Articles | Volume 24, issue 14
https://doi.org/10.5194/acp-24-8363-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-8363-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Shenglan Jiang
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Yan Zhang
CORRESPONDING AUTHOR
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China
MOE Laboratory for National Development and Intelligent Governance, Shanghai Institute for Energy and Carbon Neutrality Strategy, Fudan University, Shanghai 200433, China
IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
Guangyuan Yu
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Zimin Han
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Junri Zhao
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Tianle Zhang
SKL-ESPC, College of Environmental Sciences and Engineering, Centre for Environment and Health, Peking University, Beijing 100871, China
Mei Zheng
SKL-ESPC, College of Environmental Sciences and Engineering, Centre for Environment and Health, Peking University, Beijing 100871, China
Related authors
Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3892, https://doi.org/10.5194/egusphere-2024-3892, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM2.5 from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ. Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM2.5 over China’s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed.
Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3892, https://doi.org/10.5194/egusphere-2024-3892, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM2.5 from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ. Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM2.5 over China’s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3433, https://doi.org/10.5194/egusphere-2024-3433, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Intermediate/semi-volatile organic compounds in both gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low-sulfur to ultra-low-sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes, in conjunction with the ratio of octadecanoic to tetradecanoic could be considered as potential tracers for HFO exhausts.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-2416, https://doi.org/10.5194/egusphere-2024-2416, 2024
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble BrC (WS-BrC) in different regions of China, and revealed factors affecting WS-BrC light absorption and the relationship between fluorophores and light absorption of WS-BrC.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021, https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Short summary
Secondary sulfate aerosols are an important component of fine particles in severe air pollution events. We calculated the sulfate formation rates via a state-of-the-art multiphase model constrained to the observed values. We showed that transition metals in urban aerosols contribute significantly to sulfate formation during haze periods and thus play an important role in mitigation strategies and public health measures in megacities worldwide.
Jingyu An, Yiwei Huang, Cheng Huang, Xin Wang, Rusha Yan, Qian Wang, Hongli Wang, Sheng'ao Jing, Yan Zhang, Yiming Liu, Yuan Chen, Chang Xu, Liping Qiao, Min Zhou, Shuhui Zhu, Qingyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021, https://doi.org/10.5194/acp-21-2003-2021, 2021
Short summary
Short summary
This study established a 4 km × 4 km anthropogenic emission inventory in the Yangtze River Delta region, China, for 2017 based on locally measured emission factors and source profiles. There are high-intensity NOx and NMVOC species emissions in the eastern areas of the region. Toluene, 1,2,4-trimethylbenzene, m,p-xylene, propylene, ethylene, o-xylene, and OVOCs from industry and mobile sources have the highest comprehensive potentials for ozone and secondary organic aerosol formation.
Liya Ma, Yujiao Zhu, Mei Zheng, Yele Sun, Lei Huang, Xiaohuan Liu, Yang Gao, Yanjie Shen, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 21, 183–200, https://doi.org/10.5194/acp-21-183-2021, https://doi.org/10.5194/acp-21-183-2021, 2021
Short summary
Short summary
In this study, we investigate three patterns of new particles growing to CCN (cloud condensation nuclei) size, i.e., one-stage growth and two-stage growth-A and growth-B patterns. Combining the observations of gaseous pollutants and measured or modeled particulate chemical species, the three growth patterns were discussed regarding the spatial heterogeneity, formation of secondary aerosols, and evaporation of semivolatile particulates as was the survival probability of new particles to CCN size.
Huan Song, Xiaorui Chen, Keding Lu, Qi Zou, Zhaofeng Tan, Hendrik Fuchs, Alfred Wiedensohler, Daniel R. Moon, Dwayne E. Heard, María-Teresa Baeza-Romero, Mei Zheng, Andreas Wahner, Astrid Kiendler-Scharr, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020, https://doi.org/10.5194/acp-20-15835-2020, 2020
Short summary
Short summary
Accurate calculation of the HO2 uptake coefficient is one of the key parameters to quantify the co-reduction of both aerosol and ozone pollution. We modelled various lab measurements of γHO2 based on a gas-liquid phase kinetic model and developed a state-of-the-art parameterized equation. Based on a dataset from a comprehensive field campaign in the North China Plain, we proposed that the determination of the heterogeneous uptake process for HO2 should be included in future field campaigns.
Yang Chen, Jing Cai, Zhichao Wang, Chao Peng, Xiaojiang Yao, Mi Tian, Yiqun Han, Guangming Shi, Zongbo Shi, Yue Liu, Xi Yang, Mei Zheng, Tong Zhu, Kebin He, Qiang Zhang, and Fumo Yang
Atmos. Chem. Phys., 20, 9231–9247, https://doi.org/10.5194/acp-20-9231-2020, https://doi.org/10.5194/acp-20-9231-2020, 2020
Short summary
Short summary
Patterns of particle transport, accumulation, and evolution in both urban and rural areas of Beijing are investigated. The two sites shared 17 common particle types in different stages of atmospheric processing.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Fan Zhang, Hai Guo, Yingjun Chen, Volker Matthias, Yan Zhang, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020, https://doi.org/10.5194/acp-20-1549-2020, 2020
Short summary
Short summary
Particulate matter (PM) emitted from ships has gained more attention in recent decades. Organic matter, elemental carbon, water-soluble ions and heavy metals in PM and particle numbers are the main points. However, studies of detailed chemical compositions in particles with different size ranges emitted from ships are in shortage. This study could bring new and detailed measurement data into the field of size-segregated particles from ships and be of great source emission interest.
Min Cui, Cheng Li, Yingjun Chen, Fan Zhang, Jun Li, Bin Jiang, Yangzhi Mo, Jia Li, Caiqing Yan, Mei Zheng, Zhiyong Xie, Gan Zhang, and Junyu Zheng
Atmos. Chem. Phys., 19, 13945–13956, https://doi.org/10.5194/acp-19-13945-2019, https://doi.org/10.5194/acp-19-13945-2019, 2019
Short summary
Short summary
Refined source apportionment is urgently needed but hard to achieve due to a lack of specific biomarkers. Recently, Fourier transform ion cyclotron resonance mass spectrometry has been used to analyse the probable chemical structure of polar organic matter emitted from off-road engines. We found more condensed aromatic rings in S-containing compounds for HFO-fueled vessels, while more abundant aliphatic chains were observed in emissions from diesel equipment.
Yuli Cheng, Shanshan Wang, Jian Zhu, Yanlin Guo, Ruifeng Zhang, Yiming Liu, Yan Zhang, Qi Yu, Weichun Ma, and Bin Zhou
Atmos. Chem. Phys., 19, 13611–13626, https://doi.org/10.5194/acp-19-13611-2019, https://doi.org/10.5194/acp-19-13611-2019, 2019
Short summary
Short summary
Owing to the gradual implementation of emission control zone (ECA) regulations, feasible technology for the surveillance of compliance with respect to fuel sulfur content is in high demand. We presented shore-based MAX-DOAS measurements of ship-emitted SO2 and NO2 under different traffic conditions. The results of this study indicate that this technique has high potential as a fast and accurate way to surveil ship emissions and fuel sulfur content.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Xinning Wang, Yin Shen, Yanfen Lin, Jun Pan, Yan Zhang, Peter K. K. Louie, Mei Li, and Qingyan Fu
Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019, https://doi.org/10.5194/acp-19-6315-2019, 2019
Short summary
Short summary
Shipping emissions were measured online at Shanghai Port, and their impacts on local air quality at the port and in the surrounding area were quantitatively assessed. Ship emission plumes were readily detectable before they dissipated. We captured ship emission plumes using synchronized peaks of SO2 and vanadium particles. By measuring the pollutant concentrations during plumes and their occurrence frequency, we made quantitative estimations of ship emission impacts on port air quality.
Junlan Feng, Yan Zhang, Shanshan Li, Jingbo Mao, Allison P. Patton, Yuyan Zhou, Weichun Ma, Cong Liu, Haidong Kan, Cheng Huang, Jingyu An, Li Li, Yin Shen, Qingyan Fu, Xinning Wang, Juan Liu, Shuxiao Wang, Dian Ding, Jie Cheng, Wangqi Ge, Hong Zhu, and Katherine Walker
Atmos. Chem. Phys., 19, 6167–6183, https://doi.org/10.5194/acp-19-6167-2019, https://doi.org/10.5194/acp-19-6167-2019, 2019
Short summary
Short summary
This study aims to estimate the emissions, air quality and population exposure impacts of shipping in 2015, prior to the implementation of the DECAs. It shows that ship emissions within 12 NM of the shore could account for over 55 % of the shipping impact on air pollution in the YRD in summer. Ships entering the Yangtze River and other inland waterways of Shanghai contribute 40–80 % of the ship-related air pollution and population exposure,which both have important implications regarding policy.
Zhenying Xu, Mingxu Liu, Minsi Zhang, Yu Song, Shuxiao Wang, Lin Zhang, Tingting Xu, Tiantian Wang, Caiqing Yan, Tian Zhou, Yele Sun, Yuepeng Pan, Min Hu, Mei Zheng, and Tong Zhu
Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, https://doi.org/10.5194/acp-19-5605-2019, 2019
Jingbo Mao, Fangqun Yu, Yan Zhang, Jingyu An, Lin Wang, Jun Zheng, Lei Yao, Gan Luo, Weichun Ma, Qi Yu, Cheng Huang, Li Li, and Limin Chen
Atmos. Chem. Phys., 18, 7933–7950, https://doi.org/10.5194/acp-18-7933-2018, https://doi.org/10.5194/acp-18-7933-2018, 2018
Short summary
Short summary
A few pptv of gaseous amines have been observed to affect particle nucleation and growth, and it is necessary to understand the sources and concentrations of atmospheric amines. This study presents the source-dependent amines to ammonia emission ratios and simulates methylamines concentrations in a polluted region in China with WRF-Chem. The performance of simulations based on source-dependent ratios is much better than those based on fixed ratios that have been assumed in all previous studies.
Yujiao Zhu, Caiqing Yan, Renyi Zhang, Zifa Wang, Mei Zheng, Huiwang Gao, Yang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 17, 9469–9484, https://doi.org/10.5194/acp-17-9469-2017, https://doi.org/10.5194/acp-17-9469-2017, 2017
Short summary
Short summary
This study reports the distinct effects of street canyons on new particle formation (NPF) under warm or cold ambient temperature conditions because of on-road vehicle emissions; i.e., stronger condensation sinks are responsible for the reduced NPF in the springtime, but efficient nucleation and partitioning of gaseous species contribute to the enhanced NPF in the wintertime. The oxidization of biogenic organics is suggested to play an important role in growing new particles.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
R. A. Scanza, N. Mahowald, S. Ghan, C. S. Zender, J. F. Kok, X. Liu, Y. Zhang, and S. Albani
Atmos. Chem. Phys., 15, 537–561, https://doi.org/10.5194/acp-15-537-2015, https://doi.org/10.5194/acp-15-537-2015, 2015
Short summary
Short summary
The main purpose of this study was to build a framework in the Community Atmosphere Models version 4 and 5 within the Community Earth System Model to simulate dust aerosols as their component minerals. With this framework, we investigate the direct radiative forcing that results from the mineral speciation. We find that adding mineralogy results in a small positive forcing at the top of the atmosphere, while simulations without mineralogy have a small negative forcing.
X. H. Liu, Y. J. Zhu, M. Zheng, H. W. Gao, and X. H. Yao
Atmos. Chem. Phys., 14, 7941–7951, https://doi.org/10.5194/acp-14-7941-2014, https://doi.org/10.5194/acp-14-7941-2014, 2014
Y. Cheng, G. Engling, K.-B. He, F.-K. Duan, Y.-L. Ma, Z.-Y. Du, J.-M. Liu, M. Zheng, and R. J. Weber
Atmos. Chem. Phys., 13, 7765–7781, https://doi.org/10.5194/acp-13-7765-2013, https://doi.org/10.5194/acp-13-7765-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Rapid oxidation of phenolic compounds by O3 and HO●: effects of the air–water interface and mineral dust in tropospheric chemical processes
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
The surface tension and CCN activation of sea spray aerosol particles
Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain: Insights from six-year simulations
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Critical Load Exceedances for North America and Europe using an Ensemble of Models and an Investigation of Causes for Environmental Impact Estimate Variability: An AQMEII4 Study
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks, Alaska, the N. Hemisphere, and the Contiguous United States
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
Atmos. Chem. Phys., 25, 771–795, https://doi.org/10.5194/acp-25-771-2025, https://doi.org/10.5194/acp-25-771-2025, 2025
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024, https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO• + PhC experiments at the A–W interface and in mineral dust.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winksi, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
EGUsphere, https://doi.org/10.5194/egusphere-2024-3026, https://doi.org/10.5194/egusphere-2024-3026, 2024
Short summary
Short summary
Marine phytoplankton emit dimethyl sulfide (DMS), which forms methanesulfonic acid (MSA) and sulfate. MSA concentrations in ice cores decreased over the industrial era, which has been attributed to pollution-driven changes in DMS chemistry. We use a models to investigate DMS chemistry compared to observations of DMS, MSA, and sulfate. We find that modeled DMS, MSA, and sulfate are influenced by pollution-sensitive oxidant concentrations, characterization of DMS chemistry, and other variables.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2704, https://doi.org/10.5194/egusphere-2024-2704, 2024
Short summary
Short summary
This study use the WRF-Chem model to assess how meteorological conditions and unexpected emission reductions affected PM2.5 in the North China Plain (NCP). It highlights regional disparities: in the Northern NCP, adverse weather negated emission reduction effects. In contrast, the Southern NCP with PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology and air quality.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Sara Louise Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, and Kathleen Fahey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1550, https://doi.org/10.5194/egusphere-2024-1550, 2024
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters, is improved.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1579, https://doi.org/10.5194/egusphere-2024-1579, 2024
Short summary
Short summary
This study investigates the impact of dust on the global radiative effect of nitrate aerosols. The results indicate both positive and negative regional shortwave and longwave radiative effects due to aerosol-radiation interactions and cloud adjustments. The global average net REari and REaci of nitrate aerosols are -0.11 and +0.17 W/m², respectively, mainly affecting the shortwave spectrum. Sensitivity simulations evaluated the influence of mineral dust composition and emissions on the results.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Cited articles
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget, J. Geophys. Res.-Atmos., 114, D02309, https://doi.org/10.1029/2008JD010486, 2009.
Amedro, D., Berasategui, M., Bunkan, A. J. C., Pozzer, A., Lelieveld, J., and Crowley, J. N.: Kinetics of the OH+NO2 reaction: effect of water vapour and new parameterization for global modelling, Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020, 2020.
Bai, X., Luo, L., Tian, H., Liu, S., Hao, Y., Zhao, S., Lin, S., Zhu, C., Guo, Z., and Lv, Y.: Atmospheric Vanadium Emission Inventory from Both Anthropogenic and Natural Sources in China, Environ. Sci. Technol., 55, 11568–11578, https://doi.org/10.1021/acs.est.1c04766, 2021.
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT), Prog. Oceanogr., 158, 41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
Baker, A. R., Li, M., and Chance, R.: Trace Metal Fractional Solubility in Size-Segregated Aerosols From the Tropical Eastern Atlantic Ocean, Global Biogeochem. Cy., 34, e2019GB006510, https://doi.org/10.1029/2019GB006510, 2020.
Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L., Duce, R. A., Gao, Y., Guieu, C., Ito, A., Jickells, T. D., Mahowald, N. M., Middag, R., Perron, M. M. G., Sarin, M. M., Shelley, R., and Turner, D. R.: Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry, Science Advances, 7, eabd8800, https://doi.org/10.1126/sciadv.abd8800, 2021.
Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, D. S., Popendorf, K. J., Oehlert, A. M., Pourmand, A., Gatineau, A., Panechou-Pulcherie, K., Blackwelder, P., and Gaston, C. J.: African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean, P. Natl. Acad. Sci. USA, 116, 16216–16221, https://doi.org/10.1073/pnas.1906091116, 2019.
Birmili, W., Allen, A. G., Bary, F., and Harrison, R. M.: Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic, Environ. Sci. Technol., 40, 1144–1153, https://doi.org/10.1021/es0486925, 2006.
Böke, H., Göktürk, E. H., Caner-Saltık, E. N., and Demirci, Ş.: Effect of airborne particle on SO2–calcite reaction, Appl. Surf. Sci., 140, 70–82, https://doi.org/10.1016/S0169-4332(98)00468-1, 1999.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Bowie, A. R., Lannuzel, D., Remenyi, T. A., Wagener, T., Lam, P. J., Boyd, P. W., Guieu, C., Townsend, A. T., and Trull, T. W.: Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply, Global Biogeochem. Cy., 23, GB4034, https://doi.org/10.1029/2009GB003500, 2009.
Bray, C. D., Strum, M., Simon, H., Riddick, L., Kosusko, M., Menetrez, M., Hays, M. D., and Rao, V.: An assessment of important SPECIATE profiles in the EPA emissions modeling platform and current data gaps, Atmos. Environ., 207, 93–104, https://doi.org/10.1016/j.atmosenv.2019.03.013, 2019.
Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., Engel, A., and Moore, C. M.: Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic, Nat. Commun., 8, 15465, https://doi.org/10.1038/ncomms15465, 2017.
Butler, A.: Acquisition and Utilization of Transition Metal Ions by Marine Organisms, Science, 281, 207–209, https://doi.org/10.1126/science.281.5374.207, 1998.
Celo, V., Dabek-Zlotorzynska, E., and McCurdy, M.: Chemical Characterization of Exhaust Emissions from Selected Canadian Marine Vessels: The Case of Trace Metals and Lanthanoids, Environ. Sci. Technol., 49, 5220–5226, https://doi.org/10.1021/acs.est.5b00127, 2015.
Chen, D., Wang, X., Li, Y., Lang, J., Zhou, Y., Guo, X., and Zhao, Y.: High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014, Sci. Total Environ., 609, 776–787, https://doi.org/10.1016/j.scitotenv.2017.07.051, 2017.
Chen, D., Zhao, N., Lang, J., Zhou, Y., Wang, X., Li, Y., Zhao, Y., and Guo, X.: Contribution of ship emissions to the concentration of PM2.5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China, Sci. Total Environ., 610–611, 1476–1486, https://doi.org/10.1016/j.scitotenv.2017.07.255, 2018.
Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., and Grassian, V. H.: Coal Fly Ash as a Source of Iron in Atmospheric Dust, Environ. Sci. Technol., 46, 2112–2120, https://doi.org/10.1021/es204102f, 2012.
Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi, J., Zhang, W., Shi, J., Yang, L., Li, D., and Li, J.: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem, Aeolian Res., 15, 15–30, https://doi.org/10.1016/j.aeolia.2014.02.001, 2014.
Cheng, I., Mamun, A. A., and Zhang, L.: A synthesis review on atmospheric wet deposition of particulate elements: scavenging ratios, solubility, and flux measurements, Environ. Rev., 29, 340–353, https://doi.org/10.1139/er-2020-0118, 2021.
Chester, R., Murphy, K. J. T., Lin, F. J., Berry, A. S., Bradshaw, G. A., and Corcoran, P. A.: Factors controlling the solubilities of trace metals from non-remote aerosols deposited to the sea surface by the “dry” deposition mode, Mar. Chem., 42, 107–126, https://doi.org/10.1016/0304-4203(93)90241-F, 1993.
Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., and Le Cavelier, S.: Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France, Atmos. Environ., 67, 394–403, https://doi.org/10.1016/j.atmosenv.2012.11.029, 2013.
Corbin, J. C., Mensah, A. A., Pieber, S. M., Orasche, J., Michalke, B., Zanatta, M., Czech, H., Massabò, D., Buatier de Mongeot, F., Mennucci, C., El Haddad, I., Kumar, N. K., Stengel, B., Huang, Y., Zimmermann, R., Prévôt, A. S. H., and Gysel, M.: Trace Metals in Soot and PM2.5 from Heavy-Fuel-Oil Combustion in a Marine Engine, Environ. Sci. Technol., 52, 6714–6722, https://doi.org/10.1021/acs.est.8b01764, 2018.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the Emissions Database for Global Atmospheric Research, Scientific Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
de Baar, H. J. W., van Heuven, S. M. A. C., and Middag, R.: Ocean Biochemical Cycling and Trace Elements, Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth, Springer International Publishing, Cham, 1023–1042, 2018.
Fahey, K. M., Carlton, A. G., Pye, H. O. T., Baek, J., Hutzell, W. T., Stanier, C. O., Baker, K. R., Appel, K. W., Jaoui, M., and Offenberg, J. H.: A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1, Geosci. Model Dev., 10, 1587–1605, https://doi.org/10.5194/gmd-10-1587-2017, 2017.
Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K. W., Fu, Q., and Chen, L.: Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence, Environ. Sci. Technol., 50, 1322–1329, https://doi.org/10.1021/acs.est.5b03965, 2016.
Foroutan, H., Young, J., Napelenok, S., Ran, L., Appel, K. W., Gilliam, R. C., and Pleim, J. E.: Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system, J. Adv. Model. Earth Sy., 9, 585–608, https://doi.org/10.1002/2016MS000823, 2017.
Fu, Y., Tang, Y., Shu, X., Hopke, P. K., He, L., Ying, Q., Xia, Z., Lei, M., and Qiao, X.: Changes of atmospheric metal(loid) deposition from 2017 to 2021 at Mount Emei under China's air pollution control strategy, Atmos. Environ., 302, 119714, https://doi.org/10.1016/j.atmosenv.2023.119714, 2023.
Gao, Y., Xu, G., Zhan, J., Zhang, J., Li, W., Lin, Q., Chen, L., and Lin, H.: Spatial and particle size distributions of atmospheric dissolvable iron in aerosols and its input to the Southern Ocean and coastal East Antarctica, J. Geophys. Res.-Atmos., 118, 12634–12648, https://doi.org/10.1002/2013JD020367, 2013.
Gargava, P., Chow, J. C., Watson, J. G., and Lowenthal, D. H.: Speciated PM10 Emission Inventory for Delhi, India, Aerosol Air Qual. Res., 14, 1515–1526, https://doi.org/10.4209/aaqr.2013.02.0047, 2014.
Gui, K., Yao, W., Che, H., An, L., Zheng, Y., Li, L., Zhao, H., Zhang, L., Zhong, J., Wang, Y., and Zhang, X.: Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers, Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, 2022.
Guo, J., Lapi, S., Ruth, T. J., and Maldonado, M. T.: The effects of iron and copper availability on the copper stoichiometry of marine phytoplankton, J. Phycol., 48, 312–325, https://doi.org/10.1111/j.1529-8817.2012.01133.x, 2012.
Hamilton, D. S., Perron, M. M. G., Bond, T. C., Bowie, A. R., Buchholz, R. R., Guieu, C., Ito, A., Maenhaut, W., Myriokefalitakis, S., Olgun, N., Rathod, S. D., Schepanski, K., Tagliabue, A., Wagner, R., and Mahowald, N. M.: Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry, Annu. Rev. Mar. Sci., 14, 303–330, https://doi.org/10.1146/annurev-marine-031921-013612, 2022.
Hamilton, D. S., Baker, A. R., Iwamoto, Y., Gassó, S., Bergas-Masso, E., Deutch, S., Dinasquet, J., Kondo, Y., Llort, J., Myriokefalitakis, S., Perron, M. M. G., Wegmann, A., and Yoon, J.-E.: An aerosol odyssey: Navigating nutrient flux changes to marine ecosystems, Elementa: Science of the Anthropocene, 11, 00037, https://doi.org/10.1525/elementa.2023.00037, 2023.
Hsu, S.-C., Wong, G. T. F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao, S.-J., Tsai, F., Candice Lung, S.-C., Lin, F.-J., Lin, I. I., Hung, C.-C., and Tseng, C.-M.: Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea, Mar. Chem., 120, 116–127, https://doi.org/10.1016/j.marchem.2008.10.003, 2010.
Ito, A.: Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron, Environ. Sci. Tech. Let., 2, 70–75, https://doi.org/10.1021/acs.estlett.5b00007, 2015.
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S., Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron, M. M. G., Guieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F., Nenes, A., and Duce, R. A.: Pyrogenic iron: The missing link to high iron solubility in aerosols, Science Advances, 5, eaau7671, https://doi.org/10.1126/sciadv.aau7671, 2019.
Ito, A., Ye, Y., Baldo, C., and Shi, Z.: Ocean fertilization by pyrogenic aerosol iron, npj Climate and Atmospheric Science, 4, 30, https://doi.org/10.1038/s41612-021-00185-8, 2021.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Kajino, M., Hagino, H., Fujitani, Y., Morikawa, T., Fukui, T., Onishi, K., Okuda, T., Kajikawa, T., and Igarashi, Y.: Modeling Transition Metals in East Asia and Japan and Its Emission Sources, GeoHealth, 4, e2020GH000259, https://doi.org/10.1029/2020GH000259, 2020.
Kang, D. and Wang, H.: Analysis on the decadal scale variation of the dust storm in North China, Sci. China Ser. D, 48, 2260–2266, https://doi.org/10.1360/03yd0255, 2005.
Kang, L., Huang, J., Chen, S., and Wang, X.: Long-term trends of dust events over Tibetan Plateau during 1961–2010, Atmos. Environ., 125, 188–198, https://doi.org/10.1016/j.atmosenv.2015.10.085, 2016.
Kurisu, M., Sakata, K., Uematsu, M., Ito, A., and Takahashi, Y.: Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios, Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, 2021.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, GB1004, https://doi.org/10.1029/2010GB003850, 2011.
Li, J. and Chen, S.-H.: Dust impacts on Mongolian cyclone and cold front in East Asia: a case study during 18–22 March 2010, Frontiers in Environmental Science, 11, 1167232, https://doi.org/10.3389/fenvs.2023.1167232, 2023.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Science Advances, 3, e1601749, https://doi.org/10.1126/sciadv.1601749, 2017.
Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, Atmos. Chem. Phys., 10, 1853–1864, https://doi.org/10.5194/acp-10-1853-2010, 2010.
Little, S. H., Vance, D., Walker-Brown, C., and Landing, W. M.: The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments, Geochim. Cosmochim. Ac., 125, 673–693, https://doi.org/10.1016/j.gca.2013.07.046, 2014.
Liu, M., Matsui, H., Hamilton, D. S., Lamb, K. D., Rathod, S. D., Schwarz, J. P., and Mahowald, N. M.: The underappreciated role of anthropogenic sources in atmospheric soluble iron flux to the Southern Ocean, npj Climate and Atmospheric Science, 5, 28, https://doi.org/10.1038/s41612-022-00250-w, 2022.
Longhini, C. M., Sá, F., and Neto, R. R.: Review and synthesis: iron input, biogeochemistry, and ecological approaches in seawater, Environ. Rev., 27, 125–137, https://doi.org/10.1139/er-2018-0020, 2019.
Luo, L., Bai, X., Liu, S., Wu, B., Liu, W., Lv, Y., Guo, Z., Lin, S., Zhao, S., Hao, Y., Hao, J., Zhang, K., Zheng, A., and Tian, H.: Fine particulate matter (PM2.5/PM1.0) in Beijing, China: Variations and chemical compositions as well as sources, J. Environ. Sci., 121, 187–198, https://doi.org/10.1016/j.jes.2021.12.014, 2022.
Mackey, K. R. M., Post, A. F., McIlvin, M. R., Cutter, G. A., John, S. G., and Saito, M. A.: Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation, P. Natl. Acad. Sci. USA, 112, 9944–9949, https://doi.org/10.1073/pnas.1509448112, 2015.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, , GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations, Annu. Rev. Mar. Sci., 1, 245–278, https://doi.org/10.1146/annurev.marine.010908.163727, 2009.
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., and Zender, C. S.: Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmos. Chem. Phys., 10, 10875–10893, https://doi.org/10.5194/acp-10-10875-2010, 2010.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts on marine microorganisms, Nat. Commun., 9, 2614, https://doi.org/10.1038/s41467-018-04970-7, 2018.
Matsui, H., Mahowald, N. M., Moteki, N., Hamilton, D. S., Ohata, S., Yoshida, A., Koike, M., Scanza, R. A., and Flanner, M. G.: Anthropogenic combustion iron as a complex climate forcer, Nat. Commun., 9, 1593, https://doi.org/10.1038/s41467-018-03997-0, 2018.
Morel, F. M. M. and Price, N. M.: The Biogeochemical Cycles of Trace Metals in the Oceans, Science, 300, 944–947, https://doi.org/10.1126/science.1083545, 2003.
Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee, J. G., and Yee, D.: Zinc and carbon co-limitation of marine phytoplankton, Nature, 369, 740–742, https://doi.org/10.1038/369740a0, 1994.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
Nuester, J., Vogt, S., Newville, M., Kustka, A., and Twining, B.: The Unique Biogeochemical Signature of the Marine Diazotroph Trichodesmium, Front. Microbiol., 3, 22179, https://doi.org/10.3389/fmicb.2012.00150, 2012.
Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., Liu, Z. G., Russell, A. G., and Weber, R. J.: Iron Solubility Related to Particle Sulfur Content in Source Emission and Ambient Fine Particles, Environ. Sci. Technol., 46, 6637–6644, https://doi.org/10.1021/es300701c, 2012.
Okubo, A., Takeda, S., and Obata, H.: Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan, Atmos. Res., 129–130, 20–32, https://doi.org/10.1016/j.atmosres.2013.03.014, 2013.
Pan, Y., Liu, J., Zhang, L., Cao, J., Hu, J., Tian, S., Li, X., and Xu, W.: Bulk Deposition and Source Apportionment of Atmospheric Heavy Metals and Metalloids in Agricultural Areas of Rural Beijing during 2016–2020, Atmosphere, 12, 283, https://doi.org/10.3390/atmos12020283, 2021.
Pan, Y. P. and Wang, Y. S.: Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China, Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, 2015.
Pinedo-González, P., Hawco, N. J., Bundy, R. M., Armbrust, E. V., Follows, M. J., Cael, B. B., White, A. E., Ferrón, S., Karl, D. M., and John, S. G.: Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean, P. Natl. Acad. Sci. USA, 117, 27862–27868, https://doi.org/10.1073/pnas.2010315117, 2020.
Pleim, J. and Ran, L.: Surface Flux Modeling for Air Quality Applications, Atmosphere, 2, 271–302, https://doi.org/10.3390/atmos2030271, 2011.
Pleim, J. E., Ran, L., Saylor, R. D., Willison, J., and Binkowski, F. S.: A New Aerosol Dry Deposition Model for Air Quality and Climate Modeling, J. Adv. Model. Earth Sy., 14, e2022MS003050, https://doi.org/10.1029/2022MS003050, 2022.
Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J. D., and Houyoux, M.: Emissions Inventory of PM2.5 Trace Elements across the United States, Environ. Sci. Technol., 43, 5790–5796, https://doi.org/10.1021/es802930x, 2009.
Rodriguez, I. B. and Ho, T.-Y.: Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni, Sci. Rep.-UK, 4, 4445, https://doi.org/10.1038/srep04445, 2014.
Sakata, M. and Asakura, K.: Atmospheric dry deposition of trace elements at a site on Asian-continent side of Japan, Atmos. Environ., 45, 1075–1083, https://doi.org/10.1016/j.atmosenv.2010.11.043, 2011.
Sarwar, G., Gantt, B., Foley, K., Fahey, K., Spero, T. L., Kang, D., Mathur, R., Foroutan, H., Xing, J., Sherwen, T., and Saiz-Lopez, A.: Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere, Atmos. Environ., 213, 395–404, https://doi.org/10.1016/j.atmosenv.2019.06.020, 2019.
Schmidt, K., Schlosser, C., Atkinson, A., Fielding, S., Venables, H. J., Waluda, C. M., and Achterberg, E. P.: Zooplankton Gut Passage Mobilizes Lithogenic Iron for Ocean Productivity, Curr. Biol., 26, 2667–2673, https://doi.org/10.1016/j.cub.2016.07.058, 2016.
Shaked, Y., Xu, Y., Leblanc, K., and Morel, F. M. M.: Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean, Limnol. Oceanogr., 51, 299–309, https://doi.org/10.4319/lo.2006.51.1.0299, 2006.
Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, 2019.
Shi, J.-H., Zhang, J., Gao, H.-W., Tan, S.-C., Yao, X.-H., and Ren, J.-L.: Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea, Deep-Sea Res. Pt. II, 97, 43–50, https://doi.org/10.1016/j.dsr2.2013.05.004, 2013.
Shi, Z., Krom, M. D., Bonneville, S., and Benning, L. G.: Atmospheric Processing Outside Clouds Increases Soluble Iron in Mineral Dust, Environ. Sci. Technol., 49, 1472–1477, https://doi.org/10.1021/es504623x, 2015.
Shi, Z., Endres, S., Rutgersson, A., Al-Hajjaji, S., Brynolf, S., Booge, D., Hassellöv, I.-M., Kontovas, C., Kumar, R., Liu, H., Marandino, C., Matthias, V., Moldanová, J., Salo, K., Sebe, M., Yi, W., Yang, M., and Zhang, C.: Perspectives on shipping emissions and their impacts on the surface ocean and lower atmosphere: An environmental-social-economic dimension, Elementa: Science of the Anthropocene, 11, 00052, https://doi.org/10.1525/elementa.2023.00052, 2023.
Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., and Powell, C. F.: Fractional solubility of aerosol iron: Synthesis of a global-scale data set, Geochim. Cosmochim. Ac., 89, 173–189, https://doi.org/10.1016/j.gca.2012.04.022, 2012.
Simon, H., Beck, L., Bhave, P. V., Divita, F., Hsu, Y., Luecken, D., Mobley, J. D., Pouliot, G. A., Reff, A., Sarwar, G., and Strum, M.: The development and uses of EPA's SPECIATE database, Atmos. Pollut. Res., 1, 196–206, https://doi.org/10.5094/APR.2010.026, 2010.
Sunda, W.: Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean, Front. Microbiol., 3, 21530, https://doi.org/10.3389/fmicb.2012.00204, 2012.
Takano, S., Tanimizu, M., Hirata, T., and Sohrin, Y.: Isotopic constraints on biogeochemical cycling of copper in the ocean, Nat. Commun., 5, 5663, https://doi.org/10.1038/ncomms6663, 2014.
Tao, J., Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., Tang, Y., Cao, J., and Zhang, Y.: Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis – a case study in Beijing, China, Sci. Total Environ., 543, 326–335, https://doi.org/10.1016/j.scitotenv.2015.11.057, 2016.
Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, Z., Wu, Y., Xia, Y., Ye, S., and Zhang, R.: Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China – With emphasis on ship emissions, Sci. Total Environ., 574, 1559–1570, https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017.
Tian, H. Z., Zhu, C. Y., Gao, J. J., Cheng, K., Hao, J. M., Wang, K., Hua, S. B., Wang, Y., and Zhou, J. R.: Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies, Atmos. Chem. Phys., 15, 10127–10147, https://doi.org/10.5194/acp-15-10127-2015, 2015.
Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485–1500, https://doi.org/10.4319/lo.2000.45.7.1485, 2000.
U.S. EPA: CMAQ Model Version 5.3 Input Data – 1/1/2016 – 12/31/2016 12 km CONUS (V1), UNC Dataverse [data set], https://doi.org/10.15139/S3/MHNUNE, 2019.
U.S. EPA: CMAQ (5.4), Zenodo [code], https://doi.org/10.5281/zenodo.4081737, 2020.
Wang, F. J., Chen, Y., Guo, Z. G., Gao, H. W., Mackey, K. R., Yao, X. H., Zhuang, G. S., and Paytan, A.: Combined effects of iron and copper from atmospheric dry deposition on ocean productivity, Geophys. Res. Lett., 44, 2546–2555, https://doi.org/10.1002/2016GL072349, 2017.
Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., and Zhou, J.: A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics, Sci. Total Environ., 559, 7–14, https://doi.org/10.1016/j.scitotenv.2016.03.125, 2016.
Wang, Y., Cheng, K., Wu, W., Tian, H., Yi, P., Zhi, G., Fan, J., and Liu, S.: Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China, Atmos. Environ., 152, 6–15, https://doi.org/10.1016/j.atmosenv.2016.12.017, 2017.
Wei, Z., Wang, L. T., Chen, M. Z., and Zheng, Y.: The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment, Atmos. Pollut. Res., 5, 759–768, https://doi.org/10.5094/APR.2014.085, 2014.
Whitfield, M.: Interactions between phytoplankton and trace metals in the ocean, in: Advances in Marine Biology, Academic Press, 1–128, https://doi.org/10.1016/S0065-2881(01)41002-9, 2001.
Wuttig, K., Heller, M. I., and Croot, P. L.: Reactivity of Inorganic Mn and Mn Desferrioxamine B with O2, , and H2O2 in Seawater, Environ. Sci. Technol., 47, 10257–10265, https://doi.org/10.1021/es4016603, 2013a.
Wuttig, K., Wagener, T., Bressac, M., Dammshäuser, A., Streu, P., Guieu, C., and Croot, P. L.: Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment, Biogeosciences, 10, 2583–2600, https://doi.org/10.5194/bg-10-2583-2013, 2013b.
Xu, L., Pye, H. O. T., He, J., Chen, Y., Murphy, B. N., and Ng, N. L.: Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States, Atmos. Chem. Phys., 18, 12613–12637, https://doi.org/10.5194/acp-18-12613-2018, 2018.
Xuan, J.: Emission inventory of eight elements, Fe, Al, K, Mg, Mn, Na, Ca and Ti, in dust source region of East Asia, Atmos. Environ., 39, 813–821, https://doi.org/10.1016/j.atmosenv.2004.10.029, 2005.
Yamamoto, A., Hajima, T., Yamazaki, D., Noguchi Aita, M., Ito, A., and Kawamiya, M.: Competing and accelerating effects of anthropogenic nutrient inputs on climate-driven changes in ocean carbon and oxygen cycles, Science Advances, 8, eabl9207, https://doi.org/10.1126/sciadv.abl9207, 2022.
Yang, T., Chen, Y., Zhou, S., and Li, H.: Impacts of Aerosol Copper on Marine Phytoplankton: A Review, Atmosphere, 10, 414, https://doi.org/10.3390/atmos10070414, 2019.
Ying, Q., Feng, M., Song, D., Wu, L., Hu, J., Zhang, H., Kleeman, M. J., and Li, X.: Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors, Sci. Total Environ., 624, 355–365, https://doi.org/10.1016/j.scitotenv.2017.12.138, 2018.
Yuan, Y., Zhang, Y., Mao, J., Yu, G., Xu, K., Zhao, J., Qian, H., Wu, L., Yang, X., Chen, Y., and Ma, W.: Diverse changes in shipping emissions around the Western Pacific ports under the coeffect of the epidemic and fuel oil policy, Sci. Total Environ., 879, 162892, https://doi.org/10.1016/j.scitotenv.2023.162892, 2023.
Zhai, J., Yu, G., Zhang, J., Shi, S., Yuan, Y., Jiang, S., Xing, C., Cai, B., Zeng, Y., Wang, Y., Zhang, A., Zhang, Y., Fu, T.-M., Zhu, L., Shen, H., Ye, J., Wang, C., Tao, S., Li, M., Zhang, Y., and Yang, X.: Impact of Ship Emissions on Air Quality in the Greater Bay Area in China under the Latest Global Marine Fuel Regulation, Environ. Sci. Technol., 57, 12341–12350, https://doi.org/10.1021/acs.est.3c03950, 2023.
Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren, Y., Wang, X., Hu, X., Li, T., Peng, C., Zhang, G., Xue, L., Wang, X., and Tang, M.: Abundance and Fractional Solubility of Aerosol Iron During Winter at a Coastal City in Northern China: Similarities and Contrasts Between Fine and Coarse Particles, J. Geophys. Res.-Atmos., 127, e2021JD036070, https://doi.org/10.1029/2021JD036070, 2022.
Zhang, J., Zhou, X., Wang, Z., Yang, L., Wang, J., and Wang, W.: Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment, Sci. Total Environ., 621, 558–577, https://doi.org/10.1016/j.scitotenv.2017.11.292, 2018.
Zhang, T., Liu, J., Xiang, Y., Liu, X., Zhang, J., Zhang, L., Ying, Q., Wang, Y., Wang, Y., Chen, S., Chai, F., and Zheng, M.: Quantifying anthropogenic emission of iron in marine aerosol in the Northwest Pacific with shipborne online measurements, Sci. Total Environ., 912, 169158, https://doi.org/10.1016/j.scitotenv.2023.169158, 2024.
Zhang, Y., Yu, Q., Ma, W., and Chen, L.: Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry, J. Geophys. Res.-Atmos., 115, D00K10, https://doi.org/10.1029/2009JD012814, 2010.
Zhang, Y., Mahowald, N., Scanza, R. A., Journet, E., Desboeufs, K., Albani, S., Kok, J. F., Zhuang, G., Chen, Y., Cohen, D. D., Paytan, A., Patey, M. D., Achterberg, E. P., Engelbrecht, J. P., and Fomba, K. W.: Modeling the global emission, transport and deposition of trace elements associated with mineral dust, Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, 2015.
Zhao, J., Zhang, Y., Patton, A. P., Ma, W., Kan, H., Wu, L., Fung, F., Wang, S., Ding, D., and Walker, K.: Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China, Environ. Pollut., 263, 114643, https://doi.org/10.1016/j.envpol.2020.114643, 2020.
Zhao, J., Sarwar, G., Gantt, B., Foley, K., Henderson, B. H., Pye, H. O. T., Fahey, K. M., Kang, D., Mathur, R., Zhang, Y., Li, Q., and Saiz-Lopez, A.: Impact of dimethylsulfide chemistry on air quality over the Northern Hemisphere, Atmos. Environ., 244, 117961, https://doi.org/10.1016/j.atmosenv.2020.117961, 2021a.
Zhao, J., Zhang, Y., Xu, H., Tao, S., Wang, R., Yu, Q., Chen, Y., Zou, Z., and Ma, W.: Trace Elements From Ocean-Going Vessels in East Asia: Vanadium and Nickel Emissions and Their Impacts on Air Quality, J. Geophys. Res.-Atmos., 126, e2020JD033984, https://doi.org/10.1029/2020JD033984, 2021b.
Zhao, S., Tian, H., Luo, L., Liu, H., Wu, B., Liu, S., Bai, X., Liu, W., Liu, X., Wu, Y., Lin, S., Guo, Z., Lv, Y., and Xue, Y.: Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019, Environ. Pollut., 268, 115856, https://doi.org/10.1016/j.envpol.2020.115856, 2021.
Zou, H.-X., Pang, Q.-Y., Zhang, A.-Q., Lin, L.-D., Li, N., and Yan, X.-F.: Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme, Ecotox. Environ. Safe., 111, 271–280, https://doi.org/10.1016/j.ecoenv.2014.10.028, 2015.
Zou, Z., Zhao, J., Zhang, C., Zhang, Y., Yang, X., Chen, J., Xu, J., Xue, R., and Zhou, B.: Effects of cleaner ship fuels on air quality and implications for future policy: A case study of Chongming Ecological Island in China, J. Clean. Prod., 267, 122088, https://doi.org/10.1016/j.jclepro.2020.122088, 2020.
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and...
Altmetrics
Final-revised paper
Preprint