang, S., and Wang, H.: Impact of the western Pacific warm pool and Kuroshio dynamics in the Okinawa Trough during the Holocene, Glob. Planet. Change, 224, 104116, https://doi.org/10.1016/j.gloplacha.2023.104116, 2023.
Wang, B., Kang, I. S., and Lee, J. Y.: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs, J. Clim., 17, 803–818, https://doi.org/10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2, 2004.
Wang, J. L., Blake, D. R., and Rowland, F. S.: Seasonal variations in the atmospheric distribution of a reactive chlorine compound, tetrachloroethene (CCl2=CCl2), Geophys. Res. Lett., 22, 1097–1100, https://doi.org/10.1029/95GL01069, 1995.
Wang, Y., Bi, R., Zhang, J., Gao, J., Takeda, S., Kondo, Y., Chen, F., Jin, G., Sachs, J. P., and Zhao, M.: Phytoplankton distributions in the Kuroshio–Oyashio region of the Northwest Pacific Ocean: implications for marine ecology and carbon cycle, Front. Mar. Sci., 9, 865142, https://doi.org/10.3389/fmars.2022.865142, 2022.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Wei, Y., He, Z., and Yang, G. P.: Seasonal and spatial variations of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane, and bromoform in the northern Yellow Sea and Bohai Sea, Environ. Chem., 16, 114–124, https://doi.org/10.1071/EN18222, 2019.
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, World Meteorological Organization, Geneva, Switzerland, 572 pp., ISBN: 9789280727562, 2007.
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2022, Global Ozone Research and Monitoring Project – Report No. 278, World Meteorological Organization, Geneva, Switzerland, 509 pp., ISBN: 9789914733976, 2022.
Xu, F., Zhang, H. H., Yan, S. B., Sun, M. X., Wu, J. W., and Yang, G. P.: Biogeochemical controls on climatically active gases and atmospheric sulfate aerosols in the western Pacific, Environ. Res., 220, 115211, https://doi.org/10.1016/j.envres.2023.115211, 2023.
Yang, G. P., Li, L., Lu, X. L., and Zhang, L.: Distributions and sea-to-air fluxes of volatile halocarbons in the southern Yellow Sea and the East China Sea, Acta Oceanol. Sin., 34, 9–20, https://doi.org/10.1007/s13131-015-0622-y, 2015.
Yi, L., Wu, J., An, M., Xu, W., Fang, X., Yao, B., Li, Y., Gao, D., Zhao, X., and Hu, J.: The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019, Environ. Pollut., 284, 117190, https://doi.org/10.1016/j.envpol.2021.117190, 2021.
Yi, L., An, M., Yu, H., Ma, Z., Xu, L., O'Doherty, S., Rigby, M., Western, L. M., Ganesan, A. L., Zhou, L., Shi, Q., Hu, Y., Yao, B., Xu, W., and Hu, J.: In situ observations of halogenated gases at the Shangdianzi background station and emission estimates for northern China, Environ. Sci. Technol., 57, 7217–7229, https://doi.org/10.1021/acs.est.3c00695, 2023.
Yokouchi, Y., Li, H. J., Machida, T., Aoki, S., and Akimoto, H.: Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform, J. Geophys. Res.-Atmos., 104, 8067–8076, https://doi.org/10.1029/1998JD100013, 1999.
Yokouchi, Y., Inagaki, T., Yazawa, K., Tamaru, T., Enomoto, T., and Izumi, K.: Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan, J. Geophys. Res.-Atmos., 110, https://doi.org/10.1029/2004JD005320, 2005.
Yokouchi, Y., Inoue, J., and Toom-Sauntry, D.: Distribution of natural halocarbons in marine boundary air over the Arctic Ocean, Geophys. Res. Lett., 40, 4086–4091, https://doi.org/10.1002/grl.50734, 2013.
Yu, D., Yao, B., Lin, W., Vollmer, M. K., Ge, B., Zhang, G., Li, Y., Xu, H., O'Doherty, S., Chen, L., and Reimann, S.: Atmospheric CH3CCl3 observations in China: historical trends and implications, Atmos. Res., 231, 104658, https://doi.org/10.1016/j.atmosres.2019.104658, 2020.
Yvon-Lewis, S. A. and Butler, J. H.: Effect of oceanic uptake on atmospheric lifetimes of selected trace gases, J. Geophys. Res.-Atmos., 107, ACH–1, https://doi.org/10.1029/2001JD001267, 2002.
Zhang, G., Yao, B., Vollmer, M. K., Montzka, S. A., Mühle, J., Weiss, R. F., O'Doherty, S., Li, Y., Fang, S., and Reimann, S.: Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China, Atmos. Environ., 160, 55–69, https://doi.org/10.1016/j.atmosenv.2017.04.017, 2017.
Zhang, W., Jiao, Y., Zhu, R., Rhew, R. C., Sun, B., and Dai, H.: Chloroform (CHCl3) emissions from coastal Antarctic tundra, Geophys. Res. Lett., 48, e2021GL093811, https://doi.org/10.1029/2021GL093811, 2021.
Zhang, Y. L., Guo, H., Wang, X. M., Simpson, I. J., Barletta, B., Blake, D. R., Meinardi, S., Rowland, F. S., Cheng, H. R., Saunders, S. M., and Lam, S. H. M.: Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD013726, 2010.
Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., and Cai, H.: Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci. Total Environ., 456, 127–136, https://doi.org/10.1016/j.scitotenv.2013.03.055, 2013.
Zheng, P., Chen, T., Dong, C., Liu, Y., Li, H., Han, G., Sun, J., Wu, L., Gao, X., Wang, X., Qi, Y., Zhang, Q., and Xue, L.: Characteristics and sources of halogenated hydrocarbons in the Yellow River Delta region, northern China, Atmos. Res., 225, 70–80, https://doi.org/10.1016/j.atmosres.2019.03.039, 2019.
Short summary
Volatile chlorinated hydrocarbons (VCHCs) influence the ozone layer and climate, yet the Western Pacific's role in their budget was unclear. This study showed that ocean ventilation and terrestrial inputs jointly controlled VCHCs levels in the Western Pacific, with the region acting as a source for some VCHCs but a sink for carbon tetrachloride. These findings highlighted the ocean's regulatory role and provided essential data to refine global VCHCs' budget estimates.
Volatile chlorinated hydrocarbons (VCHCs) influence the ozone layer and climate, yet the Western...
Altmetrics
Final-revised paper
Preprint