Articles | Volume 24, issue 10
https://doi.org/10.5194/acp-24-5757-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-24-5757-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Rebecca M. Garland
CORRESPONDING AUTHOR
Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
Katye E. Altieri
Department of Oceanography, University of Cape Town, Rondebosch, 7701, South Africa
Laura Dawidowski
Department of Environmental Chemistry, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Laura Gallardo
Department of Geophysics, Faculty of Physical and Mathematical Sciences and Center for Climate and Resilience Research, University of Chile, Santiago, Chile
Aderiana Mbandi
School of Engineering and Technology, South Eastern Kenya University, Kwa Vonza, Kitui County, Kenya
Nestor Y. Rojas
Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, Colombia
N'datchoh E. Touré
LASMES, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
Related authors
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Laura Gallardo, Charlie Opazo, Camilo Menares, Kevin Basoa, Nikos Daskalakis, Maria Kanakidou, Carmen Vega, Nicolás Huneeus, Roberto Rondanelli, and Rodrigo Seguel
EGUsphere, https://doi.org/10.5194/egusphere-2025-5643, https://doi.org/10.5194/egusphere-2025-5643, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We assert the role of methane and other drivers of change in explaining the growing tropospheric ozone (O3) trend at Tololo (30.17° S, 70.80° W, 2154 m a.s.l.), and we quantify the contributions of biomass burning and stratosphere-to-troposphere transport on O3, particularly during the late winter and spring. These findings enhance understanding of O3 variability in the Southern Hemisphere free troposphere and underscore the importance of sustained observations at Tololo amid climate change.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, Susanne Rohs, and Andreas Marsing
Atmos. Chem. Phys., 25, 8553–8573, https://doi.org/10.5194/acp-25-8553-2025, https://doi.org/10.5194/acp-25-8553-2025, 2025
Short summary
Short summary
We explored ozone differences between the Northern Hemisphere and Southern Hemispheres in the upper troposphere–lower stratosphere. We found lower ozone (with stratospheric origin) in the Southern Hemisphere, especially during years of severe ozone depletion. Sudden stratospheric warming events increased the ozone in each hemisphere, highlighting the relationship between stratospheric processes and ozone in the upper troposphere, where ozone is an important greenhouse gas.
María Cazorla, Melissa Trujillo, Rodrigo Seguel, and Laura Gallardo
Atmos. Chem. Phys., 25, 7087–7109, https://doi.org/10.5194/acp-25-7087-2025, https://doi.org/10.5194/acp-25-7087-2025, 2025
Short summary
Short summary
The current climate and environmental crises impose the need to take actions in cities to curb ozone as a pollutant and a climate forcer. This endeavor is challenging in understudied regions. In this work we analyze how reducing levels of precursor chemicals would affect ozone formation in Quito, Ecuador, and Santiago, Chile.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Nikos Daskalakis, Laura Gallardo, Maria Kanakidou, Johann Rasmus Nüß, Camilo Menares, Roberto Rondanelli, Anne M. Thompson, and Mihalis Vrekoussis
Atmos. Chem. Phys., 22, 4075–4099, https://doi.org/10.5194/acp-22-4075-2022, https://doi.org/10.5194/acp-22-4075-2022, 2022
Short summary
Short summary
Forest fires emit carbon monoxide (CO) that can be transported into the atmosphere far from the sources and reacts to produce ozone (O3) that affects climate, ecosystems and health. O3 is also produced in the stratosphere and can be transported downwards. Using a global numerical model, we found that forest fires can affect CO and O3 even in the South Pacific, the most pristine region of the global ocean, but transport from the stratosphere is a more important O3 source than fires in the region.
Mauricio Osses, Néstor Rojas, Cecilia Ibarra, Víctor Valdebenito, Ignacio Laengle, Nicolás Pantoja, Darío Osses, Kevin Basoa, Sebastián Tolvett, Nicolás Huneeus, Laura Gallardo, and Benjamín Gómez
Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022, https://doi.org/10.5194/essd-14-1359-2022, 2022
Short summary
Short summary
This paper presents a detailed estimate of on-road vehicle emissions for Chile, between 1990–2020, and an analysis of emission trends for greenhouse gases and local pollutants. Data are disaggregated by type of vehicle and region at 0.01° × 0.01°. While the vehicle fleet grew 5-fold, CO2 emissions increased at a lower rate and local pollutants decreased. These trends can be explained by changes in improved vehicle technologies, better fuel quality and enforcement of emission standards.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Sekou Keita, Catherine Liousse, Eric-Michel Assamoi, Thierno Doumbia, Evelyne Touré N'Datchoh, Sylvain Gnamien, Nellie Elguindi, Claire Granier, and Véronique Yoboué
Earth Syst. Sci. Data, 13, 3691–3705, https://doi.org/10.5194/essd-13-3691-2021, https://doi.org/10.5194/essd-13-3691-2021, 2021
Short summary
Short summary
This inventory fills the gap in African regional inventories, providing biofuel and fossil fuel emissions that take into account African specificities. It could be used for air quality modeling. We show that all pollutant emissions are globally increasing during the period 1990–2015. Also, West Africa and East Africa emissions are largely due to domestic fire and traffic activities, while southern Africa and northern Africa emissions are largely due to industrial and power plant sources.
Cited articles
Andrade-Flores, M., Rojas, N., Melamed, M. L., Mayol-Bracero, O. L., Grutter, M., Dawidowski, L., Antuña-Marrero, J. C., Rudamas, C., Gallardo, L., Mamani-Paco, R., Andrade, M. D. F., and Huneeus, N: Fostering a Collaborative Atmospheric Chemistry Research Community in the Latin America and Caribbean Region, B. Am. Meteor. Soc., 97, 1929–1939, https://www.jstor.org/stable/26243623, 2016.
Anet, J. G., Steinbacher, M., Gallardo, L., Velásquez Álvarez, P. A., Emmenegger, L., and Buchmann, B.: Surface ozone in the Southern Hemisphere: 20 years of data from a site with a unique setting in El Tololo, Chile, Atmos. Chem. Phys., 17, 6477–6492, https://doi.org/10.5194/acp-17-6477-2017, 2017.
Annegarn, H. J. and Swap, R. J.: SAFARI 2000: A southern African example of science diplomacy, Science & Diplomacy, 1, https://www.sciencediplomacy.org/article/2012/safari-2000 (last access: 3 May 2024), 2012.
Burger, J. M., Joyce, E., Hastings, M. G., Spence, K. A. M., and Altieri, K. E.: A seasonal analysis of aerosol NO sources and NOx oxidation pathways in the Southern Ocean marine boundary layer, Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, 2023.
Borduas-Dedekind, N., Naidoo, M., Zhu, B., Geddes, J., and Garland, R. M.: Tropospheric ozone (O3) pollution in Johannesburg, South Africa: Exceedances, diurnal cycles, seasonality, Ox chemistry and O3 production rates, Clean Air Journal, 33, 29–44, https://doi.org/10.17159/caj/2023/33/1.15367, 2023.
Cazorla, M., Gallardo, L., and Jimenez, R: The complex Andes region needs improved efforts to face climate extremes, Elem. Sci. Anth., 10, 1–10, https://doi.org/10.1525/elementa.2022.00092, 2022.
Castesana, P., Diaz Resquin, M., Huneeus, N., Puliafito, E., Darras, S., Gómez, D., Granier, C., Osses Alvarado, M., Rojas, N., and Dawidowski, L.: PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information, Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, 2022.
Clayton, P. H., Bringle, R. G., Senor, B., Huq, J., and Morrison, M.: Differentiating and Assessing Relationships in Service-Learning and Civic Engagement: Exploitative, Transactional, or Transformational, Michigan Journal of Community Service Learning, 16, 5–22, 2010.
EGU: EGU statement on Scientific Neocolonialism for Earth Day, https://www.egu.eu/news/960/egu-statement-on-scientific-neocolonialism-for-earth-day/, last access: 26 October 2023.
Evans, M. J., Knippertz, P., Akpo, A., Allan, R. P., Amekudzi, L., Brooks, B., Chiu, J. C., Coe, H. Fink, A. H., Flamant, C., Jegede, O., Leal-Liousse, C., Lohou, F., Kalthoff, N. Mari, C., Marsham, J. H., Yoboué, V., and Zumsprekel, C. R.: Policy-relevant findings of the DACCIWA project, Zenodo, https://doi.org/10.5281/zenodo.1476843, 2018.
February, F. J., Piazzola, J., Altieri, K. E., and Van Eijk, A. M. J.: Contribution of sea spray to aerosol size distributions measured in a South African coastal zone, Atmos. Res., 262, 105790, https://doi.org/10.1016/j.atmosres.2021.105790, 2021.
Gallardo, L., Barraza, F., Ceballos, A., Galleguillos, M., Huneeus, N., Lambert, F., Ibarra, C., Munizaga, M., O'Ryan, R., Osses, M., Tolvett, S., Urquiza, A. and Véliz, K. D.: Evolution of air quality in Santiago: The role of mobility and lessons from the science-policy interface, Elem. Sci. Anth., 6, 38, https://doi.org/10.1525/elementa.293, 2018.
Hersey, S. P., Garland, R. M., Crosbie, E., Shingler, T., Sorooshian, A., Piketh, S., and Burger, R.: An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data, Atmos. Chem. Phys., 15, 4259–4278, https://doi.org/10.5194/acp-15-4259-2015, 2015.
Huneeus, N., Denier van der Gon, H., Castesana, P., Menares, C., Granier, C., Granier, L., Alonso, M., de Fatima Andrade, M., Dawidowski, L., Gallardo, L., Gomez, D., Klimont, Z., Janssens-Maenhout, G., Osses, M., Puliafito, S. E., Rojas, N., Ccoyllo, O. S., Tolvett, S., and Ynoue, R. Y.: Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale, Atmos. Environ., 235, 117606, https://doi.org/10.1016/j.atmosenv.2020.117606, 2020a.
Huneeus, N., Urquiza A., Gayó, E., Osses, M., Arriagada, R., Valdés, M., Álamos, N., Amigo, C., Arrieta, D., Basoa, K., Billi, M., Blanco, G., Boisier, J.P., Calvo, R., Casielles, I., Castro, M., Chahuán, J., Christie, D., Cordero, L., Correa, V., Cortés, J., Fleming, Z., Gajardo, N., Gallardo, L., Gómez, L., Insunza, X., Iriarte, P., Labraña, J., Lambert, F., Muñoz, A., Opazo, M., O'Ryan, R., Osses, A., Plass, M., Rivas, M., Salinas, S., Santander, S., Seguel, R., Smith, P., and Tolvett, S: El aire que respiramos: pasado, presente y futuro – Contaminación atmosférica por MP2,5 en el centro y sur de Chile, Centro de Ciencia del Clima y la Resiliencia (CR)2, (ANID/FONDAP/15110009), 102 pp., http://www.cr2.cl/contaminacion/ (last access: 3 May 2024), 2020b.
Kaudia, A., Sokona, Y., Mantlana, B., Mbandi, A., Osano, P., Kehbila, A. G., Nzuve, L., Sitati, C., Tagwireyi, C., Heaps, C., Hicks, K., Palmer, E., Wernecke, B., and Garland, R. M.: The launch of the first-ever Integrated Assessment of Air Pollution and Climate Change for Sustainable Development in Africa, Clean Air Journal, 32, 19–20, https://doi.org/10.17159/caj/2022/32/2.15320, 2022.
Keywood, M, Paton-Walsh, C., Lawrence, M., George, C., Formenti, P., Schofield, R., Cleugh, H., Borgford-Parnell, N., and Capon, A.: Atmospheric goals for sustainable development, Science, 379, 246–247, https://doi.org/10.1126/science.adg2495, 2023.
Knippertz, P., Coe, H., Chiu, J., Evans, M., Fink, A., Kalthoff, N., Liousse, C., Mari, C., Allan, R., Brooks, B., Danour, S., Flamant, C., Jegede, O., Lohou, F., and Marsham, J.: The DACCIWA Project: Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa, B. Am. Meteor. Soc., 96, 1451–1460, 2015.
Lebel, T., Parker, D. J., Flamant, C., Höller, H., Polcher, J., Redelsperger, J.-L., Thorncroft, C., Bock, O., Bourles, B., Galle, S., Marticorena, B., Mougin, E., Peugeot, C., Cappelaere, B., Descroix, L., Diedhiou, A., Gaye, A., and Lafore, J.-P: The AMMA field campaigns: accomplishments and lessons learned, Atmos. Sci. Lett., 12, 123–128, https://doi.org/10.1002/asl.323, 2011.
Lichtig, P., Gaubert, B., Emmons, L. K., Jo, D. S., Callaghan, P., Ibarra-Espinosa, S., Dawidowski, L., Brasseur, G. P., and Pfister, G. G.: Multiscale CO budget estimates across South America: quantifying local sources and long range transport, ESS Open Archive, https://doi.org/10.22541/essoar.170515999.91579525/v1, 2024.
Lourens, A. S. M., Butler, T. M., Beukes, J. P., van Zyl, P. G., Fourie, G. D., and Lawrence, M. G: Investigating atmospheric photochemistry in the Johannesburg-Pretoria megacity using a box model, S. Afr. J. Sci., 112, 1–11, https://doi.org/10.17159/sajs.2016/2015-0169, 2016.
Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., and Zavala, M.: An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation, Atmos. Chem. Phys., 10, 8697–8760, https://doi.org/10.5194/acp-10-8697-2010, 2010.
Molina, L. T., Gallardo, L., Andrade, M., Baumgardner, D., Borbor-Cõrdova, M., Bõrquez, R., Casassa, G., Cereceda-Balic, F., Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J. L., Mc Phee, J., Mena-Carrasco, M., Raga, G. B., Schmitt, C., and Schwarz, J. P.: Pollution and its Impacts on the South American Cryosphere, Earth's Future, 3, 345–369, https://doi.org/10.1002/2015EF000311, 2015.
Nascimento, J. P., Bela, M. M., Meller, B. B., Banducci, A. L., Rizzo, L. V., Vara-Vela, A. L., Barbosa, H. M. J., Gomes, H., Rafee, S. A. A., Franco, M. A., Carbone, S., Cirino, G. G., Souza, R. A. F., McKeen, S. A., and Artaxo, P.: Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin, Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, 2021.
National Academies of Sciences, Engineering, and Medicine: The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow, Washington, DC, The National Academies Press, https://doi.org/10.17226/23573, 2016.
N'Datchoh, E. T., Diallo, I., Konaré, A., Silué, S., Ogunjobi, K. O., Diedhiou, A., and Doumbia, M.: Dust induced changes on the West African summer monsoon features, Int. J. Climatol., 38, 452–466, 2018.
North, M. A., Hastie, W. W., and Hoyer, L.: Out of Africa: The underrepresentation of African authors in high-impact geoscience literature, Earth-Sci. Rev., 208, 103262, https://doi.org/10.1016/j.earscirev.2020.103262, 2020.
Paton-Walsh, C., Emmerson, K. M., Garland, R. M., Keywood, M., Hoelzemann, J. J., Huneeus, N., Buchholz, R. R., Humphries, R. S., Altieri, K., Schmale, J., Wilson, S. R., Labuschagne, C., Kalisa, E., Fisher, J. A., Deutscher, N. M., van Zyl, P. G., Beukes, J. P., Joubert, W., Martin, L., Mkololo, T., Barbosa, C., de Fatima Andrade, M., Schofield, R., Mallet, M. D., Harvey, M. J., Formenti, P., Piketh, S. J., and Olivares, G.: Key challenges for tropospheric chemistry in the Southern Hemisphere, Elem. Sci. Anth., 10, 00050, https://doi.org/10.1525/elementa.2021.00050, 2022.
Peralta, O., Crawford, J., Murphy, J., Rojas, N. Y., Huneeus, N., Dawidowski, L., and Hoelzemann, J.: Regional and Urban Air Quality in the Americas, in: Handbook of Air Quality and Climate Change, edited by: Akimoto, H. and Tanimoto, H., Springer, Singapore, https://doi.org/10.1007/978-981-15-2527-8_15-1, 2023.
Saini, A., Harner, T., Chinnadhurai, S., Schuster, J. K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B. H., Jiménez, B., Manzano, C. A., Gaga, E. O., Stevenson, G., Falandysz, J., Ma, J., Miglioranza, K. S. B., Kannan, K., Tominaga, M., Jariyasopit, N., Rojas, N. Y., Amador-Muñoz, O., Sinha, R., Alani, R., Suresh, R., Nishino, T., and Shoeib, T.: GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air, Environ. Pollut., 267, 115416, https://doi.org/10.1016/j.envpol.2020.115416, 2020.
Silue, S., Konare, A., Diedhiou, A., Yoboue, V., Toure, N. D. E., and Assamoi, P.: Spatial and temporal variability of windborne dust in the Sahel-Sahara zone in relation with synoptic environment, Sci. Res. Essays, 8, 705–717, 2013.
Tandon, A.: Analysis: The lack of diversity in climate-science research, Carbon Brief, 6 October 2021, https://www.carbonbrief.org/analysis-the-lack-of-diversity-in-climate-science-research/ (last access: 26 October 2023), 2021.
UIS (UNESCO Institute for Statistics): Science, technology and innovation: 9.5.1 Research and development expenditure as a proportion of GDP, http://data.uis.unesco.org/index.aspx?queryid=3684 (last access: 26 October 2023), 2023a.
UIS (UNESCO Institute for Statistics): Science, technology and innovation: 9.5.2 Researchers (in full-time equivalent) per million inhabitants, http://data.uis.unesco.org/index.aspx?queryid=3684 (last access: 26 October 2023), 2023b.
UN (United Nations): The World's cities in 2018: Data booklet, https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2018_data_booklet.pdf (last access: 26 October 2023), 2018.
UNEP (United Nations Environment Programme): Integrated Assessment of Air Pollution and Climate Change for Sustainable Development in Africa, Nairobi, 2023.
UNEP and CCAC: Integrated Assessment of Short-Lived Climate Pollutants for Latin America and the Caribbean: improving air quality while mitigating climate change, Summary for decision makers, United Nations Environment Programme, Nairobi, Kenya, 2016.
Wild, S.: Impact of global South research “should be recognised”, SciDevNet, https://www.scidev.net/global/news/impact-of-global-south-research-should-be-recognised/ (last access: 26 October 2023), 2023.
Executive editor
We very much welcome this useful opinion on ways to strengthen atmospheric research in the Global South.
We very much welcome this useful opinion on ways to strengthen atmospheric research in the...
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
This opinion piece focuses on two geographical areas in the Global South where the authors are...
Special issue
Altmetrics
Final-revised paper
Preprint