Articles | Volume 25, issue 18
https://doi.org/10.5194/acp-25-11247-2025
https://doi.org/10.5194/acp-25-11247-2025
Research article
 | 
25 Sep 2025
Research article |  | 25 Sep 2025

Formation of chlorinated organic compounds from Cl atom-initiated reactions of aromatics and their detection in suburban Shanghai

Chuang Li, Lei Yao, Yuwei Wang, Mingliang Fang, Xiaojia Chen, Lihong Wang, Yueyang Li, Gan Yang, and Lin Wang

Related authors

Interpretation of mass spectra by a Vocus proton-transfer-reaction mass spectrometer (PTR-MS) at an urban site: insights from gas chromatographic pre-separation
Ying Zhang, Yuwei Wang, Chuang Li, Yueyang Li, Sijia Yin, Megan S. Claflin, Brian M. Lerner, Douglas Worsnop, and Lin Wang
Atmos. Meas. Tech., 18, 3547–3568, https://doi.org/10.5194/amt-18-3547-2025,https://doi.org/10.5194/amt-18-3547-2025, 2025
Short summary
Atmospheric new particle formation in the eastern region of China: a mechanistic investigation at multiple sites
Jiaqi Jin, Runlong Cai, Yiliang Liu, Gan Yang, Yueyang Li, Chuang Li, Lei Yao, Jingkun Jiang, Xiuhui Zhang, and Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2787,https://doi.org/10.5194/egusphere-2025-2787, 2025
Short summary
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024,https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary

Cited articles

Alage, S., Michoud, V., Harb, S., Picquet-Varrault, B., Cirtog, M., Kumar, A., Rissanen, M., and Cantrell, C.: A nitrate ion chemical-ionization atmospheric-pressure-interface time-of-flight mass spectrometer (NO3 ToFCIMS) sensitivity study, Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, 2024. 
Berndt, T., Scholz, W., Mentler, B., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere, Angewandte Chemie Int. Ed. Engl., 57, 3820–3824, https://doi.org/10.1002/anie.201710989, 2017. 
Bhattacharyya, N., Modi, M., Jahn, L. G., and Ruiz, L. H.: Different chlorine and hydroxyl radical environments impact m-xylene oxidation products, Environ. Sci. Atmos., https://doi.org/10.1039/d3ea00024a, 2023. 
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019. 
Cai, X., Ziemba, L. D., and Griffin, R. J.: Secondary aerosol formation from the oxidation of toluene by chlorine atoms, Atmos. Environ., 42, 7348–7359, https://doi.org/10.1016/j.atmosenv.2008.07.014, 2008. 
Download
Short summary
Abundant chlorine-containing oxygenated organic molecules (Cl-OOMs) were formed from the reactions between Cl atoms and aromatics, and Cl-addition was identified as a non-negligible pathway for the formation of Cl-OOMs. Furthermore, many ambient Cl-OOMs potentially derived from Cl atoms and aromatics were measured in suburban Shanghai and most of them have adverse health effects. These findings provide critical insights into the formation mechanisms of Cl-OOMs in polluted settings.
Share
Altmetrics
Final-revised paper
Preprint