Articles | Volume 24, issue 12
https://doi.org/10.5194/acp-24-7347-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-7347-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming
Donghuan Li
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Tianjun Zhou
CORRESPONDING AUTHOR
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
Youcun Qi
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Liwei Zou
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Max Planck Institute for Meteorology, Hamburg, Germany
Wenxia Zhang
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Xiaolong Chen
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Related authors
Lixia Zhang, Laura J. Wilcox, Nick J. Dunstone, David J. Paynter, Shuai Hu, Massimo Bollasina, Donghuan Li, Jonathan K. P. Shonk, and Liwei Zou
Atmos. Chem. Phys., 21, 7499–7514, https://doi.org/10.5194/acp-21-7499-2021, https://doi.org/10.5194/acp-21-7499-2021, 2021
Short summary
Short summary
The projected frequency of circulation patterns associated with haze events and global warming increases significantly due to weakening of the East Asian winter monsoon. Rapid reduction in anthropogenic aerosol further increases the frequency of circulation patterns, but haze events are less dangerous. We revealed competing effects of aerosol emission reductions on future haze events through their direct contribution to haze intensity and their influence on the atmospheric circulation patterns.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025, https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone and greenhouse gases alone are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies and to underpin the next IPCC report.
Lennart Ramme, Benjamin Blanz, Christopher Wells, Tony E. Wong, William Schoenberg, Chris Smith, and Chao Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-1875, https://doi.org/10.5194/egusphere-2025-1875, 2025
Short summary
Short summary
We present FRISIA version 1.0, a model to represent the impacts of future sea level rise (SLR) in integrated assessment models (IAMs). FRISIA can reproduce the impacts calculated by a more detailed spatially resolved model. Furthermore, the inclusion of previously uncaptured coastal feedback in FRISIA leads to emerging new behaviour. Our model improves the represenation of SLR impacts in IAMs, contributing to better projections of the world's socio-economic evolution under climate change.
William Schoenberg, Benjamin Blanz, Jefferson K. Rajah, Beniamino Callegari, Christopher Wells, Jannes Breier, Martin B. Grimeland, Andreas Nicolaidis Lindqvist, Lennart Ramme, Chris Smith, Chao Li, Sarah Mashhadi, Adakudlu Muralidhar, and Cecilie Mauritzen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2599, https://doi.org/10.5194/egusphere-2025-2599, 2025
Short summary
Short summary
The current crop of models assessed by the Intergovernmental Panel on Climate Change to produce their assessment reports lack endogenous process-based representations of climate-driven changes to human activities, limiting understanding of the feedback between climate and humans. FRIDA v2.1 integrates these systems and generate results that suggest standard scenarios may overestimate economic growth, highlighting the importance of feedbacks for realistic projections and informed policymaking.
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024, https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Short summary
Our research explores the intensification of the South Asian summer monsoon (SASM) during the Middle Miocene (17–12 Ma). Using an advanced model, we reveal that the uplift of the Iranian Plateau significantly influenced the SASM, especially in northwestern India. This finding surpasses the impact of factors like Himalayan uplift and global CO2 changes. We shed light on the complex dynamics shaping ancient monsoons, providing valuable insights into Earth's climatic history.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-76, https://doi.org/10.5194/cp-2022-76, 2022
Manuscript not accepted for further review
Short summary
Short summary
Based on the coupled model simulations with realistic early to middle Miocene paleogeography, we reveal that the enhanced South Asian summer monsoon in Middle Miocene is mainly caused by the uplift of Iranian Plateau (IP), rather than the Himalayas. The elevated IP insulates the warm and moist airs in the south of the IP and produces a low-level cyclonic circulation, which leads to the convergence of the warm and moist air in the northwestern India and enhancing the monsoonal precipitation.
Lixia Zhang, Laura J. Wilcox, Nick J. Dunstone, David J. Paynter, Shuai Hu, Massimo Bollasina, Donghuan Li, Jonathan K. P. Shonk, and Liwei Zou
Atmos. Chem. Phys., 21, 7499–7514, https://doi.org/10.5194/acp-21-7499-2021, https://doi.org/10.5194/acp-21-7499-2021, 2021
Short summary
Short summary
The projected frequency of circulation patterns associated with haze events and global warming increases significantly due to weakening of the East Asian winter monsoon. Rapid reduction in anthropogenic aerosol further increases the frequency of circulation patterns, but haze events are less dangerous. We revealed competing effects of aerosol emission reductions on future haze events through their direct contribution to haze intensity and their influence on the atmospheric circulation patterns.
Cited articles
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate extremes and compound hazards in a warming world, Ann. Rev. Earth Planet. Sci., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-055228, 2020.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res.-Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Andreescu, M. P. and Frost, D. B.: Weather and traffic accidents in Montreal, Canada, Clim. Res., 9, 225–230, https://doi.org/10.3354/cr009225, 1998.
Boschat, G., Pezza, A., Simmonds, I., Perkins, S., Cowan, T., and Purich, A.: Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia, Clim. Dynam., 44, 1823–1840, https://doi.org/10.1007/s00382-014-2214-5, 2015.
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, D05109, https://doi.org/10.1029/2010GL044613, 2010.
Cheung, H. N., Zhou, W., Mok, H. Y., and Wu, M. C.:. Relationship between Ural– Siberian blocking and the East Asian winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation, J. Climate, 25, 4242–4257, https://doi.org/10.1175/JCLI-D-11-00225.1, 2012.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Deser, C., Terray, L., and Phillips, A. S.: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications, J. Climate, 29, 2237–2258, https://doi.org/10.1175/JCLI-D-15-0304.1, 2016.
Donat, M. G. and Alexander, L. V.: The shifting probability distribution of global daytime and night-time temperatures, Geophys. Res. Lett., 39, L14707, https://doi.org/10.1029/2012GL052459, 2012.
Fischer, E. M., Lawrence, D. M., and Sanderson, B. M.: Quantifying uncertainties in projections of extremes – A perturbed land surface parameter experiment, Clim. Dynam., 37, 1381–1398, https://doi.org/10.1007/s00382-010-0915-y, 2011.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012.
Fyfe, J. C., Boer, G. J., and Flato, G. M.: The Arctic and Antarctic Oscillations and their projected changes under global warming, Geophys. Res. Lett., 26, 1601–1604, https://doi.org/10.1029/1999GL900317, 1999.
Gong, D. Y., Wang, S. W., and Zhu, J. H.: East Asian winter monsoon and Arctic oscillation, Geophys. Res. Lett., 28, 2073–2076, https://doi.org/10.1029/2000GL012311, 2001.
Gong, H., Wang, L., Chen, W., and Wu, R.: Attribution of the East Asian winter temperature trends during 1979–2018: Role of external forcing and internal variability, Geophys. Res. Lett., 46, 10874–10881, https://doi.org/10.1029/2019GL084154, 2019.
Gong, H., Wang, L., Chen, W., and Wu, R.: Evolution of the East Asian winter land temperature trends during 1961–2018: role of internal variability and external forcing, Environ. Res. Lett., 16, 024015, https://doi.org/10.1088/1748-9326/abd586, 2021.
Guo, R., Deser, C., Terray, L., and Lehner, F.: Human influence on winter precipitation trends (1921–2015) over North America and Eurasia revealed by dynamical adjustment, Geophys. Res. Lett., 46, 3426–3434, https://doi.org/10.1029/2018GL081316, 2019.
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high- resolution grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
He, S. and Wang, H.: Oscillating relationship between the East Asian winter monsoon and ENSO, J. Climate, 26, 9819–9838, https://doi.org/10.1175/JCLI-D-13-00174.1, 2013.
He, S., Gao, Y., Li, F., Wang, H., and He, Y.: Impact of Arctic Oscillation on the East Asian climate: A review, Earth-Sci. Rev., 164, 48–62, https://doi.org/10.1016/j.earscirev.2016.10.014, 2017.
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation patterns to extreme temperature trends, Nature, 522, 465–469, https://doi.org/10.1038/nature14550, 2015.
Hu, K., Huang, G., and Xie, S. P.: Assessing the internal variability in multi- decadal trends of summer surface air temperature over East Asia with a large ensemble of GCM simulations, Clim. Dynam., 52, 6229–6242, https://doi.org/10.1007/s00382-018-4503-x, 2019.
IPCC: Climate Change 2021, The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Jiang, D. and Tian, Z.: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models, Chin. Sci. Bull., 58, 1427–1435, https://doi.org/10.1007/s11434-012-5533-0, 2013.
Jones, G. S., Stott, P. A., and Christidis, N.: Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers, J. Geophys. Res.-Atmos., 113, D02109, https://doi.org/10.1029/2007JD008914, 2008.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015 (data available at: https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html, last access: 13 June 2024).
Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M.: Changes in temperature and precipitation extremes in the CMIP5 ensemble, Climatic Change, 119, 345–357, https://doi.org/10.1007/s10584-013-0705-8, 2013.
Kharin, V. V., Flato, G. M., Zhang, X., Gillett, N. P., Zwiers, F., and Anderson, K. J.: Risks from Climate Extremes Change Differently from 1.5 °C to 2.0 °C Depending on Rarity, Earths Future, 6, 704–715, https://doi.org/10.1002/2018EF000813, 2018.
Kitoh, A.: The Asian Monsoon and its Future Change in Climate Models: A Review, J. Meteor. Soc. Jpn., 95, 7–33, https://doi.org/10.2151/jmsj.2017-002, 2017.
Lee, S. H.: The January 2021 sudden stratospheric warming, Weather, 76, 135–136, https://doi.org/10.1002/wea.3966, 2021.
Li, C., Stevens, B., and Marotzke, J.: Eurasian winter cooling in the warming hiatus of 1998–2012, Geophys. Res. Lett., 42, 8131–8139, https://doi.org/10.1002/2015GL065327, 2015.
Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in annual extremes of daily temperature and precipitation in CMIP6 models, J. Climate, 34, 3441–3460, https://doi.org/10.1175/JCLI-D-19-1013.1, 2021.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, C., and Wang, T.: The sudden stratospheric warming in January 2021, Environ. Res. Lett., 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021.
Luo, D., Yao, Y., Dai, A., Simmonds, I., and Zhong, L: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation, J. Climate, 30, 3569–3587, https://doi.org/10.1175/JCLI-D-16-0262.1, 2017.
Ma, S., Zhou, T., Angélil, O., and Shiogama, H.: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming, J. Climate, 30, 6543–6560, https://doi.org/10.1175/JCLI-D-16-0636.1, 2017a.
Ma, S., Zhou, T., Stone, D. A., Angélil, O., and Shiogama, H.: Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions, Environ. Res. Lett., 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2, 2017b.
Ma, S., Zhu, C., Liu, B., Zhou, T., Ding, Y., and Orsolini, Y. J.: Polarized response of East Asian winter temperature extremes in the era of Arctic warming, J. Climate, 31, 5543–5557, https://doi.org/10.1175/JCLI-D-17-0463.1, 2018.
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck Institute Grand Ensemble: enablingthe exploration of climate system variability, J. Adv. Model. Earth Syst., 11, 2050–2069, https://doi.org/10.1029/2019MS001639, 2019 (data available at: https://esgf-data.dkrz.de/search/mpi-ge/, last access: 13 June 2024).
McCusker, K. E., Fyfe, J. C., and Sigmond, M.: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss, Nat. Geosci., 9, 838–842, https://doi.org/10.1038/ngeo2820, 2016.
Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M.: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades, Nat. Geosci., 7, 869–873, https://doi.org/10.1038/ngeo2277, 2014.
Norris, J., Chen, G., and Neelin, J. D.: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble, J. Climate, 32, 1025–1045, https://doi.org/10.1175/jcli-d-18-0302.1, 2019.
Overland, J. E., Wood, K. R., and Wang, M.: Warm Arctic – cold continents: climate impacts of the newly open Arctic Sea, Polar Res., 30, 15787, https://doi.org/10.3402/polar.v30i0.15787, 2011.
Peings, Y. and Magnusdottir, G.: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5, J. Climate, 27, 244–264, https://doi.org/10.1175/JCLI-D-13-00272.1, 2014.
Qian, C., Wang, J., Dong, S., Yin, H., Burke, C., Ciavarella, A., Dong B., Freychet, N., Lott, F. C., and Tett, S. F. B.: Human Influence on the Record-breaking Cold Event in January of 2016 in Eastern China, in: Explaining Extreme Events of 2016 from a Climate Perspective, B. Am. Meteorol. Soc., 99, S118–S122, https://doi.org/10.1175/BAMS-D-17-0095.1, 2018.
Rahimzadeh, F., Asgari, A., and Fattahi, E.: Variability of extreme temperature and precipitation in Iran during recent decades, Int. J. Climatol., 29, 329–343, https://doi.org/10.1002/joc.1739, 2009.
Räisänen, J. and Ylhäisi, J. S.: Cold months in a warming climate, Geophys. Res. Lett., 38, L22704, https://doi.org/10.1029/2011GL049758, 2011.
Röthlisberger, M. and Papritz, L.: A Global Quantification of the Physical Processes Leading to Near-Surface Cold Extremes, Geophys. Res. Lett., 50, e2022GL101670, https://doi.org/10.1029/2022GL101670, 2023.
Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., Pendergrass, A. G., Lehner, F., Strand, W. G., Lin, L., Knutti, R., and Lamarque, J. F.: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures, Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, 2017.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253, 2014.
Sheridan, S. C. and Allen, M. J.: Changes in the frequency and intensity of extreme temperature events and human health concerns, Curr. Clim. Change Rep., 1, 155–162, https://doi.org/10.1007/s40641-015-0017-3, 2015.
Simmonds, I.: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013, Ann. Glaciol., 56, 18–28, 2015.
Smoliak, B. V., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations, J. Climate, 28, 1613–1629, https://doi.org/10.1175/JCLI-D-14-00111.1, 2015.
Steponkus, P. L.: Cold hardiness and freezing injury of agronomic crops, Adv. Agron., 30, 51–98, https://doi.org/10.1016/S0065-2113(08)60703-8, 1979.
Sun, L., Perlwitz, J., and Hoerling, M.: What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures?, Geophys. Res. Lett., 43, 5345–5352, https://doi.org/10.1002/2016GL069024, 2016.
Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., Yin, H., and Ren, G.: Rapid increase in the risk of extreme summer heat in Eastern China, Nat. Clim. Change, 4, 1082–1085, https://doi.org/10.1038/nclimate2410, 2014.
Thompson, D. W. and Wallace, J. M.: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950, 1998.
Thompson, D. W., Wallace, J. M., Jones, P. D., and Kennedy, J. J.: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights, J. Climate, 22, 6120–6141, https://doi.org/10.1175/2009JCLI3089.1, 2009.
Thornton, H. E., Hoskins, B. J., and Scaife, A. A.: The role of temperature in the variability and extremes of electricity and gas demand in Great Britain, Environ. Res. Lett., 11, 114015, https://doi.org/10.1088/1748-9326/11/11/114015, 2016.
Trenary, L., DelSole, T., Tippett, M. K., and Doty B.: Extreme Eastern US Winter of 2015 Not Symptomatic of Climate Change, in: Explaining Extreme Events of 2016 from a Climate Perspective, B. Am. Meteorol. Soc., 97, S31–S35, https://doi.org/10.1175/BAMS-D-16-0156.1, 2016.
Wallace, J. M., Fu, Q., Smoliak, B. V., Lin, P., and Johanson, C. M.: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season, P. Natl Acad. Sci. USA, 109, 14337–14342, https://doi.org/10.1073/pnas.1204875109, 2012.
Walsh, J. E.: Intensified warming of the Arctic: Causes and impacts on middle latitudes, Global Planet. Change, 117, 52–63, https://doi.org/10.1016/j.gloplacha.2014.03.003, 2014.
Wang, C., Yao, Y., Wang, H., Sun, X., and Zheng, J.: The 2020 summer floods and 2020/21 winter extreme cold surges in China and the 2020 typhoon season in the western North Pacific, Adv. Atmos. Sci., 38, 896–904, https://doi.org/10.1007/s00376-021-1094-y, 2021.
Wang, L., Deng, A., and Huang, R.: Wintertime internal climate variability over Eurasia in the CESM large ensemble, Clim. Dynam., 52, 6735–6748, https://doi.org/10.1007/s00382-018-4542-3, 2019.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the intensity and frequency of short- duration extreme rainfall, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Xu, M., Xu, H., and Ma, J.: Responses of the East Asian winter monsoon to global warming in CMIP5 models, Int. J. Climatol., 36, 2139–2155, https://doi.org/10.1002/joc.4480, 2016.
Yamaguchi, K. and Noda, A.: Global warming patterns over the North Pacific: ENSO versus AO, J. Meteor. Soc. Jpn., 84, 221–241, https://doi.org/10.2151/jmsj.84.221, 2006.
Zhang, W., Zhou, T., Zou, L., Zhang, L., and Chen, X.: Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions, Nat. Commun., 9, 3153, https://doi.org/10.1038/s41467-018-05633-3, 2018.
Zhou, T., Zhang, W., Zhang, L., Clark, R., Qian, C., Zhang, Q., Qiu, H., Jiang, J., and Zhang, X.: 2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe. Adv. Atmos. Sci., 39, 1598–1607, https://doi.org/10.1007/s00376-022-2063-9, 2022.
Zhou, W., Li, C., and Wang, X.: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon, Geophys. Res. Lett., 34, L01701, https://doi.org/10.1029/2006GL027809, 2007.
Short summary
Two sets of climate model simulations are used to investigate the dynamic and thermodynamic factors of future change in cold extremes in East Asia. Dynamic factor accounted for over 80 % of cold-month temperature anomalies in past 50 years. The intensity of cold extreme is expected to decrease by 5 ℃, with thermodynamic factor contributing ~ 75 % by the end of the 21st century. Changes in dynamic factor are driven by an upward trend of positive Arctic Oscillation-like sea level pressure pattern.
Two sets of climate model simulations are used to investigate the dynamic and thermodynamic...
Altmetrics
Final-revised paper
Preprint