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Abstract. Observing climate feedbacks to long-term global warming, which are crucial climate regulators, is
not feasible within the observational record. However, linking them to top-of-the-atmosphere flux variations in
response to natural surface temperature fluctuations (internal variability feedbacks) is a viable approach. We
explore the use of relating internal variability to forced climate feedbacks in models and applying the resulting
relationship to observations to constrain forced climate feedbacks. Our findings reveal strong longwave and
shortwave feedback relationships in models during the 14-year overlap with the Clouds and the Earth’s Radiant
Energy System (CERES) record. Yet, due to the weaker relationship between internal variability and forced
climate longwave feedbacks, the net feedback relationship remains weak, even over longer periods beyond the
CERES record. However, after about half a century, this relationship strengthens, primarily due to reinforcements
of the internal variability and forced climate shortwave feedback relationship. We therefore explore merging the
satellite records with reanalysis to establish an extended data record. The resulting constraint suggests a stronger
negative forced climate net feedback than the model’s distribution and an equilibrium climate sensitivity of about
2.59K (1.95 to 3.12 K, 5 %95 % confidence intervals). Nevertheless, this method does not account for certain
factors like biogeophysical-chemical feedbacks, inactive on short timescales and not represented in most models,
along with differences in historical warming patterns, which may lead to misrepresenting climate sensitivity.
Additionally, continuous satellite observations until at least the mid-2030s are essential for using purely observed
estimates of the net internal variability feedback to constrain the net forced climate feedback and, consequently,
climate sensitivity.

ing. These mechanisms, known as forced climate feedbacks,

The increasing levels of atmospheric carbon dioxide have
significant implications for the Earth’s climate system. El-
evated carbon dioxide concentrations enhance the absorption
and emission of infrared radiation in the atmosphere, leading
to a radiative imbalance at the top of the atmosphere (TOA)
and subsequent warming of the troposphere (NRC, 1979).
The long-term response of global temperatures to this ra-
diative forcing is influenced by a complex interplay of mech-
anisms, where the initial radiative forcing initiates changes
in secondary processes that, in turn, impact the original forc-

involve processes such as temperature, water vapor, lapse
rate, surface albedo, clouds, biogeophysical, and biochemi-
cal (IPCC, 2023). These feedback mechanisms play a cru-
cial role in either amplifying or attenuating the initial warm-
ing signal and collectively determine the equilibrium climate
sensitivity (ECS), which quantifies the global temperature re-
sponse to a doubling of atmospheric carbon dioxide concen-
trations relative to pre-industrial levels.

Generally, in estimating forced climate feedbacks, tools
such as theory, observations, climate models, and fine-scale
simulations are commonly utilized (Sherwood et al., 2020).
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Climate models are particularly important as they are de-
signed to solve the complex equations governing the Earth’s
climate system. However, climate models need to parameter-
ize unresolved processes by establishing empirical relation-
ships with explicitly resolved variables (Williamson et al.,
2021). While climate models share fundamental equations,
the use of different parameterization approaches among them
introduces variations in future projections, including forced
climate feedbacks, leading to a range of model-estimated
ECS. Assessing how models represent forced climate feed-
backs is challenging due to the absence of long-term global
observations spanning decades or centuries. Consequently,
reducing uncertainty in model-estimated forced climate feed-
backs becomes a complex task. However, if a significant and
physically explainable relationship emerges across climate
models between observable properties of the climate system
and forced climate change, past climate observations can be
employed to constrain these feedbacks.

Several studies have identified relationships between var-
ious observables and forced climate feedbacks across differ-
ent generations of models (IPCC, 2023). For instance, ele-
ments of the present mean state have been utilized (e.g., Tren-
berth and Fasullo, 2010; Brient et al., 2016), as well as past
climate change (e.g., Hargreaves et al., 2012; Jiménez-de-la
Cuesta and Mauritsen, 2019; Renoult et al., 2020) and inter-
nal variability (Dessler, 2013; Mauritsen and Stevens, 2015;
Dessler et al., 2018). Focusing specifically on climate feed-
backs, Loeb et al. (2018) identified a robust relationship be-
tween cloudy-sky flux on timescales of 2.5 to 3 years and
ECS. However, they noted that 100 years of data are neces-
sary for this relationship to become statistically robust. Us-
ing models from the Coupled Model Intercomparison Project
phase 6 (CMIP6), Lutsko et al. (2021) found significant rela-
tionships between 50 years of cloud variability and regional
forced climate cloud feedbacks across most regions, with the
exception of a latitudinal band from 60 to 90° N. Dessler and
Forster (2018) used models from the Precipitation Driver Re-
sponse Model Intercomparison Project (Myhre et al., 2017)
to find a relationship between TOA flux changes in response
to natural variations of surface temperature (referred to here
as internal variability feedbacks) in simulations where pre-
industrial carbon dioxide levels are maintained over a century
and those resulting from the doubling of carbon dioxide con-
centrations. By incorporating observed internal variability
feedbacks spanning from 2000-2017 alongside this relation-
ship, they derived an ECS likely range of 2.4—-4.6 K (17 %—
83 % confidence interval). However, uncertainty persists re-
garding the appropriateness of integrating observations and
the modeled relationship from different time periods to con-
strain forced climate feedbacks and ECS. Similarly, Uribe
et al. (2022) employed CMIP6 models and demonstrated that
the strength of forced climate feedbacks is associated with in-
ternal variability feedbacks from 2001 to 2014. Nevertheless,
they found that this relationship did not hold for net feed-
back. Additionally, they concluded that uncertainty in sim-
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ulated and observed internal variability feedbacks over this
short period precludes the establishment of an emergent con-
straint on forced climate feedbacks.

In this study, our primary objective is to contribute to the
reduction of uncertainties in forced climate feedbacks by ad-
vancing our understanding of the use of observations and
the relationships between internal variability feedbacks and
forced climate feedbacks in CMIP6 models. Building upon
previous research (Uribe et al., 2022), we specifically inves-
tigate the underlying factors contributing to the absence of
a robust relationship between internal variability and forced
climate net feedbacks, despite the evident strong relation-
ships observed for longwave and shortwave feedback com-
ponents in CMIP6 models. Here, we focus on the historical
simulation period that aligns with the available Clouds and
the Earth’s Radiant Energy System (CERES) satellite data
record. In addition, we investigate whether the challenges
observed in establishing a relationship between internal vari-
ability and forced net climate feedback in models persist
when longer historical periods are considered. Subsequently,
we explore the suitability of employing distinct time frames
for estimating both model and observed internal variability
feedbacks when utilizing observations to constrain net forced
feedbacks in models. This examination aims to ascertain the
minimum required record length. Finally, we merge satellite
observations with reanalysis data to obtain an emergent con-
straint on forced climate net feedback.

2 Materials and methods

We study the relationship between feedbacks arising from
internal variability and external forcing in models partici-
pating in CMIP6, specifically in coupled ocean—atmosphere
experiments (CMIP), simulating interactions between the
ocean and atmosphere, and in atmosphere-only experiments
(AMIP), focusing exclusively on atmospheric processes
while using prescribed observed sea surface temperatures. To
accomplish this, we utilize historical simulations and 150-
year experiments where atmospheric carbon dioxide concen-
trations are abruptly quadrupled from pre-industrial levels
and subsequently held constant (abrupt4xCO2). To capture
a broader range of possible historical climate outcomes and
obtain robust estimates of internal variability feedbacks, we
utilize up to five realizations of historical ensemble members,
incorporating a more extensive set of models compared to the
approach used in Uribe et al. (2022) (Table 1).

In order to quantify feedbacks, we use the planetary energy
balance at TOA:

R=F+A\T, (D

where R is the net TOA radiative flux anomaly, F is the ra-
diative forcing, A is the radiative feedback parameter, and
T is the surface temperature anomaly (Gregory et al., 2004;
Dessler et al., 2018).

https://doi.org/10.5194/acp-24-13371-2024



A. Uribe et al.: Constraining net long-term climate feedback

13373

Table 1. CMIP6 models used to calculate forced climate feedbacks and internal variability feedbacks. The availability of model realizations

for estimating internal variability feedbacks is indicated by “X”.
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We calculate forced climate feedbacks using linear or-
dinary least-squares (OLS) regression coefficients derived
from 150 years of annual global averages of R and T from
abrupt4xCO2 simulations. It is important to note that this ap-
proach might lead to an underestimation of ECS compared
to estimates derived from millennial-length simulations due
to the influence of time-dependent feedbacks (Rugenstein
et al., 2020). Conversely, ECS estimates from 150-year
abrupt4xCO2 experiments often overestimate ECS compared
to those from 2 x CO; experiments owing to nonlogarithmic
forcing, feedback CO, dependence, and feedback tempera-
ture dependence (Bloch-Johnson et al., 2021). Given that ex-
amining the interaction between these effects is beyond the
scope of our study, we adopted the standard method as it of-
fers a straightforward approach and provides a basis for com-
parison and analysis.

Similarly, to estimate internal variability feedbacks, we
use OLS regression coefficients from linearly detrended (we
assume a linear forcing influence in the data series, given the
relatively short periods we are analyzing) and deseasonal-
ized monthly global averages anomalies of R and 7. How-
ever, given that monthly temperature time series can display
temporal autocorrelation, which may affect the estimation
of regression coefficients and standard errors, we took spe-
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cific steps to address this issue. For observational tempera-
ture data, we calculated the autocorrelation function and ad-
justed the degrees of freedom for standard error computa-
tions accordingly. For model data, we employed an extended
OLS approach (generalized least squares). Specifically, we
transformed each temperature time series per model realiza-
tion into a set of weighted variables. The weights were de-
termined by fitting autoregression models of order one to ac-
count for autocorrelation. We then combined all transformed
temperature time series realizations for each model and ap-
plied the OLS regression to estimate the regression coeffi-
cients, yielding a single estimate of internal variability feed-
back per model.

Finally, to determine the uncertainty associated with the
regression coefficients in both observations and models, we
calculate 5 %-95 % confidence intervals using a two-tailed
t test that takes into account the variability in the data and
provides confidence intervals that encompass both positive
and negative deviations from the estimated regression coeffi-
cients.

We conduct a comparison between model results and ob-
served internal variability feedbacks using TOA fluxes from
the CERES instruments, the Energy Balanced and Filled
(EBAF) dataset updated to Ed4.1 (Loeb et al., 2018), and
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gridded temperature anomalies from HadCRUT version 5
(Morice et al., 2021). The comparison is performed dur-
ing the overlapping period of the CERES historical simula-
tion (2001-2014). The objective is twofold: to identify mod-
els whose internal variability feedback differs from observa-
tions, providing valuable insights into their representative-
ness of forced climate feedbacks, and to investigate the lack
of a robust relationship between net internal variability and
net forced climate feedback despite the presence of strong re-
lationships for the longwave and shortwave components, as
reported in previous research (Uribe et al., 2022).

Furthermore, we systematically extend the historical pe-
riod to assess the persistence of challenges in establish-
ing a relationship between internal variability and forced
net climate feedbacks in models over longer historical pe-
riods. Having identified a time period where the relationship
emerges in models, we investigate the minimum conditions
required to use observations and the model-based relation-
ship to constrain the forced net climate feedback using ERAS
reanalysis data (Hersbach et al., 2020). We then use statistical
time series modeling to align ERAS reanalysis TOA fluxes
with the combined datasets of CERES and the Earth Ra-
diation Budget Experiment (ERBE) satellite records (Allan
et al., 2014) in order to match the observational time length
requirement. This methodology contributes to the derivation
of an estimated emergent constraint on forced climate net
feedback.

3 Results

3.1 Internal variability and forced climate feedback
relationship during the CERES period

In order to be able to use internal variability feedbacks to
constrain forced climate feedbacks a statistical relationship
must exist between these quantities. Indeed, during the over-
lapping years of the CERES satellite observations and his-
torical CMIP6 simulations, there are high correlations be-
tween simulated internal variability and forced climate feed-
backs (Fig. 1a and b). Importantly, our results demonstrate a
stronger correlation between internal variability and forced
climate feedbacks compared to the findings reported by
Uribe et al. (2022). We attribute this improvement in correla-
tion strength to the combination of two factors: the inclusion
of more models, allowing a broader range of model represen-
tations and variations in internal variability to be captured,
and the utilization of additional ensemble members, which
enhances the robustness and representativeness of our inter-
nal variability feedbacks.

To assess the statistical significance of observed correla-
tions between internal variability and forced climate feed-
backs over this relatively short period, we conducted a Monte
Carlo permutation test. The null hypothesis assumed that
no real relationship exists between internal variability and
forced climate feedbacks, meaning any observed correlation
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would be due to random chance. To test this, we randomly
permuted the feedback datasets, breaking the correspondence
between models for internal variability and forced climate
feedbacks (e.g., by pairing the internal variability feedback
value from one model with the forced climate feedback value
from another). We then recalculated the correlation coeffi-
cient using these permuted data. This process was repeated
10° times, creating a null distribution of correlation coef-
ficients that represents the range of correlation values we
would expect if no actual relationship exists. Finally, we
compared the observed correlation to this null distribution
to estimate how often a correlation as large as or larger than
the observed one would occur by chance, providing a p value
as a measure of statistical significance. The results reveal a
likelihood of less than 5 % that the longwave and shortwave
correlation coefficients would occur by chance alone (0.0 %
for both longwave and shortwave in CMIP; 0.09 % for long-
wave and 0.0 % for shortwave in AMIP) and indicate a sig-
nificant relationship between the strength of longwave and
shortwave forced climate feedbacks and their correspond-
ing internal variability feedback. By considering these re-
lationships, observations have the potential to constrain and
limit the uncertainties associated with forced climate feed-
backs. The comparison of simulated and observed internal
variability feedbacks reveals that models exhibiting moderate
to strong negative longwave internal variability feedbacks,
along with models featuring both weak negative and weak
positive shortwave internal variability feedbacks, show more
consistency with observed data (Fig. 5a, b, d, and e). Hence,
even with the 14-year subset of the CERES dataset that over-
laps with the climate model simulations we can constrain the
feedback components.

In contrast, when examining the net feedback, we observe
a breakdown in the statistical relationship (Fig. 1c) as in-
dicated by the relatively smaller correlation coefficient be-
tween internal variability (A;i¢) and forced climate (14,) net
feedbacks (r(Ai, Aap)) as well as the relatively larger prob-
ability of occurring by chance alone (0.73 % for CMIP and
0.28 % for AMIP, respectively). To explore the underlying
causes of this relatively weaker relationship, we examine the
computation of the correlation coefficient, which is defined
as the covariance between internal variability and forced cli-
mate net feedbacks, normalized by the product of their stan-

F(hit ab) = %) Utilizing the bi-
linearity of covariance and considering that net feedback is
the aggregate of longwave (A}y) and shortwave (Agy) com-
ponents, the correlation coefficient can be decomposed into

its constituent parts as follows:

dard deviations (

Cov ()Vit_lw , )\ab_lw) Cov ()Vit_lw , )hab_sw)

r i da) = o ) o (i) o (hap)
Cov ()"it_SWv )\ab_sw) Cov ()Mit_sw» )&ab_lw) )
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https://doi.org/10.5194/acp-24-13371-2024



A. Uribe et al.: Constraining net long-term climate feedback 13375
(a) Longwave feedback [W m~2K~1] (b) Shortwave feedback [W m~2K~1] (c) Net feedback [W m~2K~1]
I 3] o ol i I
o CMIP, r£0.68 S e CMIP,r=0380 S o CMIP,r =044 ]
o AMIP, r£0.57 X * AMIP,r=0.78 X o AMIP, =053 X
CERES | g CERES Bl CERES | .18
! 2 = ! 2
i 2428 2 i 2
1 - 1
i L= i
i e — :
1 -~ i
i 14—t -— . | 1
! 14 — !
e ——
< : S = i
= d gt Lo ——ee i
I i Internal variability M Internal variability i Internal variability
) " ol 1 s
g -3 =2 | -1 1 2 3 -2 s *EF"—_}_' 1 2 -2 T = 1 2
] i ! i
i S —
| i =
i -14 ) L ————18
| o e 1
S ! e
T e R
ete—e—a, : _2.7:'_.7 ———
r=aes IS -2 | S S
—— ! i =
——— ‘ i
1 H 1
| | |
(d) Longwave feedback [W m~—2K~1] (e) Shortwave feedback [W m—2K~1] (f) Net feedback [W m—2K-1]
. .
--- CMIP, r0.70 3 § ——- CMIP, r = 0.90 § I ——- CMIP, r = 0.50 §
CERES-ERBE-ERAS X CERES-ERBE-ERAS x| CERES-ERBE-ERAS E:
' g ! | g
1 2 2 0 1 242
1 5 5! ] 5
! 249 < < I <
1 ﬂﬁ——% 1
: i e !
i i L i
i i . i 1
! ! : e |
: S 1 e 1
P ; [ g :
Q  Internal variability ~¢227"*" Internal variability Internal variability |
@ -3 £ -1 1 2 3 -2 T B 2 -2 L1 1 2
a | |
i
0 CMIP6  Constraint i
f -1 1
i 1
sl ’ L
- 5T L !
i . 1 1 }
/‘**»} -2 T l X
I ! i i
Ir i ] i CMIPs  Constraint
; 3 CMIP6  Constraint E i

Figure 1. Abruptly quadrupled CO; increases versus internal variability feedbacks for longwave (left), shortwave (center), and net (right)
over CERES 2001-2014 (a, b, ¢) and 1958-2014 (d, e, f) periods. Legends include the correlation coefficient, r, between abrupt and internal
variability feedbacks for coupled (blue) and atmosphere-only (red) simulations. Gray shading and horizontal lines extend from 5 %-95 %
confidence intervals of the observed as well as ERAS—-CERES-ERBE and individual model internal variability feedback, respectively. The
shaded blue region in panels (d), (e), and (f) represents the 5 %-95 % confidence intervals on the regression line, which is displayed as a
dashed line. Additionally, the insets display box plots for CMIP6 and constrained forced climate feedbacks.

This decomposition allows for a detailed examination of
the contributions of longwave and shortwave feedback com-
ponents to the overall correlation coefficient. Considering the
observed correlations of individual longwave and shortwave
feedbacks (Fig. 1a and b), we expect positive contributions
from the first and third terms on the right side of Eq. (2).
Furthermore, alongside these positive correlations, there is
a tendency for longwave and shortwave internal variability
feedbacks to counteract each other (r (At 1w, Ait_sw) = —0.66
and r(Ajg_1w, Ait_sw) = —0.62 for CMIP and AMIP, respec-
tively). This suggests potential inverse relationships between
internal variability feedbacks and the corresponding counter-
part forced climate feedback, consequently leading to antici-
pated negative contributions from the second and last term in
Eq. (2). In the CMIP dataset, the terms have values of 0.43,
—0.83, 1.57, and —0.72, while in the AMIP dataset, they
are 0.33, —0.63, 1.46, and —0.63, respectively. These val-
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ues show that the relatively weaker covariance between long-
wave internal variability and longwave forced climate feed-
backs contributes to the overall weak relationship observed
in the net feedbacks from both CMIP and AMIP datasets.

3.2 Emergence of the relationship between net internal
variability and net forced climate feedbacks

Whereas the relationships between longwave and shortwave
internal variability and forced climate feedbacks remain ro-
bust during the CERES period, a comparable strength of the
relationship is notably absent for the net feedback compo-
nent. To determine the potential existence of such a relation-
ship between internal variability and forced climate net feed-
backs in CMIP6 models, we extend our analysis to longer
time periods, surpassing the length of the CERES observa-
tional record.

Atmos. Chem. Phys., 24, 13371-13384, 2024
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To this end, we calculate the correlation coefficient com-
ponents between internal variability and forced climate net
feedbacks (Eq. 2) across various time window sizes in
CMIP6 simulations (Fig. 2a). Additionally, we determine the
corresponding correlation coefficient and p value through a
hypothesis test, where the null hypothesis posits indepen-
dence and no correlation between internal variability and
forced climate net feedbacks (Fig. 2b). The calculation starts
by using a 14-year historical simulation time window (2001—
2014) and then extending the window by 1 year at a time
until reaching the initial year of 1850 (1850-2014). Here, we
use just historical coupled simulations since the time length
of historical atmosphere-only simulations is shorter (1979—
2014). Additionally, note that the historical simulations span
165 years; however, to eliminate the influence of volcanic
eruptions (Krakatoa in 1883-1884, Agung in 1963-1964, El
Chichén in 1982-1983, and Pinatubo in 1991-1992) that per-
turbed the TOA fluxes in ways unrelated to internal vari-
ability, we excluded the corresponding years from the time
series. As a result, the length of the record was reduced to
157 years.

The results reveal three key points. First, the significance
of the relationship for the net feedback depends on the cho-
sen time span for estimating internal variability net feed-
back (Fig. 2b). Secondly, this dependency eventually weak-
ens, and notably robust and significant relationships between
internal variability and forced climate net feedbacks emerge.
Thirdly, while the weaker covariance between longwave in-
ternal variability and longwave forced climate feedbacks pri-
marily contributes to the weak correlation during the CERES
period, the covariance between shortwave internal variabil-
ity and shortwave forced climate feedbacks is responsible
for bolstering the relationship between net feedbacks when
extending the data record (Fig. 2a). Accounting for the cor-
responding years that are excluded from the analysis due to
volcanic eruptions, this period represents an effective record
length of 51 years. Consequently, if observational records
were long enough, they could aid in constraining the forced
climate net feedback. However, due to the limited availabil-
ity of observational data (Fig. 2), obtaining a purely obser-
vational estimate of net internal variability feedback to con-
strain net forced climate feedbacks is not feasible at this point
in time.

Combining the Earth Radiation Budget Experiment
(ERBE) satellite record, which started in 1985, with the ex-
isting CERES data (Allan et al., 2014) extends the available
observational period to 37 years. Thus, about 14 years of ad-
ditional continuous observational data, undisturbed by vol-
canoes, would need to be collected to reach a total of 51
years. To assess the likelihood of a significant relationship
between internal variability and forced climate net feedbacks
in CMIP6 coupled models over a 51-year window other than
1958-2014, we calculate the frequency distribution of p val-
ues between them for all 51-year non-volcano consecutive
periods between 1850 and 2014 (Fig. 2c). The analysis re-
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Figure 2. (a) The first (blue line), second (blue crosses), third (red
line), and fourth (red crosses) contributors to the correlation co-
efficient between internal variability and forced climate net feed-
backs (Eq. 2). (b) The correlation coefficient (black line) and p
value (green line) between internal variability and forced climate
net feedbacks, with horizontal dashed lines indicating a correlation
of 0.5 and a p value of 5 %. The values are computed between the
net internal variability feedback estimated for the starting year to
2014 time window and net forced climate feedback. The vertical
line in panels (a) and (b) marks the initial year when the relationship
approximately stabilizes, while the shaded gray regions represent
the CERES (2000-present), ERBE (1985-2000), and ERAS5 (1940-
present) periods. (¢) The frequency distribution of p values from
decorrelation tests between internal variability and forced climate
net feedbacks in CMIP6 coupled models over all 51-year windows
between 1850 and 2014.
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veals a high frequency of p values below 1 %, indicating a
strong likelihood that with an additional 14 years of satellite
data from the end of 2023, the use of purely observed internal
variability net feedback as a constraint on net forced climate
feedback would be feasible and reliable.

So far we have demonstrated the emergence of relation-
ships between forced climate and internal variability net
feedbacks. The most recent potential relationship, between
1958 and 2014, unfortunately has missing periods of obser-
vational data. While future efforts may yield enough obser-
vations to cover the same time span as the emergent relation-
ship, historical simulations end in 2014, and if they are not
updated alongside new data collection, this poses the ques-
tion of whether an emergent relationship from one period can
be applied to observations from another period, as it has been
suggested in other studies (e.g., Dessler and Forster, 2018).
Alternatively, there is the consideration of using the emergent
relationship from 1958-2014 with the available 14 years of
CERES observations; however, a key question remains: are
14 years of internal variability feedback observations signif-
icantly representative of a S1-year span? We address these
questions in the following section.

3.3 The minimal requirements for a reliable emergent
constraint estimation

We now examine the question concerning the applicability
of emergent relationships between forced climate and inter-
nal variability net feedbacks to different periods. Our analy-
sis addresses the practicality of applying the emergent rela-
tionship between 1958 and 2014 to periods without overlap-
ping observations and examines the comparability between
14-year internal variability feedback observations and those
spanning 51 years. Through these investigations, we aim to
uncover the essential requirements necessary to establish a
statistically robust emergent constraint on forced net climate
feedback.

To assess the transferability of the emergent relationship
from the 1958-2014 period to observation periods of the
equivalent duration but from different years, we employ a
proof by contrapositive approach. We hypothesize that ob-
servations from one 51-year period can be used with the
model relationship between A from a different 51-year pe-
riod and A.p to derive the emergent constraint. If this hy-
pothesis is valid, model relationships derived from different
51-year periods for Aj should be statistically similar. There-
fore, we compute the slopes and intercepts of all potential
51-year model relationships from 1850-2014 and compare
them with the confidence intervals of their means. The anal-
ysis results (Fig. 3a and b) indicate significant discrepancies
in both the slope and intercept of the 51-year emergent rela-
tionships when compared to their mean confidence intervals.
However, there is some degree of similarity, with slopes and
intercepts from adjacent time periods sometimes showing
close values, yet this trend is not consistent across the entire
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analyzed period. Thus, the acceptable degree of mismatch
between time periods needed to calculate internal variabil-
ity from observations and models for deriving emergent con-
straints on forced climate feedbacks depends on the specific
periods being compared. These discrepancies underscore the
risk of using emergent relationships and observations from
51-year periods that originate from different years. The emer-
gent relationship in one 51-year period may not align signifi-
cantly with that of another period, potentially misleading the
interpretation of forced climate net feedbacks and undermin-
ing the reliability of emergent constraints.

In addressing the second question, regarding the use of ob-
served internal variability feedback from the 14-year period
(2001-2014) with the emergent relationship from the period
1958-2014 to constrain forced climate net feedback, the hy-
pothesis is that, if valid, there should be no significant dif-
ferences between any 14-year internal variability net feed-
back within the 1958-2014 period and the corresponding net
feedback of this period. Using ERAS reanalysis data, all con-
ceivable 14-year internal variability net feedbacks were cal-
culated and compared with the 5 %—95 % confidence inter-
val of the internal variability net feedback of these 51 years
(Fig. 3c). The results indicate significant differences, negat-
ing the hypothesis. Consequently, using the 14-year CERES
observations (2001-2014) in conjunction with the emergent
relationship (1958-2014) to constrain forced climate feed-
back could yield erroneous results, as a given 14-year period
may have observed internal variability that is significantly
different from another.

Whereas the above analysis highlights that a 14-year pe-
riod will not yield a statistically significant internal variabil-
ity net feedback estimation, we next ask how long of an ob-
servation period is required to yield a significant estimate.
This minimal period length (n years) should show signifi-
cant agreement between all conceivable internal variability
net feedback within the 51-year time frame and that esti-
mated from the entire period. To investigate the existence of
such a period, we calculated all conceivable internal vari-
ability net feedbacks over different n-year periods within
the 1958-2014 time frame. We then determined the percent-
age of internal variability net feedback that deviated from
the confidence intervals of the total period internal variabil-
ity net feedback for each n (Fig. 3d). The results indicate
that for a 40-year period or longer, the internal variability
net feedback estimate is not significantly different from that
of the 1958-2014 period. This suggests that after merging
the CERES (2001-2014) and ERBE (1985-2000) datasets,
only 12 non-volcanic years (1971-1984) would be required
to meet the minimum time requirement. It is worth noting
that the time span from 1971-2014 is 44 years, but by ex-
cluding volcanic eruption years (El Chichén and Pinatubo),
the effective time span is reduced to 40 years. In the follow-
ing section, we leverage ERAS reanalysis and statistical time
series modeling to satisfy the above conditions and construct
an emergent constraint on forced net climate feedback.

Atmos. Chem. Phys., 24, 13371-13384, 2024
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Figure 3. Regression slopes (a) and intercepts (b) of the linear relationship between internal variability and forced climate net feedbacks for
all potential 51-year continuous periods spanning from 1850-2014 in CMIP6 coupled simulations and the 5 %—95 % confidence intervals on
their mean (blue). (¢) ERAS internal variability net feedbacks for every possible 14-year interval spanning from 1958-2014. The shaded blue
intervals represent the 5 %—95 % confidence intervals across the entire time span. (d) Percentage of periods outside the confidence intervals
of internal variability net feedbacks for the 1958-2014 period relative to the period length.

3.4 Extending the observational record with reanalysis
data

As we have shown in the previous section, about 40 years
of observations within the period where the relationship in
models emerges is the minimum requirement to establish an
emergent constraint on the forced net climate feedback. The
combined CERES-ERBE dataset (1985-2014) contains 28
non-volcanic years, leaving 12 non-volcanic years missing
to meet the required time frame. In this section, we turn to
ERAS reanalysis data as a proxy for satellite observations
to fill the observational gap and extend the accessible time

Atmos. Chem. Phys., 24, 13371-13384, 2024

span (1971-2014) for estimating internal variability net feed-
backs. Before proceeding, however, a detailed examination
of the ERAS reanalysis is essential, since in a reanalysis the
radiative fluxes are not directly constrained by observations
but are derived from calculations based on the atmospheric
state. While the distribution of temperature and water vapor
is relatively well-constrained in a reanalysis, the representa-
tion of clouds is less constrained, resulting in radiative fluxes
that may be less consistent with observations than other vari-
ables.

https://doi.org/10.5194/acp-24-13371-2024
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To assess the extent to which ERAS captures the patterns
and variations present in the observational data, we con-
duct a comparison of the global weighted mean TOA fluxes
from ERAS with those obtained from the combined CERES—
ERBE dataset over the overlapping period of 1985-2019
(Fig. 4). The high correlation coefficients obtained from the
comparison indicate that the reanalysis effectively represents
the variations affecting the TOA fluxes (Fig. 4a). However,
a closer examination reveals that ERAS has a distinct error
pattern (Fig. 4a). Broadly speaking, this pattern indicates a
systematic underestimation of longwave fluxes and an over-
estimation of shortwave fluxes. Interestingly, these individual
errors appear to cancel each other out, leading to a net flux
that is in relatively good agreement with the observed data.

Furthermore, a closer look at these errors reveals several
predictable time series characteristics, such as temporal au-
tocorrelation, seasonality, and trends (not shown). Notably,
these features are more pronounced in the shortwave and net
TOA fluxes, while they are less apparent in the longwave.
Such characteristics highlight the potential of utilizing time
series statistical modeling techniques for predicting errors in
the reanalysis that then in turn can be used to fill periods
lacking observations. Guided by the recognized characteris-
tics, we chose a seasonal autoregressive integrated moving
average (SARIMA) model (Box et al., 2008).

To build the model, we divided the time series into a
training set (January 1987 to December 2019), allowing the
model to learn patterns and relationships within the data
(Fig. 4a). We then evaluate the model’s performance using
a test over an independent time period not seen during train-
ing (January 1985 to December 1986). This test ensures that
the model can accurately predict TOA fluxes for unseen pe-
riods. Note that, given the ability of the SARIMA model
to forecast, a reversal in the time series is essential to ad-
dress the need for completing errors in the past. The test
shows excellent performance in predicting shortwave and net
TOA fluxes, while its accuracy is slightly lower for long-
wave (Fig. 4b). This discrepancy may arise from the less pro-
nounced error patterns in longwave. Nevertheless, a majority
of the test observations fall within the confidence intervals
of the model results (the model’s 5 %-95 % confidence in-
tervals encompass roughly 75 % of the longwave, 100 % of
the shortwave, and 87.5 % of the net test datasets), provid-
ing confidence in its predictive capabilities. Using the vali-
dated SARIMA model, we forecast errors from 1971-1984,
enabling the adjustment of ERAS5 TOA fluxes (Fig. 4c). This
ensures a seamless 40-year period representative of the re-
quired 51 years and allows us to establish a constrained emer-
gent relationship in models spanning the period 1958-2014.

Now equipped with an emergent relationship in mod-
els (1958-2014) and a 40-year adjusted observation set
(1971-2014) from ERA5S—CERES-ERBE, we can establish
an emergent constraint on forced climate feedbacks (Fig. 1d,
e, and f). To that end we utilize a Monte Carlo simula-
tion approach. We start by generating a predictor variable
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dataset sampled from a truncated normal distribution based
on the 40-year adjusted ERA5S—CERES-ERBE observations
and their associated confidence intervals. For each sampled
predictor value, we compute the corresponding confidence
interval for the predicted forced climate feedbacks using a
linear model (Ao = mAj+b) that captures the emergent rela-
tionship between forced climate and internal variability feed-
backs. While OLS regression can derive this linear model,
it may underestimate the slope due to regression dilution
caused by uncertainties in the predictors. To account for these
uncertainties in the predictor, we also employ orthogonal dis-
tance regression (ODR). The comparison of the results from
both regression methods (see Table 2) shows a minimal im-
pact of regression dilution on the estimated slope when us-
ing OLS, leading us to choose OLS for its simplicity. Sub-
sequently, we sample from a truncated normal distribution
based on the derived predicted confidence intervals to ad-
dress prediction uncertainties, resulting in a new dataset of
predicted forced climate feedback values. The emergent con-
straint on forced climate feedbacks is then characterized by
the probability density function of this new dataset (insets in
Fig. 1d, e, and f).

Having explained the procedure for the emergent con-
straint, we now focus on the discernible results it pro-
vides. A comparison of the probability distribution me-
dians shows that, for longwave, the emergent constraint
(—1.74Wm2K™) closely matches the model median
(=1.79Wm—2K™) (Fig. 1d). For shortwave, however, the
emergent constraint suggests a less positive forced climate
feedback (0.05Wm—2K™1) compared to the model median
(0.59Wm—2K™h), indicating a reduced shortwave TOA re-
sponse to global warming (Fig. le). As a result, the emer-
gent constraint indicates a more negative forced net climate
feedback (—1.52Wm—2 K1) compared to the model median
(—1.12Wm~—2 K1), reflecting the diminished positive short-
wave feedback (Fig. le). Consequently, based on a radia-
tive forcing for a doubling of carbon dioxide of 3.93 Wm™2
(£0.47 Wm~2 with 5 %-95 % confidence intervals) (IPCC,
2023), our emergent constraint on forced net climate feed-
back suggests an ECS with a median of 2.59 K and 5 %-95 %
confidence intervals spanning from 1.95 to 3.12 K, which is
somewhat lower than the model median of 3.09 K. As an al-
ternative to using the IPCC ARG radiative forcing estimate,
the radiative forcing can be retrieved from the model set by
taking the y intercept of the regression between TOA flux
anomalies and surface temperature anomalies, then dividing
by 2.1 (Gregory et al., 2004; Meinshausen et al., 2020). Here,
the anomalies are computed as the difference between the
abrupt4XCO2 and piControl 150-year experiments. This ap-
proach yields an ECS with a median value of 2.31 K and
5 %-95 % confidence intervals ranging from 1.74 to 2.75 K.
These ECS estimates, although consistent with previous re-
search, lie towards the lower end of the reported ranges
(Dessler and Forster, 2018; Ceppi and Nowack, 2021; Sher-
wood et al., 2020; IPCC, 2023). Lastly, the emergent con-

Atmos. Chem. Phys., 24, 13371-13384, 2024



13380 A. Uribe et al.: Constraining net long-term climate feedback

B

4] — Train r: 0.99

—— Test

Longwave
o

Shortwave

N r: 0.99
51
b iy
-2
-4 T T T T T T T T
2020 2016 2012 2008 2004 2000 1996 1992 1988
(b)
0 —— Model
—— Test
o
g1
2
S
g
S 24
2]
o
>
g
5
g
&

o

L1

Q

=2
OW

@ : :Z’IEOFL:EIS_ERBE
A AR A st
(“;,,‘,.“.frw,‘,",f“li‘irH{‘yv,"v, ARA

N
kN
el
—
—
—
—
—
—
—
—
—
—
—
—
—
—
——
—
—
=
—
—
——

Shortwave
NN
[N
[ =)

N}
w
=3

-
=)

-10

2020 2015 2010 2005 2000 1995 1990 1985 1980 1975
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Table 2. Forced climate and internal variability feedback regression coefficients depending on the choice of regression method.

Longwave ‘ Shortwave ‘ Net

OLS ODR | OLS ODR | OLS ODR
Slope 057 057 | 074 074 | 057 062
Intercept [Wm—2K~!] —0.77 —-076 | —026 —026 | —0.82 —0.80

straint outlined above, along with a comparison between sim-
ulated and adjusted ERA5—CERES-ERBE observational in-
ternal variability feedback, indicates that models exhibiting
moderate negative longwave, weakly positive shortwave, and
strongly negative net feedbacks are in better agreement with
observations (Fig. 5g, h, and 1).

However, three critical factors must be considered. First,
the method used here assumes that the relationship between
internal variability and forced climate feedbacks identified
in models also applies to the real world. Yet, those mod-
els often fail to accurately replicate observed sea surface
temperature trend patterns (e.g., Armour et al., 2024; Wills
et al., 2022; Seager et al., 2022), which can influence forced
climate feedbacks. This mismatch may result in deviations
between model-based and real-world relationships between
internal variability and forced climate feedbacks. Second,
uncertainties in the model emergent relationship within the
adjusted ERAS—CERES-ERBE period, particularly because
most models simulate internal variability net feedback values
significantly outside the observed range (Fig. 1f), reduce con-
fidence in the emergent constraint. Finally, the emergent con-
straint is derived from a 40-year adjusted ERA5-CERES—
ERBE period, which implies reduced confidence compared
to a purely observational 51-year dataset. Given these limita-
tions, it is important to interpret the presented emergent con-
straint not as strong evidence, but rather as a prediction of the
potential insights that could be gained with a little more than
a decade of additional observations.

4 Conclusions

A study of the relationships between internal variability and
forced climate feedbacks in models of the sixth generation
of the Coupled Model Intercomparison Project is presented.
Consistent with previous research (Uribe et al., 2022) we
find evidence indicating that the strength of longwave and
shortwave forced climate feedback is related to their inter-
nal variability feedback during the period of overlap be-
tween CERES data and historical simulations. Moreover,
our results indicate that the inclusion of additional ensemble
members in the estimation of internal variability feedbacks
improves their robustness and representativeness, thereby
strengthening the relationship between internal variability
and forced climate feedbacks.

https://doi.org/10.5194/acp-24-13371-2024

Nevertheless, when the longwave and shortwave feed-
back components are combined to estimate the net feedback,
the relationship breaks down. We showed that the relatively
weaker relationship between longwave internal variability
and longwave forced climate feedbacks played a significant
role in the reduced relationship between internal variability
and forced climate net feedbacks during the CERES period.

To determine the relationship between internal variability
and forced net climate feedback in CMIP6 coupled simula-
tions, we extend the analysis to encompass time periods be-
yond the constraints of CERES observations. The results in-
dicate robust and statistically significant relationships within
the model set, with increased statistical stability for a period
of at least half a century, excluding years with volcanic erup-
tions (1958-2014). The improvement observed in the rela-
tionship stems from a strengthening of the correlation be-
tween shortwave internal variability and shortwave forced
climate feedbacks when extending the period. This increase
compensates for the relatively weaker correlation between
longwave internal variability and longwave forced climate
feedback. Given that the CERES record begins in 2000, our
analysis suggests that it would be necessary to wait until ap-
proximately 2051 to accumulate the necessary satellite ob-
servations for the use of purely observational data in con-
straining forced climate feedbacks. However, a possible so-
lution to reduce this waiting time is to combine the CERES
record with the ERBE satellite record, which could poten-
tially reduce the time horizon to the mid-2030s.

We then find that a time frame of about 40 years, within
the period wherein the model internal variability net feed-
back demonstrates a relatively robust relationship with the
model forced net climate feedback, represents the essential
criteria for employing observations to establish an emergent
constraint on forced net climate feedback. Leveraging the
1985-2014 CERES-ERBE dataset, which includes 28 non-
volcanic years, we employ time series modeling to adjust
ERAS reanalysis data. This adjusted reanalysis data record
serves as a surrogate for satellite observations, with the goal
of filling the observational gap and extending the available
time frame for estimating observed internal variability net
feedback (1971-2014).

Using this extended observation set (1971-2014) in con-
junction with the emergent statistical relationship in mod-
els (1958-2014), we derive an estimated emergent constraint
on forced climate feedbacks. This constraint manifests as
a reduction in the uncertainty associated with forced cli-

Atmos. Chem. Phys., 24, 13371-13384, 2024
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Figure 5. Probability of longwave (a, d, g), shortwave (b, e, h), and net (c, f, i) internal variability feedbacks from models falling within
observed uncertainty ranges. The top and center panels show CMIP and AMIP simulations, respectively, alongside CERES observations
for the period 20012014, while the bottom panel illustrates CMIP simulations and the combined CERES-ERBE-ERAS5 covering the
broader time frame from 1958-2014. The x axis organizes models in ascending order based on internal variability feedback values, with

the corresponding values enclosed in parentheses.
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net feedback, and consequently, a lower equilibrium climate

sensitivity relative to the CMIP6 model distribution. In par-

more, it is important to recognize that these emergent con-
straints are derived from a 40-year adjusted ERA5-CERES-

ERBE period, indicating a reduced level of confidence com-

pared to a purely observational 51

ticular, it is highlighted that models with moderate negative

longwave, weakly positive shortwave, and strongly negative

net feedbacks are more consistent with observations.

year dataset, highlighting

s

1, a few final notes of caution are warranted. First

Howeve
at the timescales we are examining,

the need for long-term continuous monitoring of Earth’s radi-
ation budget. Given these limitations, it is advisable to inter-

some bio-

geophysical and biogeochemical feedbacks may not be ac-

)

for example

pret the emergent constraint results carefully, understanding
that they serve as indicative illustrations rather than strictly

observational evidence.

tive (e.g., changes in methane, aerosols, ozone, or vegeta-

tion), and several of the models used also do not incorporate

them. Consequently, this absence may lead to an underes-

timation of ECS to some extent. Second, it remains uncer-

tain whether the identified model relationship between in-
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