Articles | Volume 23, issue 13
https://doi.org/10.5194/acp-23-7839-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7839-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical distribution of sources and sinks of volatile organic compounds within a boreal forest canopy
Ross Petersen
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Thomas Holst
CORRESPONDING AUTHOR
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Meelis Mölder
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Natascha Kljun
Centre for Environmental and Climate Science, Lund University, Lund,
Sweden
Janne Rinne
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Natural Resources Institute Finland (Luke), Helsinki, Finland
Related authors
Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3410, https://doi.org/10.5194/egusphere-2024-3410, 2024
Short summary
Short summary
Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
Biogeosciences, 22, 4061–4086, https://doi.org/10.5194/bg-22-4061-2025, https://doi.org/10.5194/bg-22-4061-2025, 2025
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites, we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Rainer Hilland, Josh Hashemi, Stavros Stagakis, Dominik Brunner, Lionel Constantin, Natascha Kljun, Betty Molinier, Samuel Hammer, Lukas Emmenegger, and Andreas Christen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1088, https://doi.org/10.5194/egusphere-2025-1088, 2025
Short summary
Short summary
We present a study of simultaneously measured fluxes of carbon dioxide (CO2) and co-emitted species in the city of Zurich. Flux measurements of CO2 alone can’t be attributed to specific emission sectors, such as road transport or residential heating. We present a model which uses the measured ratios of CO2 to carbon monoxide (CO) and nitrogen oxides (NOx) as well as sector-specific reference ratios, to attribute measured fluxes to their emission sectors.
Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3410, https://doi.org/10.5194/egusphere-2024-3410, 2024
Short summary
Short summary
Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes.
Julia Kelly, Stefan H. Doerr, Johan Ekroos, Theresa S. Ibáñez, Md. Rafikul Islam, Cristina Santín, Margarida Soares, and Natascha Kljun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2016, https://doi.org/10.5194/egusphere-2024-2016, 2024
Preprint archived
Short summary
Short summary
We measured soil carbon fluxes during the first four years after a wildfire in the Swedish boreal forest. Soil CO2 emissions decreased substantially only when trees were killed by fire or by post-fire logging, but not when trees survived the fire and were left standing. Soil methane flux was not affected by fire. Logging trees already killed by fire had no additional impact on soil carbon fluxes. Post-fire forest management strategy impacted vegetation regrowth and carbon dynamics.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-373, https://doi.org/10.5194/egusphere-2024-373, 2024
Preprint archived
Short summary
Short summary
Our study employs an Adaptive MCMC algorithm (GRaB-AM) to constrain process parameters in the wetlands emission module of the LPJ-GUESS model, using CH4 EC flux observations from 14 diverse wetlands. We aim to derive a single set of parameters capable of representing the diversity of northern wetlands. By reducing uncertainties in model parameters and improving simulation accuracy, our research contributes to more reliable projections of future wetland CH4 emissions and their climate impact.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Malika Menoud, Carina van der Veen, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, James L. France, Rebecca E. Fisher, Hossein Maazallahi, Mila Stanisavljević, Jarosław Nęcki, Katarina Vinkovic, Patryk Łakomiec, Janne Rinne, Piotr Korbeń, Martina Schmidt, Sara Defratyka, Camille Yver-Kwok, Truls Andersen, Huilin Chen, and Thomas Röckmann
Earth Syst. Sci. Data, 14, 4365–4386, https://doi.org/10.5194/essd-14-4365-2022, https://doi.org/10.5194/essd-14-4365-2022, 2022
Short summary
Short summary
Emission sources of methane (CH4) can be distinguished with measurements of CH4 stable isotopes. We present new measurements of isotope signatures of various CH4 sources in Europe, mainly anthropogenic, sampled from 2017 to 2020. The present database also contains the most recent update of the global signature dataset from the literature. The dataset improves CH4 source attribution and the understanding of the global CH4 budget.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
László Haszpra, Zoltán Barcza, Zita Ferenczi, Roland Hollós, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech., 15, 5019–5031, https://doi.org/10.5194/amt-15-5019-2022, https://doi.org/10.5194/amt-15-5019-2022, 2022
Short summary
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among other results, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to international databases.
Joel Dawson White, Lena Ström, Veiko Lehsten, Janne Rinne, and Dag Ahrén
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-353, https://doi.org/10.5194/bg-2021-353, 2022
Revised manuscript not accepted
Short summary
Short summary
Microbes that produce CH4 play an important role to climate. Microbes which emit CH4 from wetlands is poorly understood. We observed that microbial community was of importance in explaining CH4 emission. We found, that microbes that produce CH4 hold the ability to produce and consume CH4 in multiple ways. This is important in terms of future climate scenarios, where wetlands are expected to shift. Therefore, we expect the community to be highly adaptive to future climate scenarios.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021, https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Short summary
The reintroduction of American bison creates multiple environmental benefits. Ruminants like bison also emit methane – a potent greenhouse gas – to the atmosphere, which has not been measured to date in a field setting. We measured methane efflux from an American bison herd during winter using eddy covariance. Automated cameras were used to approximate their location to calculate per-animal flux. From the measurements, bison do not emit more methane than the cattle they often replace.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Cited articles
Aalto, J., Kolari, P., Hari, P., Kerminen, V.-M., Schiestl-Aalto, P., Aaltonen, H., Levula, J., Siivola, E., Kulmala, M., and Bäck, J.: New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests, Biogeosciences, 11, 1331–1344, https://doi.org/10.5194/bg-11-1331-2014, 2014.
Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., Hellén, H.,
Kulmala, L., Vesala, T., and Bäck, J.: Boreal pine forest floor biogenic
volatile organic compound emissions peak in early summer and autumn, Agr.
Forest Met., 151, 682–691, 2011.
Amin, H., Atkins, P. T., Russo, R. S., Brown, A. W., Sive, B., Hallar, A.
G., and Huff Hartz, K. E.: Effect of bark beetle infestation on secondary
organic aerosol precursor emissions, Environ. Sci. Technol., 46, 5696–5703,
2012.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11, 8037–8052, https://doi.org/10.5194/acp-11-8037-2011, 2011.
Aubinet, M., Feigenwinter, C., Heinesch, B., Laffineur, Q., Papale, D.,
Reichstein, M., Rinne, J., and Gorsel, E. V.: Nighttime flux correction, in:
Eddy covariance, Springer, 133–157, 2012.
Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.: Chemodiversity of a Scots pine stand and implications for terpene air concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Chameides, W., Fehsenfeld, F., Rodgers, M., Cardelino, C., Martinez, J.,
Parrish, D., Lonneman, W., Lawson, D., Rasmussen, R., and Zimmerman, P.:
Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res.
Atmos., 97, 6037–6055, 1992.
Chameides, W. L.: Acid dew and the role of chemistry in the dry deposition
of reactive gases to wetted surfaces, J. Geophys. Res.-Atmos., 92,
11895–11908, 1987.
Cleveland, W., Grosse, E., and Shyu, W.: Local regression models, Chapter 8,
in: Statistical models in S, edited by: Chambers, J. M. and Hastie, J. T.,
Wadsworth & Brooks/Cole, Pacific Grove, CA, 608 pp, 1992.
Cojocariu, C., Kreuzwieser, J., and Rennenberg, H.: Correlation of
short-chained carbonyls emitted from Picea abies with physiological and
environmental parameters, New Phytol., 162, 717–727, 2004.
Collins, W., Derwent, R., Johnson, C., and Stevenson, D.: The oxidation of
organic compounds in the troposphere and their global warming potentials,
Clim. Change, 52, 453–479, 2002.
Copolovici, L. O. and Niinemets, Ü.: Temperature dependencies of Henry's
law constants and octanol/water partition coefficients for key plant
volatile monoterpenoids, Chemosphere, 61, 1390–1400, 2005.
FAO: Global Forest Resources Assessment 2020, Rome, Italy, 184,
https://doi.org/10.4060/ca8753en, 2020.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt,
C. N., Lamb, B., Liu, S., Trainer, M., and Westberg, H.: Emissions of
volatile organic compounds from vegetation and the implications for
atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430, 1992.
Galbally, I. E. and Kirstine, W.: The production of methanol by flowering
plants and the global cycle of methanol, J. Atmos. Chem., 43, 195–229, 2002.
Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler, J. P., and
Rinne, J.: Determination of de novo and pool emissions of terpenes from four
common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis, Plant
Cell Environ., 33, 781–792, 2010.
Goldberg, V. and Bernhofer, Ch.: Quantifying the coupling degree between land surface and the atmospheric boundary layer with the coupled vegetation-atmosphere model HIRVAC, Ann. Geophys., 19, 581–587, https://doi.org/10.5194/angeo-19-581-2001, 2001.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., and McKay, W.: A global model of
natural volatile organic compound emissions, J. Geophys. Res., 100,
8873–8892, 1995.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: model evaluations
and sensitivity analyses, J. Geophys. Res.-Atmos., 98, 12609–12617, 1993.
Hakola, H., Tarvainen, V., Praplan, A. P., Jaars, K., Hemmilä, M., Kulmala, M., Bäck, J., and Hellén, H.: Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season, Atmos. Chem. Phys., 17, 3357–3370, https://doi.org/10.5194/acp-17-3357-2017, 2017.
Holst, T., Arneth, A., Hayward, S., Ekberg, A., Mastepanov, M., Jackowicz-Korczynski, M., Friborg, T., Crill, P. M., and Bäckstrand, K.: BVOC ecosystem flux measurements at a high latitude wetland site, Atmos. Chem. Phys., 10, 1617–1634, https://doi.org/10.5194/acp-10-1617-2010, 2010.
Hüve, K., Christ, M., Kleist, E., Uerlings, R., Niinemets, Ü.,
Walter, A., and Wildt, J.: Simultaneous growth and emission measurements
demonstrate an interactive control of methanol release by leaf expansion and
stomata, J. Exp. Bot., 58, 1783–1793, 2007.
Jardine, K. J., Sommer, E. D., Saleska, S. R., Huxman, T. E., Harley, P. C.,
and Abrell, L.: Gas phase measurements of pyruvic acid and its volatile
metabolites, Environ. Sci. Technol., 44, 2454-2460, 2010.
Jarvis, P. G. and McNaughton, K.: Stomatal control of transpiration: scaling
up from leaf to region, in: Adv. Ecol. Res., Elsevier, 1–49, 1986.
Kainulainen, P. and Holopainen, J.: Concentrations of secondary compounds in
Scots pine needles at different stages of decomposition, Soil Biol.
Biochem., 34, 37–42, 2002.
Karl, T., Curtis, A., Rosenstiel, T., Monson, R., and Fall, R.: Transient
releases of acetaldehyde from tree leaves- products of a pyruvate overflow
mechanism?, Plant Cell Environ., 25, 1121–1131, 2002.
Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J. D.,
and Geron, C.: Exchange processes of volatile organic compounds above a
tropical rain forest: Implications for modeling tropospheric chemistry above
dense vegetation, J. Geophys. Res.-Atmos., 109, D18306, https://doi.org/10.1029/2004JD004738, 2004.
Kljun, N., Calanca, P., Rotach, M., and Schmid, H. P.: A simple
two-dimensional parameterisation for Flux Footprint Prediction (FFP),
Geosci. Instrum. Dev., 8, 3695–3713, 2015.
Kreuzwieser, J., Scheerer, U., and Rennenberg, H.: Metabolic origin of
acetaldehyde emitted by poplar (Populus tremula × P. alba) trees, J.
Exp. Bot., 50, 757–765, 1999.
Kreuzwieser, J., Kühnemann, F., Martis, A., Rennenberg, H., and Urban,
W.: Diurnal pattern of acetaldehyde emission by flooded poplar trees,
Physiol. Plant., 108, 79–86, 2000.
Lagergren, F., Eklundh, L., Grelle, A., Lundblad, M., Mölder, M.,
Lankreijer, H., and Lindroth, A.: Net primary production and light use
efficiency in a mixed coniferous forest in Sweden, Plant Cell Environ., 28,
412–423, 2005.
Liedvogel, B. and Stumpf, P. K.: Origin of acetate in spinach leaf cell,
Plant Physiol., 69, 897–903, 1982.
Lindfors, V. and Laurila, T.: Biogenic volatile organic compound (VOC)
emissions from forests in Finland, Boreal Environ. Res., 5, 95–113, 2000.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) medical applications, food control and environmental
research, Int. J. Mass Spectrom. Ion Proc., 173, 191–241, 1998.
Lindroth, A., Grelle, A., and Morén, A. S.: Long-term measurements of
boreal forest carbon balance reveal large temperature sensitivity, Global
Change Biol., 4, 443–450, 1998.
Loreto, F. and Schnitzler, J.-P.: Abiotic stresses and induced BVOCs, Trends
Plant Sci., 15, 154–166, 2010.
Lundin, L.-C., Halldin, S., Lindroth, A., Cienciala, E., Grelle, A., Hjelm,
P., Kellner, E., Lundberg, A., Mölder, M., and Morén, A.-S.:
Continuous long-term measurements of soil-plant-atmosphere variables at a
forest site, Agr. Forest Met., 98, 53–73, 1999.
Macdonald, R. C. and Fall, R.: Acetone emission from conifer buds,
Phytochemistry, 34, 991–994, 1993a.
MacDonald, R. C. and Fall, R.: Detection of substantial emissions of
methanol from plants to the atmosphere, Atmos. Environ., 27, 1709–1713,
1993b.
Mäki, M., Aalto, J., Hellén, H., Pihlatie, M., and Bäck, J.:
Interannual and seasonal dynamics of volatile organic compound fluxes from
the boreal forest floor, Front. Plant Sci., 10, 191, https://doi.org/10.3389/fpls.2019.00191, 2019a.
Mäki, M., Aaltonen, H., Heinonsalo, J., Hellén, H., Pumpanen, J.,
and Bäck, J.: Boreal forest soil is a significant and diverse source of
volatile organic compounds, Plant Soil, 441, 89–110, 2019b.
McKeen, S., Gierczak, T., Burkholder, J., Wennberg, P., Hanisco, T., Keim,
E., Gao, R. S., Liu, S., Ravishankara, A., and Fahey, D.: The photochemistry
of acetone in the upper troposphere: A source of odd-hydrogen radicals,
Geophys. Res. Lett., 24, 3177–3180, 1997.
Menke, W.: Geophysical data analysis: Discrete inverse theory, Elsevier,
Amsterdam, ISBN 0128135565, 2018.
Mölder, M.: Ecosystem meteo time series (ICOS Sweden), Norunda, 2013-12-31–2014-12-31, Swedish National Network [data set], https://hdl.handle.net/11676/yG6UlHP3q-neb9LtWzJDjS19, 2021a.
Mölder, M.: Ecosystem meteo time series (ICOS Sweden), Norunda, 2014-12-31–2015-12-31, Swedish National Network [data set], https://hdl.handle.net/11676/SdShYH4bm2EnI7aVkb1mNGhP, 2021b.
Mölder, M.: Ecosystem meteo time series (ICOS Sweden), Norunda, 2015-12-31–2016-12-31, Swedish National Network [data set], https://hdl.handle.net/11676/WXPGw0vFQSn0sbTJfcfyIr-8, 2021c.
Mölder, M.: Ecosystem fluxes time series (ICOS Sweden), Norunda, 2013-12-31–2015-12-31, Swedish National Network [data set], https://hdl.handle.net/11676/qyMU6743pCyzN4O1W3QySiaN, 2021d.
Mölder, M.: Ecosystem fluxes time series (ICOS Sweden), Norunda, 2015-12-31–2016-12-31, Swedish National Network [data set], https://hdl.handle.net/11676/zy5KP3RE5jZYP7IQ-gjn4nqs, 2021e.
Mölder, M., Klemedtsson, L., and Lindroth, A.: Turbulence
characteristics and dispersion in a forest – tests of Thomson's
random-flight model, Agr. Forest Met., 127, 203–222, 2004.
Nemitz, E., Sutton, M. A., Gut, A., San José, R., Husted, S., and
Schjoerring, J. K.: Sources and sinks of ammonia within an oilseed rape
canopy, Agr. Forest Met., 105, 385–404, 2000.
Niinemets, Ü.: Mild versus severe stress and BVOCs: thresholds, priming
and consequences, Trends Plant Sci., 15, 145–153, 2010.
Niinemets, Ü. and Monson, R. K.: Biology, controls and models of tree
volatile organic compound emissions, Springer, ISBN 9400766068, 2013.
Niinemets, Ü. and Reichstein, M.: Controls on the emission of plant
volatiles through stomata: Differential sensitivity of emission rates to
stomatal closure explained, J. Geophys. Res.-Atmos., 108, 4208, https://doi.org/10.1029/2002JD002620, 2003.
Noe, S., Copolovici, L., Niinemets, Ü., and Vaino, E.: Foliar limonene
uptake scales positively with leaf lipid content: “non-emitting” species
absorb and release monoterpenes, Plant Biol., 9, 79–86, 2007.
Ouwersloot, H. G., Vilà-Guerau de Arellano, J., Nölscher, A. C., Krol, M. C., Ganzeveld, L. N., Breitenberger, C., Mammarella, I., Williams, J., and Lelieveld, J.: Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010, Atmos. Chem. Phys., 12, 9335–9353, https://doi.org/10.5194/acp-12-9335-2012, 2012.
Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K., Äijälä, M., Junninen, H., Holst, T., Abbatt, J. P., Arneth, A., Birmili, W., van der Gon, H. D., Hamed, A., Hoffer, A., Laakso, L., Laaksonen, A., Leaitch, W. R., Plass-Dülmer, C., Prylor, S. C., Räisänen, P., Swietlicki, E., Wiedensohler, A., Worsnop, D. R., Kerminen, V.-M., and Kulmala, M.: Warming-induced increase in aerosol number concentration likely to moderate climate change, Nat. Geosci., 6, 438–442, 2013.
Rantala, P., Aalto, J., Taipale, R., Ruuskanen, T. M., and Rinne, J.: Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere, Biogeosciences, 12, 5753–5770, https://doi.org/10.5194/bg-12-5753-2015, 2015.
Rantala, P., Taipale, R., Aalto, J., Kajos, M. K., Patokoski, J., Ruuskanen,
T. M., and Rinne, J.: Continuous flux measurements of VOCs using
PTR-MS – reliability and feasibility of disjunct-eddy-covariance,
surface-layer-gradient, and surface-layer-profile methods, Boreal Environ.
Res., 19, 87–107, 2014.
Raupach, M.: Applying Lagrangian fluid mechanics to infer scalar source
distributions from concentration profiles in plant canopies, Agr. Forest
Met., 47, 85–108, 1989.
Raupach, M., Coppin, P., and Legg, B.: Experiments on scalar dispersion
within a model plant canopy part I: The turbulence structure, Bound. Lay.
Meteorol., 35, 21–52, 1986.
Rebmann, C., Aubinet, M., Schmid, H., Arriga, N., Aurela, M., Burba, G.,
Clement, R., De Ligne, A., Fratini, G., and Gielen, B.: ICOS eddy covariance
flux-station site setup: a review, Int. Agrophys., 32, 471–494, 2018.
Rinne, J., Bäck, J., and Hakola, H.: Biogenic volatile organic compound
emissions from the Eurasian taiga: current knowledge and future directions,
Boreal Environ. Res., 14, 807–826, 2009.
Rinne, J., Ruuskanen, T. M., Reissell, A., Taipale, R., Hakola, H., and
Kulmala, M.: On-line PTR-MS measurements of atmospheric concentrations of
volatile organic compounds in a European boreal forest ecosystem, Boreal
Environ. Res., 10, 425–436, 2005.
Rinne, J., Taipale, R., Markkanen, T., Ruuskanen, T. M., Hellén, H., Kajos, M. K., Vesala, T., and Kulmala, M.: Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling, Atmos. Chem. Phys., 7, 3361–3372, https://doi.org/10.5194/acp-7-3361-2007, 2007.
Rinne, J., Markkanen, T., Ruuskanen, T. M., Petäjä, T., Keronen, P., Tang, M. J., Crowley, J. N., Rannik, Ü., and Vesala, T.: Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model, Atmos. Chem. Phys., 12, 4843–4854, https://doi.org/10.5194/acp-12-4843-2012, 2012.
Roberts, J. M., Flocke, F., Stroud, C. A., Hereid, D., Williams, E.,
Fehsenfeld, F., Brune, W., Martinez, M., and Harder, H.: Ground-based
measurements of peroxycarboxylic nitric anhydrides (PANs) during the 1999
Southern Oxidants Study Nashville Intensive, J. Geophys. Res.-Atmos., 107,
ACH 1-1-ACH 1-10, 2002.
Roldin, P., Ehn, M., Kurtén, T., Olenius, T., Rissanen, M. P., Sarnela,
N., Elm, J., Rantala, P., Hao, L., and Hyttinen, N.: The role of highly
oxygenated organic molecules in the Boreal aerosol-cloud-climate system,
Nat. Commun., 10, 4370, https://doi.org/10.1038/s41467-019-12338-8, 2019.
Ruuskanen, T. M., Taipale, R., Rinne, J., Kajos, M. K., Hakola, H., and Kulmala, M.: Quantitative long-term measurements of VOC concentrations by PTR-MS: annual cycle at a boreal forest site, Atmos. Chem. Phys. Discuss., 9, 81–134, https://doi.org/10.5194/acpd-9-81-2009, 2009.
Schade, G. W. and Goldstein, A. H.: Increase of monoterpene emissions from a
pine plantation as a result of mechanical disturbances, Geophys. Res. Lett.,
30, 1380, https://doi.org/10.1029/2002GL016138, 2003.
Schurgers, G., Arneth, A., Holzinger, R., and Goldstein, A. H.: Process-based modelling of biogenic monoterpene emissions combining production and release from storage, Atmos. Chem. Phys., 9, 3409–3423, https://doi.org/10.5194/acp-9-3409-2009, 2009.
Seco, R., Penuelas, J., and Filella, I.: Short-chain oxygenated VOCs:
Emission and uptake by plants and atmospheric sources, sinks, and
concentrations, Atmos. Environ., 41, 2477–2499, 2007.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, ISBN 1118591364, 2016.
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A.,
Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., and Owen, S.:
Inventorying emissions from nature in Europe, J. Geophys. Res.-Atmos., 104,
8113-08152, 1999.
Siqueira, M., Katul, G., and Lai, C.-T.: Quantifying net ecosystem exchange
by multilevel ecophysiological and turbulent transport models, Adv. Water Res., 25,
13570–1366, 2002.
Siqueira, M., Lai, C. T., and Katul, G.: Estimating scalar sources, sinks,
and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse
models, J. Geophys. Res.-Atmos., 105, 29475–29488, 2000.
Siqueira, M., Leuning, R., Kolle, O., Kelliher, F., and Katul, G.: Modelling
sources and sinks of CO2, H2O and heat within a Siberian pine forest using
three inverse methods, Quarterly Journal of the Royal Meteorological
Society: A journal of the atmospheric sciences, applied meteorology and
physical oceanography, Q. J. Roy. Meteor. Soc., 129, 1373–1393, 2003.
Steinbacher, M., Dommen, J., Ammann, C., Spirig, C., Neftel, A., and Prevot,
A.: Performance characteristics of a proton-transfer-reaction mass
spectrometer (PTR-MS) derived from laboratory and field measurements, Int.
J. Mass Spec., 239, 117–128, 2004.
Taipale, R., Kajos, M. K., Patokoski, J., Rantala, P., Ruuskanen, T. M., and Rinne, J.: Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest, Biogeosciences, 8, 2247–2255, https://doi.org/10.5194/bg-8-2247-2011, 2011.
Tani, A., Hayward, S., and Hewitt, C.: Measurement of monoterpenes and
related compounds by proton transfer reaction-mass spectrometry (PTR-MS),
Int. J. Mass Spec., 223, 561–578, 2003.
Tarvainen, V., Hakola, H., Rinne, J., Hellén, H., and Haapanala, S.:
Towards a comprehensive emission inventory of terpenoids from boreal
ecosystems, Tellus B, 59, 526–534, 2007.
Thomsen, D., Elm, J., Rosati, B., Skønager, J. T., Bilde, M., and
Glasius, M.: Large discrepancy in the formation of secondary organic
aerosols from structurally similar monoterpenes, ACS Earth Space
Chem., 5, 632–644, 2021.
Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F.: Influence of
light and temperature on monoterpene emission rates from slash pine, Plant
Physiol., 65, 797–801, 1980.
Vilà-Guerau de Arellano, J., van den Dries, K., and Pino, D.: On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements, Atmos. Chem. Phys., 9, 3629–3640, https://doi.org/10.5194/acp-9-3629-2009, 2009.
Wang, M., Schurgers, G., Arneth, A., Ekberg, A., and Holst, T.: Seasonal
variation in biogenic volatile organic compound (BVOC) emissions from Norway
spruce in a Swedish boreal forest, Boreal Environ. Res., 22, 353–367, 2017.
Wang, M., Schurgers, G., Hellén, H., Lagergren, F., and Holst, T.:
Biogenic volatile organic compound emissions from a boreal forest floor,
Boreal Environ. Res., 23, 249–265, 2018.
Warland, J. S. and Thurtell, G. W.: A Lagrangian solution to the
relationship between a distributed source and concentration profile,
Bound. Lay. Meteorol., 96, 453–471, 2000.
Wilson, J. D. and Flesch, T. K.: Flow boundaries in random-flight dispersion
models: enforcing the well-mixed condition, J. Appl. Meteorol. Clim., 32, 1695–1707, 1993.
Wohlfahrt, G., Amelynck, C., Ammann, C., Arneth, A., Bamberger, I., Goldstein, A. H., Gu, L., Guenther, A., Hansel, A., Heinesch, B., Holst, T., Hörtnagl, L., Karl, T., Laffineur, Q., Neftel, A., McKinney, K., Munger, J. W., Pallardy, S. G., Schade, G. W., Seco, R., and Schoon, N.: An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements, Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, 2015.
Zhou, P., Ganzeveld, L., Taipale, D., Rannik, Ü., Rantala, P., Rissanen, M. P., Chen, D., and Boy, M.: Boreal forest BVOC exchange: emissions versus in-canopy sinks, Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, 2017.
Short summary
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in boreal forest, determined through multiyear measurements at several heights in a boreal forest in Sweden. VOC source/sink seasonality in canopy was explored using these vertical profiles and with measurements from a collection of sonic anemometers on the station flux tower. Our results show seasonality in the source/sink distribution for several VOCs, such as monoterpenes and water-soluble compounds.
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in...
Altmetrics
Final-revised paper
Preprint