Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13371-2024
https://doi.org/10.5194/acp-24-13371-2024
Research article
 | 
04 Dec 2024
Research article |  | 04 Dec 2024

Constraining net long-term climate feedback from satellite-observed internal variability possible by the mid-2030s

Alejandro Uribe, Frida A.-M. Bender, and Thorsten Mauritsen

Related authors

The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024,https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Snowball Earth transitions from Last Glacial Maximum conditions provide an independent upper limit on Earth’s climate sensitivity
Martin Renoult, Navjit Sagoo, Johannes Hörner, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2981,https://doi.org/10.5194/egusphere-2024-2981, 2024
Short summary
Increasing aerosol direct effect despite declining global emissions in MPI-ESM1.2
Antoine Hermant, Linnea Huusko, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 10707–10715, https://doi.org/10.5194/acp-24-10707-2024,https://doi.org/10.5194/acp-24-10707-2024, 2024
Short summary
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024,https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Observation-inferred resilience loss of the Amazon rainforest possibly due to internal climate variability
Raphael Grodofzig, Martin Renoult, and Thorsten Mauritsen
Earth Syst. Dynam., 15, 913–927, https://doi.org/10.5194/esd-15-913-2024,https://doi.org/10.5194/esd-15-913-2024, 2024
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Investigation of the characteristics of low-level jets over North America in a convection-permitting Weather Research and Forecasting simulation
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024,https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Impacts of tropical cyclone–heat wave compound events on surface ozone in eastern China: comparison between the Yangtze River and Pearl River deltas
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024,https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
The 2023 global warming spike was driven by the El Niño–Southern Oscillation
Shiv Priyam Raghuraman, Brian Soden, Amy Clement, Gabriel Vecchi, Sofia Menemenlis, and Wenchang Yang
Atmos. Chem. Phys., 24, 11275–11283, https://doi.org/10.5194/acp-24-11275-2024,https://doi.org/10.5194/acp-24-11275-2024, 2024
Short summary
Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions
Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024,https://doi.org/10.5194/acp-24-11207-2024, 2024
Short summary
A novel method for detecting tropopause structures based on the bi-Gaussian function
Kun Zhang, Tao Luo, Xuebin Li, Shengcheng Cui, Ningquan Weng, Yinbo Huang, and Yingjian Wang
Atmos. Chem. Phys., 24, 11157–11173, https://doi.org/10.5194/acp-24-11157-2024,https://doi.org/10.5194/acp-24-11157-2024, 2024
Short summary

Cited articles

Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P.-L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014GL060962, 2014 (data available at https://www.met.reading.ac.uk/%7Esgs02rpa/research/DEEP-C/GRL/, last access: 25 November 2024). a, b, c
Armour, K. C., Proistosescu, C., Dong, Y., Hahn, L. C., Blanchard-Wrigglesworth, E., Pauling, A. G., Wills, R. C. J., Andrews, T., Stuecker, M. F., Po-Chedley, S., Mitevski, I., Forster, P. M., and Gregory, J. M.: Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity, P. Natl. Acad. Sci. USA, 121, e2312093121, https://doi.org/10.1073/pnas.2312093121, 2024. a
Bloch-Johnson, J., Rugenstein, M., Stolpe, M. B., Rohrschneider, T., Zheng, Y., and Gregory, J. M.: Climate Sensitivity Increases Under Higher CO2 Levels Due to Feedback Temperature Dependence, Geophys. Res. Lett., 48, e2020GL089074, https://doi.org/10.1029/2020GL089074, 2021. a
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C.: Seasonal Models, Chap. 9, John Wiley & Sons Ltd., 353–411, https://doi.org/10.1002/9781118619193.ch9, 2008. a
Brient, F., Schneider, T., Tan, Z., Bony, S., Qu, X., and Hall, A.: Shallowness of tropical low clouds as a predictor of climate models'response to warming, Clim. Dynam., 47, 433–449, https://doi.org/10.1007/s00382-015-2846-0, 2016. a
Download
Short summary
Our study explores climate feedbacks, vital for understanding global warming. It links them to shifts in Earth's energy balance at the atmosphere's top due to natural temperature variations. It takes roughly 50 years to establish this connection. Combined satellite observations and reanalysis suggest that Earth cools more than expected under carbon dioxide influence. However, continuous satellite data until at least the mid-2030s are crucial for refining our understanding of climate feedbacks.
Altmetrics
Final-revised paper
Preprint