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S1. Oceanographic characteristics of the Western Pacific

In the Western Pacific, the North Equatorial Current (NEC) is a broad westward
flow characterized by high temperature, high salinity, high transparency, and low
nutrient concentrations. Upon reaching the Philippine coast, the NEC bifurcates into
two branches: the northward-flowing Kuroshio Current (KC) and the
southward-flowing Mindanao Current (MC). The KC continues northward and, off
the east coast of Japan, encounters the low-salinity, nutrient-rich Oyashio Current
(OC), forming the Kuroshio—Oyashio Extension (KOE). Meanwhile, the Equatorial
Undercurrent flows rapidly eastward, carrying a narrow band of high-salinity,
oxygen-rich waters.

Based on historical regional classifications and previous literature (Roden, 1991;
Nan et al.,, 2015; Du et al., 2022; Xu et al., 2023), combined with the spatial
distributions of seawater temperature, salinity, nutrient concentrations, and Chl-a
concentrations observed in this study (Fig. S1 and Fig. S2), the Western Pacific
survey area was subdivided into three representative regimes: the KOE, the North
Pacific Subtropical Gyre (NPSG), and the Western Pacific Warm Pool (WPWP). In
the KOE, pronounced thermal and haline fronts intensify mesoscale eddies and
vertical mixing, enhancing nutrient supply to the euphotic zone and stimulating
primary production, as reflected by elevated Chl-a concentrations in this region (Fig.
S1 and Fig. S2). In contrast, the NPSG exhibits typical oligotrophic conditions, with
elevated surface salinity (>34), severe nutrient depletion, and extremely low Chl-a
concentrations (Fig. S1 and Fig. S2), earning it the designation of an “ocean desert.”
The WPWP, extending from 10°S to 10°N, is distinguished by persistently high sea
surface temperatures (>29 °C), abundant precipitation, and vigorous air—sea

interactions, underscoring its critical role in regulating the global climate system.
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However, strong thermal stratification and the presence of a barrier layer suppress
nutrient entrainment across the thermocline, thereby constraining phytoplankton
growth and resulting in relatively low Chl-a concentrations and primary productivity
(Fig. S1 and Fig. S2).

S2. Accuracy of the dynamic dilution system

Calibration curves were established using a 100 ppbv standard mixture gas
(Spectra Gases, USA), which was dynamically diluted with ultra-high-purity nitrogen
via a mass-flow—controlled dilution system (Nutech 2202A; accuracy £1%) to achieve
pptv—low ppbv concentration levels. Six concentration gradients were prepared, and
the diluted standards were analyzed following the same procedures as the field
samples. The results showed that the correlation coefficients of the calibration curves
for all target compounds are > 0.996, indicating excellent linearity and
methodological reliability.

To ensure calibration accuracy and international comparability, aliquots of the
diluted standard gases were sent to the China Meteorological Administration
Meteorological Observation Centre (CMA-MOC) for independent analysis using an
AGAGE-traceable Medusa-GC/MS system (Zhang et al., 2017; Yu et al., 2020; An et
al., 2021). The CMA-MOC results were reported as dry-air mole fractions on
calibration scales established and maintained by the Scripps Institution of
Oceanography (SIO) (Prinn et al., 2000; Miller et al., 2008). The intercomparison
indicated that the differences between our measurements and those from CMA-MOC
for target compounds were within £5%: CHCI3 (-4.3% to -1.2%), CH3CCl; (+1.5% to
+4.6%), and CCls (+1.1% to +3.8%).

S3. Evaluation indexes in atmospheric VCHCs measurements

Precision was evaluated in accordance with US EPA (2019) guidelines by
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conducting seven replicate analyses of standard gas samples prepared at
environmentally relevant concentrations. These concentrations reflect typical
atmospheric levels of the target VCHCs (CHCI3, C,HCls, CH3CCl3, and CCly), as
referenced in WMO (2022). The test standards were generated by dynamically
diluting a 100 ppbv primary mixture (Spectra Gases, USA) with ultra-high-purity
nitrogen using a dynamic dilution system (Nutech 2202A). Under consistent
analytical conditions, each standard gas sample was measured seven times. Precision

was expressed as the relative standard deviation (RSD, %) calculated using Eq. (S1).

i Xp—X)?
n—1
X

Precision = RSDx, = x100%  (S1)

where X denotes the measured concentration of the target compound in the sample gas
derived from a multipoint external calibration curve. X is the arithmetic mean of seven
replicate measurements, and n = 7. The precision results at ambient-relevant
concentrations are summarized in Table S1.

In this study, the method detection limits (MDL) of atmospheric target
compounds were determined by the U.S. Environmental Protection Agency (US EPA,
2019) procedure. Specifically, low-concentration standard gases at approximately five
times the expected MDL were prepared using a dynamic dilution system, and seven
complete analytical runs—including standard gas preparation, preconcentration,
injection, chromatographic separation, and mass spectrometric detection—were
conducted. MDL was calculated as MDL =t x S, where S is the standard deviation of
seven replicate measurements and t is the Student’s t-value at the 99% confidence
level with six degrees of freedom (3.143). The MDL for each target compound is

listed in Table S1.
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Figures: S1-S8

Fig. S1. Horizontal distributions of temperature (a), salinity (b), and Chl-a (¢) in
surface seawater of the Western Pacific. (Figures generated using Ocean Data View;
Schlitzer, Reiner, Ocean Data View, odv.awi.de, 2025).

Fig. S2. Vertical profiles of temperature, salinity, Chl-a, and nutrients at depths of
0-200 m in the Western Pacific.(Figures generated using Ocean Data View; Schlitzer,
Reiner, Ocean Data View, odv.awi.de, 2025).

Fig. S3. Boxplots showing the atmospheric concentrations of VCHCs at all sampling
locations during the study period.

Fig. S4. 96 h back trajectories of air masses over the Western Pacific. The ensemble
96 h back-trajectories are within the lower troposphere above 10 m (red lines), above

100 m (blue lines), and above 1000 m (green lines).

Fig. S5. Linear correlations between the atmospheric mixing ratios of SFs and those
of CHCI; (a) and C;HCl; (b) in the Western Pacific. Solid lines denote the linear
best-fit curves, and shaded areas represent the 95% confidence intervals.

Fig. S6. Linear correlations between the Chl-a concentration and atmospheric mixing
ratios of CHCI3 (a) and C;HCI; (b) in the Western Pacific. Solid lines denote the
linear best-fit curves, and shaded areas represent the 95% confidence intervals.

Fig. S7. Relationships between CHCl3, CCls, C;HCI3, and CH3CCls in the atmosphere of
the Western Pacific.

Fig. S8. Relationships between CHCl3;, CCls, C;HCl3, and CH3CCls in the seawater of

the Western Pacific.
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95 Fig. S1. Horizontal distributions of temperature (a), salinity (b), and Chl-a (c) in
96 surface seawater of the Western Pacific. (Figures generated using Ocean Data View;
97 Schlitzer, Reiner, Ocean Data View, odv.awi.de, 2025).
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Fig. S4. 96 h back trajectories of air masses over the Western Pacific. The ensemble
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Fig. S8. Relationships between CHCl3, CCls, Co;HCl3, and CH3CCls in the seawater of

the Western Pacific.
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125 Table: S1

126 Table S1. The method detection limits (MDL), measurement precision, and
127 atmospheric lifetimes of the selected VCHCs in air.
Typical Precision at
ambient ambient-relevant MDL?  Lifetime 3
Compound (¢, centration  concentration'
pptv %RSD,n=7 pptv
CHCl; 10-15 32 0.50 178 days
C,HCI3 2-5 4.9 0.10 5.6 days
CH;CCls 2-3 6.3 0.20 5 years
CCly 80-100 1.1 1.00 30 years

128  Notes: 'Precision at ambient-relevant concentrations is expressed as RSD (%), based on
129 seven replicate measurements of mixed standard gases: 2 pptv (C:HCl;, CH3CCl3), 10
130 pptv (CHCI3), and 100 pptv (CCls).

131 2MDL refers to the method detection limit as determined in accordance with the US EPA
132 procedure (2019).

133 3Atmospheric lifetimes are taken from WMO (2022).
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