

Supplement of

Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas

Shenglan Jiang et al.

Correspondence to: Yan Zhang (yan_zhang@fudan.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

19 Section S1. Technical details of the modified CMAQ.

- 20 For the revisions of modules for simulate metals in CMAQ, we modified desid vars. F to add metals emission information.
- 21 To have tracers undergo the same diffusion, advection, and deposition as PM, we modified AERO_DATA.F,
- 22 CMAQ_Control_DESID_cb6r5_ae7_aq.nml, AE_cb6r5_ae7_aq.nml files.

23 Section S2. Technical details of the WRF/CMAQ.

24 The WRF physics scheme configuration included the Pleim-Xiu land surface model (Xiu and Pleim, 2001), the Rapid

25 Radiative Transfer Model (RRTMG) for shortwave and longwave schemes (Clough et al., 2005), the Asymmetric

26 Convective Model version 2 for the PBL scheme (Pleim, 2007), the Kain-Fritsch cumulus scheme (Kain, 2004) for cumulus

27 parameterization, and the MODIS land cover data (20 categories) employed in this study. In the CMAQ model, two grids on

28 WRF lateral boundary were removed, and thus there were 257×117 grids in d01.

29 Section S3. Establishment of emission inventory of pollutants other than metals.

30 For SO₂, NO_x, CO, nonmethane volatile organic compounds (NMVOCs), PM₁₀, PM_{2.5} and NH₃, we categorized them into

31 land anthropogenic and ship sources. For anthropogenic sources, we used the Multiresolution Emission Inventory for China

32 (MEIC) in 2020 (Li et al., 2017a; Zheng et al., 2018; Zheng et al., 2021) in mainland China and the MIX emission data in

33 2010 (Li et al., 2017b) in Asia excluding mainland China. For ship sources, we used A bottom-up ship emission model based

34 on the Automatic Identification System (AIS) data to calculate the emission inventories of these species. Detailed

35 information on the establishment of the ship emission model can be found in the previous studies (Chen et al., 2017; Fan et

36 al., 2016).

- 41 Figure S2. Relative contributions of land anthropogenic, ship, and dust sources to fine mode (a), coarse mode (b) emissions
- 42 of the six metals (Fe, Al, V, Ni, Zn, Cu) in spring (March-April-May).

- 45 Figure S3. Absolute and relative contributions of seasonal mean concentrations of Fe (a) and Al (b) in different sea areas
- 46 from land anthropogenic, ship, and dust sources (units: ng·m⁻³), the numbers on top of the stacked bar graphs represent total

47 seasonal mean concentrations from three sources.

- 50 Figure S4. Comparison of simulated daily concentrations of V (a) and Ni (b) with observations at the Pudong site (31.2331°
- 51 N, 121.5447° E, Shanghai, China).

- 54 Figure S5. Spatial distribution of the contributions of land anthropogenic, dust sources and ship sources to the seasonal
- 55 average concentrations of Fe (a-c), Al (d-f), V (g-i), Ni (j-l), Zn (m-o), and Cu (p-r) in the sea area, respectively (36 km × 36
- 56 km resolution) in the year of 2017.

- Figure S6. Spatial distribution of depositional fluxes of Fe (a), V (b), Zn (c), Al (d), Ni (e), Cu (f) in the sea area (36 km × 36 59
- km resolution, considering all emission sources) in the year of 2017. 60

- 63 Figure S7. Absolute and relative contributions of soluble iron deposition fluxes from land anthropogenic, ship, and dust
- 64 sources in different sea areas, fine mode (a), coarse mode (b) (units: $\mu g \cdot m^{-2} \cdot y ear^{-1}$), the numbers on top of the stacked bar

65 graphs represent total deposition fluxes from three sources.

- 68 Figure S8. Evolution of the relative contributions of the land anthropogenic, ship, and dust sources to emissions, atmospheric
- 69 concentrations, and deposition fluxes of Fe (a), V (b), Zn (c), Al (d), Ni (e), Cu (f) for the month of April (Concentrations and
- depositional fluxes labelled "Ocean" in the figure were for the oceans only, and concentrations and depositional fluxes labelled 70
- 71 "Land" were for land only).

Engine type	Fuel Type	Sulfur content (%)	Cu	Fe	V	Ni	Zn	Al	Source
ME SSD	HFO	2.70	1.80E-05	4.90E-03	1.94E-02	9.50E-03	1.30E-04	6.10E-04	(Celo et al., 2015)
ME SSD	HFO	2.85	5.00E-05	6.75E-03	1.99E-02	8.69E-03	2.00E-04	1.87E-02	(Agrawal et al., 2008a)
ME SSD	HFO	2.05	1.01E-04	3.89E-03	5.60E-02	1.27E-02	1.43E-04	1.72E-02	(Agrawal et al., 2008b)
ME MSD	HFO	1.48	3.00E-06	4.10E-04	6.80E-03	2.43E-03	1.00E-04	2.30E-03	(0.1. (1. 2015)
ME MSD	HFO	2.21	3.00E-06	2.40E-03	1.23E-02	5.50E-03	8.00E-05	4.90E-04	(Celo et al., 2015)
ME MSD	HFO	2.33	1.35E-05	2.22E-04	1.54E-03	2.91E-04	5.96E-05	1.37E-04	(Corbin et al., 2018)
ME MSD	HFO	0.58		1.21E-04	4.27E-04	1.06E-03	6.50E-05	8.36E-05	(Moldanová et al.,
ME MSD	HFO	0.96		2.46E-04	1.69E-03	1.50E-03	6.63E-05	2.08E-05	2013)
ME MSD	HFO	2.70	1.49E-04	1.27E-03	1.43E-02	4.10E-03	5.80E-04	1.79E-04	(Sippula et al., 2014)
ME MSD	HFO	0.68	3.25E-05	1.55E-03	8.55E-06	1.62E-05	1.31E-04		(Zhang et al., 2018a)
ME MSD	HFO	1.60	3.60E-04	5.30E-03	7.90E-03	2.00E-03	1.30E-03	2.60E-04	(Streibel et al., 2017)
ME MSD	HFO	0.48		1.62E-02	3.60E-02	2.75E-01	1.08E-02		(Zetterdahl et al., 2016)
ME MSD	MDO	0.10		8.69E-06	3.80E-05				(Moldanová et al., 2013)
ME MSD	MDO	0.13		2.29E-06	1.25E-04	1.70E-06			(Zhang et al.,
ME HSD	MDO	0.08		5.08E-05	4.25E-05	7.77E-05			2016)
AE MSD	MGO	0.03		3.06E-06	1.43E-06	3.06E-06	2.45E-04	1.98E-04	(Moldanová et al., 2013)
AE MSD	MGO	0.06	2.00E-05	1.40E-04	1.50E-04	4.00E-05	3.10E-04	3.00E-04	(Agrawal et al., 2008a)

Table S1. Emission factors for ships in previous studies (Unit: g·kWh⁻¹)

Table S2. Emission factors for ships used in this study (Unit: g·kWh⁻¹)

Engine type	Fuel Type	Sulfur content	Cu	Fe	V	Ni	Zn	Al
ME SSD	HFO	2.7%	4.74E-05	5.12E-03	1.94E-02	9.50E-03	1.88E-04	1.77E-02
ME MSD	HFO	2.7%	7.27E-05	1.27E-03	1.24E-02	4.21E-03	3.03E-04	3.89E-04
	MDO	0.5%	1.67E-04	3.18E-04	2.66E-04	9.77E-05	3.33E-03	2.90E-03
ME HSD	MDO	0.5%	1.67E-04	6.09E-04	6.37E-04	1.92E-04	3.33E-03	2.90E-03
AE MSD	MGO	0.5%	1.67E-04	6.09E-04	6.37E-04	1.92E-04	3.33E-03	2.90E-03

-

Table S3. Dust metal emission factors in previous studies and applied in this study (Unit: %)

	Cu	Fe	V	Ni	Zn	Al	Source
PM3	1.54E-04		9.22E-05	4.78E-05	1.35E-04	7.67E-02	(Listal 2022)
Coarse	1.59E-05		6.33E-05	2.18E-05	7.16E-05	6.00E-02	(Li et al., 2022)
Coarse	4.71E-05	2.44E-02	6.95E-05	5.10E-05	1.20E-04		(1 - (1 2022)
Coarse	3.00E-05	2.35E-02	6.38E-05	4.20E-05	8.70E-05		(Luo et al., 2022)
Coarse	4.77E-05	3.78E-02		7.03E-05	1.93E-04	4.09E-02	(Abbasi et al.,
Coarse	3.80E-05	3.80E-02		7.00E-05	1.45E-04	4.10E-02	2021)
Coarse		2.86E-02				6.03E-02	(Baker et al., 2020)
Coarse	3.41E-05	3.84E-02		2.91E-05	9.31E-05	7.58E-02	(Nishikawa et al., 2013)
Coarse	5.00E-05	7.70E-02	5.00E-04	1.00E-04	1.00E-04	8.40E-02	(Desboeufs et al.,
Coarse	1.00E-05	2.44E-02	3.00E-05	6.70E-05	1.60E-04	7.84E-02	2005)
Fine	1.77E-04	3.36E-02	1.16E-04	5.70E-05	1.32E-03	5.70E-02	Applied in this
Coarse	3.36E-05	3.24E-02	6.36E-05	5.10E-05	9.93E-05	6.86E-02	study

Table S4. Solubility of metals in previous studies and applied in this study (Unit: %)

Mode		Cu	Fe	V	Ni	Zn	Al	Source
		0.6146	0.232	0.6842	0.41	0.8608	0.1404	(Jiang et al., 2014)
		0.1643		0.4342	0.1314	0.6678		(Wang et al., 2015)
Fine	Total	0.349	0.046		0.068	0.413		(Liu et al., 2022)
		0.5769	0.4667	0.421	0.568	0.7		(Karthikeyan et al., 2006)
		0.51	/	0.43	0.49	0.73	0.14	Applied in this study
		0.41	0.027	-	-	0.816	0.0472	(Jiang et al., 2014)
		0.51	0.077	0.55	0.26	0.84	0.051	(Hsu et al., 2010)
		0.47	0.012	0.262		0.463		(Wang et al., 2015)
Coarse	Total	0.41	0.274	0.326	0.284	0.423		(Karthikeyan et al., 2006)
		0.14	0.066		0.12	0.57	0.45	(Jickells et al., 2016)
		0.45	/	0.38	0.27	0.62	0.049	Applied in this study
	Dust		0.01					(Kurisu et al., 2021)
Fine	Land		0.08					(1, 2015)
	Ship		0.65					(110, 2015)
Coarse	Dust		0.017					(Ooki et al., 2009)
CUAISE	Land		0.025					(Baker et al., 2020)

Table S5. Monthly metal emissions from ship sources in 2017 (Unit: tons·month⁻¹)

Month	Cu	Fe	V	Ni	Zn	Al
Jan	1.1825	34.6850	129.0917	61.7265	18.2189	121.8235
Feb	1.1118	31.7941	118.4216	56.1886	17.2285	111.6897
Mar	1.3335	36.7252	136.4392	64.6687	20.8952	129.2200
Apr	1.4518	41.3125	153.5250	72.8817	22.5648	145.2409
May	1.4068	43.3444	162.0243	77.0775	21.3147	151.9547

	1 21(0	26.0126	127.0572	(5.5707	10 5100	120 4204
Jun	1.2169	36.9126	137.9572	65.5/9/	18.5189	129.4294
I.,1.,	1 5211	15 1691	160 1941	80 2542	22 4220	150 2524
July	1.3311	43.1084	109.1641	80.2342	25.4559	138.3324
A119	1 5608	43 9847	164 3985	77 8443	24 2096	154 3517
1146	1.2000	13.9017	10113703	//.0115	21.2090	10 1100 17
Sep	1.2467	34.1564	127.2538	60.1975	19.5106	119.8588
1						
Oct	1.5415	43.1018	161.1650	76.1933	23.9349	150.8402
Nov	1.6353	45.4896	170.3909	80.4884	25.3904	159.1439
P	1 (2 (1	46 1054	1 = 2 = 1 = 2	01 6644	0.5.0010	1 (1 01 10
Dec	1.6341	46.1274	172.7453	81.6644	25.2818	161.3140
Sum	16.8529	482.8020	1802.5965	854.7649	260.5023	1693.2192

Table S6. Monthly fine mode metal emissions from land anthropogenic sources in 2017 (Unit: tons·month⁻¹)

Month	Cu	Fe	V	Ni	Zn	Al
Jan	626.35	11077.53	566.88	517.94	1373.93	13178.09
Feb	538.29	10242.82	523.12	453.34	1112.31	11625.46
Mar	551.13	10499.15	516.35	449.68	1115.10	12020.72
Apr	543.95	10296.52	539.68	457.48	1069.83	11301.25
May	533.11	10285.04	530.53	448.49	1056.53	11501.22
Jun	529.13	10342.16	527.65	446.97	1055.52	11647.78
July	517.53	10288.07	535.65	445.04	1053.97	12082.21
Aug	511.01	10185.41	513.17	429.63	1047.99	12167.32
Sep	527.01	10223.80	505.84	432.51	1051.61	11659.44
Oct	549.53	10486.76	542.89	458.17	1091.11	11977.92
Nov	557.35	10560.46	541.44	464.38	1127.93	12093.87
Dec	594.54	10952.06	551.70	490.91	1251.36	12789.79
Sum	6578.94	125439.79	6394.90	5494.52	13407.19	144045.08

Table S7. Monthly coarse mode metal emissions from land anthropogenic sources in 2017 (Unit: tons·month⁻¹)

Month	Cu	Fe	V	Ni	Zn	Al
Jan	461.51	7255.44	139.25	879.44	685.35	8324.76
Feb	493.37	6678.36	147.77	354.98	714.29	8011.84
Mar	534.38	6955.81	150.49	302.30	750.38	8052.39
Apr	564.46	6757.91	154.73	230.91	775.96	8500.91
May	547.67	6644.82	152.76	208.55	768.33	8327.12
Jun	534.57	6585.42	151.23	208.17	766.45	8269.86
July	512.16	6792.39	149.71	209.89	758.49	8023.75
Aug	503.29	6787.56	148.34	208.26	743.85	7694.13
Sep	540.66	6842.74	151.52	208.03	766.84	7932.16
Oct	565.57	7131.48	154.42	235.22	784.64	8390.68
Nov	539.02	7079.40	151.42	312.63	757.12	8270.60
Dec	499.86	7126.84	145.26	563.84	713.47	8339.15
Sum	6296.51	82638.16	1796.88	3922.21	8985.18	98137.34

Table S8. Monthly fine mode metal emissions from dust sources in 2017 (Unit: tons·month⁻¹)

Month	Cu	Fe	V	Ni	Zn	Al
Jan	3.65	680.75	2.43	0.41	26.38	1155.55
Feb	21.75	4054.75	14.50	2.42	157.11	6882.81
Mar	2.27	423.72	1.52	0.25	16.42	719.25
Apr	142.17	26499.65	94.78	15.80	1026.81	44982.26
May	36.11	6730.91	24.07	4.01	260.81	11425.49
Jun	5.84	1088.05	3.89	0.65	42.16	1846.92
July	43.86	8174.67	29.24	4.87	316.75	13876.23
Aug	10.20	1901.40	6.80	1.13	73.68	3227.55
Sep	18.53	3453.22	12.35	2.06	133.81	5861.73

Oct	15.09	2811.89	10.06	1.68	108.96	4773.09
Nov	0.88	164.37	0.59	0.10	6.37	279.00
Dec	15.00	2796.45	10.00	1.67	108.36	4746.88
Sum	315.36	58779.82	210.24	35.04	2277.61	99776.76

Table S9. Monthly coarse mode metal emissions from dust sources in 2017 (Unit: tons·month⁻¹)

Month	Cu	Fe	V	Ni	Zn	Al
Jan	9.17	8734.20	17.25	13.75	26.69	18492.78
Feb	54.59	52023.79	102.76	81.89	158.96	110149.13
Mar	5.70	5436.48	10.74	8.56	16.61	11510.56
Apr	356.79	339998.86	671.60	535.18	1038.89	719874.11
May	90.62	86359.67	170.59	135.94	263.88	182847.93
Jun	14.65	13959.97	27.58	21.97	42.66	29557.21
July	110.06	104883.59	207.18	165.09	320.48	222068.34
Aug	25.60	24395.50	48.19	38.40	74.54	51652.20
Sep	46.49	44305.93	87.52	69.74	135.38	93808.24
Oct	37.86	36077.48	71.26	56.79	110.24	76386.26
Nov	2.21	2108.86	4.17	3.32	6.44	4465.05
Dec	37.65	35879.35	70.87	56.48	109.63	75966.76
Sum	791.41	754163.67	1489.71	1187.11	2304.39	1596778.58

Table S10. Comparison of metals emission inventories with other studies (Units: tons·year⁻¹)

Area	Emission Source	Period	V	V-this study ^a	Ni	Ni-this study	Zn	Zn-this study	Cu	Cu-this study	Source
China	Solid Waste	2013			43.5	27.9	1790.7	2194.0	382.4	185.6	(Wang et al., 2017) ^b
	solid waste incineration		0.27	0.67							
	No-road transport		1247.0	1803.7							
China	Iron and steel production	2017	79.6	109.2							(Bai et al., 2021) ^c
	Domestic coal combustion		10.5	75.6							
	Total		11505.0	16394.8							
China	iron and steel industry	2011			105.0	196.1			448.8	528.5	(Wang et al., 2016)
East Asia	Ship	2015	1329.8	1802.6	580.4	854.8					(Zhao et al., 2021) ^e
China	primary anthropogenic sources	2012			3395.5	5458.0	22319.6	22526.9	9547.6	12793.1	(Tian et al., 2015)
China	primary anthropogenic sources	2017					19473.1	22526.9	9813.1	12793.1	(Liu et al., 2023)

94 Table S11. Comparison of mean annual concentration of metals in PM2.5 from other studies (Units: ng·m⁻³)

Area	Periods Longitude Latitude	Cu	Fe	V	Ni	Zn	Al	Source	

East Asia	2017			3.55	112.56	4.38	3.25	33.02	135.78	This study
Shanghai	2018- 2019	120.97°E	31.09°N	3.85	194.5	5.54	3.18	40.84	400.1	(Zou et al., 2020)
Beijing	2010	116.30°E	39.99°N	34	1696	4	4	270	1823	(Tao et al., 2016)
Chengdu	2011	104. 下∙03°E	30.65°N	23	693	1.7	2.5	350	560	(Tao et al., 2014)
Guangzhou	2014	113.35°E	23.12°N	37	353	9	4	225	305	(Tao et al., 2017)
Gunshan	2012- 2013	126.71°E	35.98°N	29	237	-	13	113	166	(Jeon et al., 2012)
Handan	2013	114.50°E	36.69°N	18.8	-	5.4	3.4	300	-	(Wei et al., 2014)
Hangzhou	2005	120.15°E	30.28°N	71	-	-	3	130	-	(Liu et al., 2015)
Jinan	2007	116.98°E	36.67°N	30	1300	7.35	9.05	700	890	(Zhang et al., 2018b)
Lanzhou	2012- 2013	103.81°E	36.03°N	47.06	-	7.97	9.4	322	-	(Tan et al., 2017)
Nanjing	2013	118.76°E	32.05°N	71.5	902	5.19	16	497	811.5	(Li et al., 2016)
Niigata	2016	138.86°E	37.80°N	2.14	82.4	1.13	6.06	10.9	144	(Li et al., 2018)
Qingdao	2007	120.38°E	36.07°N	20	630	9.99	6.24	270	470	(Zhang et al., 2018b)
Shanghai	2010	121.53°E	31.22°N	15	1328	-	9	236	1542	(Wang et al., 2013)
Taian	2014	117.11°E	36.18°N	40	1055	-	10	220	350	(Liu et al., 2016)
Tianjin	2008	117.20°E	39.12°N	38.9	145.1	2.2	-	339.4	69.8	(Gu et al., 2011)
Tuoji-island	2012	120.76°E	38.17°N	12.6	466	6	4	94.3	-	(Zhang et al., 2014)
Wuhan	2013	114.21°E	30.30°N	25.27	1680	-	4.8	290.78	-	(Zhang et al., 2015)
Wuhan	2014	114.17°E	30.36°N	30.13	1820.76	6.35	3.57	419.21	-	(Acciai et al., 2017)
Xiamen	2015	118.03°E	24.30°N	26	250	10.95	5.37	220	280	(Zhuang, 2016)

Zaozhuang	2007	117.32°E	34.82°N	40	1000	6.11	9.85	1220	630	(Zhang et al., 2018b)
Zhengzhou	2010	113.51°E	34.80°N	24.1	1248.8	3.7	3.3	444.1	579.6	(Geng et al., 2013)
Zhuhai	2014	113.53°E	22.36°N	20	212	12	7	149	309	(Tao et al., 2017)
the East China Sea				58	410	3.8	1.5	51	615	(Hsu et al., 2010)

Table S12. Comparison of mean annual deposition flux of metals from other studies (Units: mg·m⁻²·year⁻¹)

Area	Periods	Cu	Fe	V	Ni	Zn	Al	Source
East Asia	2017	0.55	62.20	0.42	0.47	1.05	119.43	This study
China	2000-2018	12.77			6.61	96.75		(Chen et al., 2022)
North China	2008-2018	16.30			16.40	129.80		(D. (1. 2010)
South China	2008-2019	18.80			4.89	88.60		(Peng et al., 2019)
Tokyo Bay	2004-2005	16.00		6.90	6.80			(Sakata et al., 2008)
Kushiro	2008	0.57	70.81		0.72	4.02	146.00	
		0.11	20.55	0.23	0.14	0.02	35.97	
Otauali	2008	2.21	204.77		0.74	14.60	356.61	(Okubo et al., 2013)
Otsuchi		0.24	47.39	0.52	0.29	0.05	90.17	
П. J.	2008	0.35	62.05		0.80	5.48	105.12	
Hedo		0.33	20.20	0.62	0.47	0.06	33.29	
Pearl Rive Delta	er 2001-2002	18.60	555.00	2.09	8.35	104.00		(Wong et al., 2003)
China	2006-2015	11.56			8.08	72.90		(Ni and Ma, 2018)

Spain	2004-2006	0.79	347.00		0.65	6.26	457.00	(Bacardit and Camarero, 2009)		
Jiangsu	2019	11.00			3.30	157.00		(Chen et al., 2019)		
Northern China	2007-2010	15.10	3957.10	5.35	7.87	106.50	5046.50	(Pan and Wang, 2015)		
Cuizhau	2019	1.22				30.27				
Guizhou	2018	0.41	30.46	0.80	0.54	0.11	49.08	(Lin et al., 2022)		
Beijing	2016-2020			0.16	0.53	6.18		(Day et al. 2021)		
		0.46	118.69	1.00	0.55	0.11	240.99	(Fail et al., 2021)		
	2016-2018	6.41			1.57	73.09		(Equated 2010)		
nullali		0.41	28.60	0.77	0.55	0.10	47.03	(Feng et al., 2019)		
Mount Emei	2017-2022	1.70	6.93			41.40	6.38	(Fu et al., 2023)		
Daya Bay	⁷ ,2015-2017	4.67	209.37	2.41	1.91	93.96	477.40	$(W_{\rm H} \text{ at al} 2018)$		
China		0.47	29.78	0.95	0.66	0.20	45.07	(wu et al., 2018)		
Lushan	2011 2012	6.29	0.00	9.99	2.94	112.87	854.40	(N_{i}) at al. (2017)		
	2011-2012	0.41	18.24	0.68	0.56	0.06	30.44	(INIC CL al., 2017)		

98 References

- Abbasi, S., Rezaei, M., Keshavarzi, B., Mina, M., Ritsema, C., and Geissen, V.: Investigation of the 2018 Shiraz dust event:
 Potential sources of metals, rare earth elements, and radionuclides; health assessment, Chemosphere, 279, 130533,
 10.1016/j.chemosphere.2021.130533, 2021.
- Acciai, C., Zhang, Z., Wang, F., Zhong, Z., and Lonati, G.: Characteristics and Source Analysis of Trace Elements in PM2.5
 in the Urban Atmosphere of Wuhan in Spring, Aerosol and Air Quality Research, 17, 2224-2234,
 104 10.4209/aaqr.2017.06.0207, 2017.
- Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D. R.: Emission Measurements from a Crude Oil Tanker at Sea,
 Environmental Science & Technology, 42, 7098-7103, 10.1021/es703102y, 2008a.
- Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J., and Cocker, D. R.: In-use gaseous and particulate matter
 emissions from a modern ocean going container vessel, Atmospheric Environment, 42, 5504-5510,
 10.1016/j.atmosenv.2008.02.053, 2008b.
- 110 Bacardit, M. and Camarero, L.: Fluxes of Al, Fe, Ti, Mn, Pb, Cd, Zn, Ni, Cu, and As in monthly bulk deposition over the
- 111 Pyrenees (SW Europe): The influence of meteorology on the atmospheric component of trace element cycles and its
- implications for high mountain lakes, Journal of Geophysical Research: Biogeosciences, 114, 10.1029/2008JG000732,
 2009.
- 114 Bai, X., Luo, L., Tian, H., Liu, S., Hao, Y., Zhao, S., Lin, S., Zhu, C., Guo, Z., and Lv, Y.: Atmospheric Vanadium Emission
- Inventory from Both Anthropogenic and Natural Sources in China, Environmental Science & Technology, 55, 1156811578, 10.1021/acs.est.1c04766, 2021.
- Baker, A. R., Li, M., and Chance, R.: Trace Metal Fractional Solubility in Size-Segregated Aerosols From the Tropical Eastern
 Atlantic Ocean, Global Biogeochemical Cycles, 34, e2019GB006510, 10.1029/2019GB006510, 2020.
- Celo, V., Dabek-Zlotorzynska, E., and McCurdy, M.: Chemical Characterization of Exhaust Emissions from Selected
 Canadian Marine Vessels: The Case of Trace Metals and Lanthanoids, Environmental Science & Technology, 49, 5220 5226, 10.1021/acs.est.5b00127, 2015.
- Chen, D., Wang, X., Li, Y., Lang, J., Zhou, Y., Guo, X., and Zhao, Y.: High-spatiotemporal-resolution ship emission inventory
 of China based on AIS data in 2014, Science of The Total Environment, 609, 776-787, 10.1016/j.scitotenv.2017.07.051,
 2017.
- Chen, L., Zhou, S., Wu, S., Wang, C., and He, D.: Concentration, fluxes, risks, and sources of heavy metals in atmospheric
 deposition in the Lihe River watershed, Taihu region, eastern China, Environmental Pollution, 255, 113301,
 10.1016/j.envpol.2019.113301, 2019.

- 128 Chen, Q., Gao, Y., Ni, R., Pan, Y., Yan, Y., Yang, J., Liu, X., and Gu, X.: Temporal and Spatial Variation Characteristics of
 129 Heavy Metal in Atmospheric Deposition in China from 2000 to 2018, Environmental Science, 43,
 130 10.13227/j.hjkx.202201135, 2022.
- Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown,
 P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Journal of Quantitative Spectroscopy and
 Radiative Transfer, 91, 233-244, 10.1016/j.jqsrt.2004.05.058, 2005.
- 134 Corbin, J. C., Mensah, A. A., Pieber, S. M., Orasche, J., Michalke, B., Zanatta, M., Czech, H., Massabò, D., Buatier de Mongeot,
- 135 F., Mennucci, C., El Haddad, I., Kumar, N. K., Stengel, B., Huang, Y., Zimmermann, R., Prévôt, A. S. H., and Gysel, M.:
- Trace Metals in Soot and PM2.5 from Heavy-Fuel-Oil Combustion in a Marine Engine, Environmental Science &
 Technology, 52, 6714-6722, 10.1021/acs.est.8b01764, 2018.
- Desboeufs, K. V., Sofikitis, A., Losno, R., Colin, J. L., and Ausset, P.: Dissolution and solubility of trace metals from natural
 and anthropogenic aerosol particulate matter, Chemosphere, 58, 195-203, 10.1016/j.chemosphere.2004.02.025, 2005.
- 140 Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K. W., Fu, Q., and Chen, L.: Spatial and Seasonal
- Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental
 Influence, Environmental Science & Technology, 50, 1322-1329, 10.1021/acs.est.5b03965, 2016.
- Feng, W., Guo, Z., Peng, C., Xiao, X., Shi, L., Zeng, P., Ran, H., and Xue, Q.: Atmospheric bulk deposition of heavy
 metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils, Journal of Hazardous
 Materials, 371, 634-642, 10.1016/j.jhazmat.2019.02.090, 2019.
- 146 Fu, Y., Tang, Y., Shu, X., Hopke, P. K., He, L., Ying, Q., Xia, Z., Lei, M., and Qiao, X.: Changes of atmospheric metal(loid)
- 147 deposition from 2017 to 2021 at Mount Emei under China's air pollution control strategy, Atmospheric Environment, 302,
 148 119714, 10.1016/j.atmosenv.2023.119714, 2023.
- Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C., and Zhang, R.: PM2.5 in an industrial district of Zhengzhou, China: Chemical
 composition and source apportionment, Particuology, 11, 99-109, 10.1016/j.partic.2012.08.004, 2013.
- Gu, J., Bai, Z., Li, W., Wu, L., Liu, A., Dong, H., and Xie, Y.: Chemical composition of PM2.5 during winter in Tianjin, China,
 Particuology, 9, 215-221, 10.1016/j.partic.2011.03.001, 2011.
- Hsu, S.-C., Wong, G. T. F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao, S.-J., Tsai, F., Candice Lung, S.-C., Lin, F.-J., Lin,
 I. I., Hung, C.-C., and Tseng, C.-M.: Sources, solubility, and dry deposition of aerosol trace elements over the East China
 Sea, Marine Chemistry, 120, 116-127, 10.1016/j.marchem.2008.10.003, 2010.
- Ito, A.: Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron, Environmental Science &
 Technology Letters, 2, 70-75, 10.1021/acs.estlett.5b00007, 2015.
- 158 Jeon, H.-L., Choi, S.-H., Im, J.-Y., Park, H.-J., Hong, E.-J., and Son, B.-S.: Chemical Characteristics of Heavy Metals of
- PM2.5 in Atmosphere, Korean Journal of Environmental Health Sciences, 38, 233-240, 10.5668/JEHS.2012.38.3.233,
 2012.

- Jiang, S. Y. N., Yang, F., Chan, K. L., and Ning, Z.: Water solubility of metals in coarse PM and PM2.5 in typical urban
 environment in Hong Kong, Atmospheric Pollution Research, 5, 236-244, 10.5094/APR.2014.029, 2014.
- Jickells, T. D., Baker, A. R., and Chance, R.: Atmospheric transport of trace elements and nutrients to the oceans, Philosophical
 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150286,
 10.1098/rsta.2015.0286, 2016.
- Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, Journal of Applied Meteorology, 43, 170-181,
 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
- Karthikeyan, S., Joshi, U. M., and Balasubramanian, R.: Microwave assisted sample preparation for determining water-soluble
 fraction of trace elements in urban airborne particulate matter: Evaluation of bioavailability, Analytica Chimica Acta, 576,
 23-30, 10.1016/i.aca.2006.05.051, 2006.
- Kurisu, M., Sakata, K., Uematsu, M., Ito, A., and Takahashi, Y.: Contribution of combustion Fe in marine aerosols over the
 northwestern Pacific estimated by Fe stable isotope ratios, Atmos. Chem. Phys., 21, 16027-16050, 10.5194/acp-2116027-2021, 2021.
- Li, F., Yang, H., Ayyamperumal, R., and Liu, Y.: Pollution, sources, and human health risk assessment of heavy metals in
 urban areas around industrialization and urbanization-Northwest China, Chemosphere, 308, 136396,
 10.1016/j.chemosphere.2022.136396, 2022.
- Li, H., Wang, Q. g., Yang, M., Li, F., Wang, J., Sun, Y., Wang, C., Wu, H., and Qian, X.: Chemical characterization and source
 apportionment of PM2.5 aerosols in a megacity of Southeast China, Atmospheric Research, 181, 288-299,
 10.1016/j.atmosres.2016.07.005, 2016.
- Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.:
 Anthropogenic emission inventories in China: a review, National Science Review, 4, 834-866, 10.1093/nsr/nwx150,
 2017a.
- Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng,
 Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
 inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935963, 10.5194/acp-17-935-2017, 2017b.
- Li, P., Sato, K., Hasegawa, H., Huo, M., Minoura, H., Inomata, Y., Take, N., Yuba, A., Futami, M., Takahashi, T., and Kotake,
 Y.: Chemical Characteristics and Source Apportionment of PM2.5 and Long-Range Transport from Northeast Asia
 Continent to Niigata in Eastern Japan, Aerosol and Air Quality Research, 18, 938-956, 10.4209/aaqr.2017.05.0181, 2018.
- Lin, S.-x., Zhang, Z.-l., Xiao, Z.-q., Liu, X.-l., and Zhang, Q.-h.: Atmospheric deposition fluxes and health risk assessment of
 potentially toxic elements in Caohai Lake (Guizhou Province, China), Journal of Mountain Science, 19, 1107-1118,
- 192 10.1007/s11629-021-7170-z, 2022.

- 193 Liu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., and Feng, Y.: Chemical composition and source apportionment of ambient 194 PM2.5 during the non-heating period in Taian. China. Atmospheric Research. 170. 23-33. 10.1016/j.atmosres.2015.11.002, 2016. 195
- Liu, G., Li, J., Wu, D., and Xu, H.: Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou,
 China, Particuology, 18, 135-143, 10.1016/j.partic.2014.03.011, 2015.
- Liu, M., Wang, W., Li, J., Wang, T., Xu, Z., Song, Y., Zhang, W., Zhou, L., Lian, C., Yang, J., Li, Y., Sun, Y., Tong, S., Guo,
 Y., and Ge, M.: High fraction of soluble trace metals in fine particles under heavy haze in central China, Science of The
- 200 Total Environment, 841, 156771, 10.1016/j.scitotenv.2022.156771, 2022.
- Liu, S., Tian, H., Zhu, C., Cheng, K., Wang, Y., Luo, L., Bai, X., Hao, Y., Lin, S., Zhao, S., Wang, S., Chu, B., Guo, Z., Lv,
 Y., and Hao, J.: Reduced but still noteworthy atmospheric pollution of trace elements in China, One Earth, 6, 536-547,
 10.1016/j.oneear.2023.04.006, 2023.
- Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., and Zhang, J.: Heavy metal pollution levels, source apportionment and
 risk assessment in dust storms in key cities in Northwest China, Journal of Hazardous Materials, 422, 126878,
 10.1016/j.jhazmat.2021.126878, 2022.
- Moldanová, J., Fridell, E., Winnes, H., Holmin-Fridell, S., Boman, J., Jedynska, A., Tishkova, V., Demirdjian, B., Joulie, S.,
 Bladt, H., Ivleva, N. P., and Niessner, R.: Physical and chemical characterisation of PM emissions from two ships
 operating in European Emission Control Areas, Atmos. Meas, Tech., 6, 3577-3596, 10.5194/amt-6-3577-2013, 2013.
- Ni, R. and Ma, Y.: Current inventory and changes of the input/output balance of trace elements in farmland across China,
 PLOS ONE, 13, e0199460, 10.1371/journal.pone.0199460, 2018.
- Nie, X., Wang, Y., Li, Y., Sun, L., Li, T., Yang, M., Yang, X., and Wang, W.: Characteristics and impacts of trace elements
 in atmospheric deposition at a high-elevation site, southern China, Environmental Science and Pollution Research, 24,
 22839-22851, 10.1007/s11356-017-8791-1, 2017.
- Nishikawa, M., Batdorj, D., Ukachi, M., Onishi, K., Nagano, K., Mori, I., Matsui, I., and Sano, T.: Preparation and chemical
 characterisation of an Asian mineral dust certified reference material, Analytical Methods, 5, 4088-4095,
 10.1039/C3AY40435H, 2013.
- Okubo, A., Takeda, S., and Obata, H.: Atmospheric deposition of trace metals to the western North Pacific Ocean observed at
 coastal station in Japan, Atmospheric Research, 129-130, 20-32, 10.1016/j.atmosres.2013.03.014, 2013.
- Ooki, A., Nishioka, J., Ono, T., and Noriki, S.: Size dependence of iron solubility of Asian mineral dust particles, Journal of
 Geophysical Research: Atmospheres, 114, 10.1029/2008JD010804, 2009.
- Pan, Y., Liu, J., Zhang, L., Cao, J., Hu, J., Tian, S., Li, X., and Xu, W.: Bulk Deposition and Source Apportionment of
 Atmospheric Heavy Metals and Metalloids in Agricultural Areas of Rural Beijing during 2016–2020, Atmosphere, 12,
 283, 10.3390/atmos12020283, 2021.
- Pan, Y. P. and Wang, Y. S.: Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China, Atmos. Chem.
 Phys., 15, 951-972, 10.5194/acp-15-951-2015, 2015.

- Peng, H., Chen, Y., Weng, L., Ma, J., Ma, Y., Li, Y., and Islam, M. S.: Comparisons of heavy metal input inventory in
 agricultural soils in North and South China: A review, Science of The Total Environment, 660, 776-786,
 10.1016/j.scitotenv.2019.01.066, 2019.
- Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description
 and Testing, Journal of Applied Meteorology and Climatology, 46, 1383-1395, 10.1175/JAM2539.1, 2007.
- Sakata, M., Tani, Y., and Takagi, T.: Wet and dry deposition fluxes of trace elements in Tokyo Bay, Atmospheric Environment,
 42, 5913-5922, 10.1016/j.atmosenv.2008.03.027, 2008.
- Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J., Lintelmann, J., Michalke, B., Abbaszade, G., Radischat,
 C., Gröger, T., Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R.: Particle Emissions from a Marine Engine:
 Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions, Environmental Science &
 Technology, 48, 11721-11729, 10.1021/es502484z, 2014.
- Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G.,
 Michalke, B., Müller, L., Orasche, J., Passig, J., Radischat, C., Rabe, R., Reda, A., Rüger, C., Schwemer, T., Sippula, O.,
- Stengel, B., Sklorz, M., Torvela, T., Weggler, B., and Zimmermann, R.: Aerosol emissions of a ship diesel engine
 operated with diesel fuel or heavy fuel oil, Environmental Science and Pollution Research, 24, 10976-10991,
 10.1007/s11356-016-6724-z, 2017.
- Tan, J., Zhang, L., Zhou, X., Duan, J., Li, Y., Hu, J., and He, K.: Chemical characteristics and source apportionment of PM2.5
 in Lanzhou, China, Science of The Total Environment, 601-602, 1743-1752, 10.1016/j.scitotenv.2017.06.050, 2017.
- Tao, J., Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., Tang, Y., Cao, J., and Zhang, Y.: Uncertainty assessment of
 source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in
 positive matrix factorization analysis a case study in Beijing, China, Science of The Total Environment, 543, 326-335,
 10.1016/j.scitoteny.2015.11.057, 2016.
- Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., and Hsu, S. C.: PM_{2.5} pollution
 in a megacity of southwest China: source apportionment and implication, Atmos. Chem. Phys., 14, 8679-8699,
 10.5194/acp-14-8679-2014, 2014.
- Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, Z., Wu, Y., Xia, Y., Ye, S., and Zhang,
 R.: Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China With
 emphasis on ship emissions, Science of The Total Environment, 574, 1559-1570, 10.1016/j.scitotenv.2016.08.175, 2017.
- Tian, H. Z., Zhu, C. Y., Gao, J. J., Cheng, K., Hao, J. M., Wang, K., Hua, S. B., Wang, Y., and Zhou, J. R.: Quantitative
 assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial
- distribution, uncertainties, and control policies, Atmos. Chem. Phys., 15, 10127-10147, 10.5194/acp-15-10127-2015,
 2015.

- Wang, J., Hu, Z., Chen, Y., Chen, Z., and Xu, S.: Contamination characteristics and possible sources of PM10 and PM2.5 in
 different functional areas of Shanghai, China, Atmospheric Environment, 68, 221-229, 10.1016/j.atmosenv.2012.10.070,
 2013.
- Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., and Zhou, J.: A comprehensive emission inventory
 of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics,
 Science of The Total Environment, 559, 7-14, 10.1016/j.scitotenv.2016.03.125, 2016.
- Wang, Q., Ma, Y., Tan, J., Zheng, N., Duan, J., Sun, Y., He, K., and Zhang, Y.: Characteristics of size-fractionated atmospheric
 metals and water-soluble metals in two typical episodes in Beijing, Atmospheric Environment, 119, 294-303,
 10.1016/j.atmosenv.2015.08.061, 2015.
- Wang, Y., Cheng, K., Wu, W., Tian, H., Yi, P., Zhi, G., Fan, J., and Liu, S.: Atmospheric emissions of typical toxic heavy
 metals from open burning of municipal solid waste in China, Atmospheric Environment, 152, 6-15,
 10.1016/j.atmosenv.2016.12.017, 2017.
- Wei, Z., Wang, L. T., Chen, M. Z., and Zheng, Y.: The 2013 severe haze over the Southern Hebei, China: PM2.5 composition
 and source apportionment, Atmospheric Pollution Research, 5, 759-768, 10.5094/APR.2014.085, 2014.
- Wong, C. S. C., Li, X. D., Zhang, G., Qi, S. H., and Peng, X. Z.: Atmospheric deposition of heavy metals in the Pearl River
 Delta, China, Atmospheric Environment, 37, 767-776, 10.1016/S1352-2310(02)00929-9, 2003.
- Wu, Y., Zhang, J., Ni, Z., Liu, S., Jiang, Z., and Huang, X.: Atmospheric deposition of trace elements to Daya Bay, South
 China Sea: Fluxes and sources, Marine Pollution Bulletin, 127, 672-683, 10.1016/j.marpolbul.2017.12.046, 2018.
- Xiu, A. and Pleim, J. E.: Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model,
 Journal of Applied Meteorology, 40, 192-209, 10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2, 2001.
- Zetterdahl, M., Moldanová, J., Pei, X., Pathak, R. K., and Demirdjian, B.: Impact of the 0.1% fuel sulfur content limit in SECA
 on particle and gaseous emissions from marine vessels, Atmospheric Environment, 145, 338-345,
 10.1016/j.atmosenv.2016.09.022, 2016.
- Zhang, F., Chen, Y., Tian, C., Lou, D., Li, J., Zhang, G., and Matthias, V.: Emission factors for gaseous and particulate
 pollutants from offshore diesel engine vessels in China, Atmos. Chem. Phys., 16, 6319-6334, 10.5194/acp-16-6319-2016,
 2016.
- Zhang, F., Chen, Y., Tian, C., Wang, X., Huang, G., Fang, Y., and Zong, Z.: Identification and quantification of shipping
 emissions in Bohai Rim, China, Science of The Total Environment, 497-498, 570-577, 10.1016/j.scitotenv.2014.08.016,
 2014.
- Zhang, F., Wang, Z.-w., Cheng, H.-r., Lv, X.-p., Gong, W., Wang, X.-m., and Zhang, G.: Seasonal variations and chemical
 characteristics of PM2.5 in Wuhan, central China, Science of The Total Environment, 518-519, 97-105,
 10.1016/j.scitotenv.2015.02.054, 2015.

- 291 Zhang, F., Chen, Y., Chen, Q., Feng, Y., shang, Y., Yang, X., Gao, H., Tian, C., Li, J., Zhang, G., Matthias, V., and Xie, Z.:
- Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions
 in China, Environmental Science & Technology, 52, 4910-4919, 10.1021/acs.est.7b04002, 2018a.
- 294 Zhang, J., Zhou, X., Wang, Z., Yang, L., Wang, J., and Wang, W.: Trace elements in PM2.5 in Shandong Province: Source 295 The identification and health risk assessment. Science of Total Environment. 621. 558-577. 296 10.1016/j.scitotenv.2017.11.292, 2018b.
- Zhao, J., Zhang, Y., Xu, H., Tao, S., Wang, R., Yu, Q., Chen, Y., Zou, Z., and Ma, W.: Trace Elements From Ocean-Going
 Vessels in East Asia: Vanadium and Nickel Emissions and Their Impacts on Air Quality, Journal of Geophysical Research:
 Atmospheres, 126, e2020JD033984, 10.1029/2020JD033984, 2021.
- Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's anthropogenic emissions
 and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895-2907, 10.5194/essd-13-28952021, 2021.
- Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng,
 Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions,
 Atmos. Chem. Phys., 18, 14095-14111, 10.5194/acp-18-14095-2018, 2018.
- Zhuang, M.: Characteristic of elements in PM2.5 and health risk assessment of heavy metals at Xiamen, Environmental
 Chemistry, 35, 1723-1732, 10.7524/j.issn.0254-6108.2016032803, 2016.
- Zou, Z., Zhao, J., Zhang, C., Zhang, Y., Yang, X., Chen, J., Xu, J., Xue, R., and Zhou, B.: Effects of cleaner ship fuels on air
 quality and implications for future policy: A case study of Chongming Ecological Island in China, Journal of Cleaner
 Production, 267, 122088, 10.1016/j.jclepro.2020.122088, 2020.