Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5335-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5335-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption
College of Engineering, Mathematics and Physical Sciences, University
of Exeter, Exeter, UK
Yusuf Hamied Department of Chemistry, University of Cambridge,
Cambridge, United Kingdom
Lauren Marshall
Yusuf Hamied Department of Chemistry, University of Cambridge,
Cambridge, United Kingdom
Department of Earth Sciences, Durham University, Durham, UK
Peter H. Haynes
Department of Applied Mathematics and Theoretical Physics, University
of Cambridge, Cambridge, UK
Rolando R. Garcia
National Center for Atmospheric Research, Boulder, USA
Thomas Birner
Faculty of Physics, Meteorological Institute,
Ludwig Maximilian University of Munich, Munich, Germany
Institute of Atmospheric Physics (IPA), German Aerospace
Center (DLR), Oberpfaffenhofen, Germany
Anja Schmidt
Yusuf Hamied Department of Chemistry, University of Cambridge,
Cambridge, United Kingdom
Faculty of Physics, Meteorological Institute,
Ludwig Maximilian University of Munich, Munich, Germany
Institute of Atmospheric Physics (IPA), German Aerospace
Center (DLR), Oberpfaffenhofen, Germany
Related authors
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Frederik Harzer, Hella Garny, Felix Ploeger, J. Moritz Menken, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2195, https://doi.org/10.5194/egusphere-2025-2195, 2025
Short summary
Short summary
We study ozone transport in the extratropical lowermost stratosphere using potential temperature as vertical coordinate, thereby distinguishing adiabatic and diabatic processes. We find that on top of known dominant transport processes (quasi-horizontal mixing, slow diabatic descent) vertical mixing plays an important role near the tropopause. Our findings are relevant for understanding ozone's role in climate including its imprint on tropospheric ozone via stratosphere-troposphere air exchange.
Monica Sharma, Mattia Righi, Johannes Hendricks, Anja Schmidt, Daniel Sauer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1137, https://doi.org/10.5194/egusphere-2025-1137, 2025
Short summary
Short summary
A plume model is developed to simulate aerosol microphysics in a dispersing aircraft plume, including interactions between ice crystals and aerosols in vortex regime. Compared to an instantaneous dispersion approach, the plume approach estimates 15 % lower aviation aerosol number concentrations, due to more efficient coagulation at plume scale. The model is sensitive to background conditions and initialization parameters, such as ice crystal number concentration and fuel sulfur content.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Rachel C. W. Whitty, Evgenia Ilyinskaya, Melissa A. Pfeffer, Ragnar H. Thrastarson, Þorsteinn Johannsson, Sara Barsotti, Tjarda J. Roberts, Guðni M. Gilbert, Tryggvi Hjörvar, Anja Schmidt, Daniela Fecht, and Grétar G. Sæmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-937, https://doi.org/10.5194/egusphere-2025-937, 2025
Short summary
Short summary
Our work focuses on volcanic emissions, a poorly understood air pollution hazard in populated areas. We present a large dataset of reference-grade measurements of sulfur dioxide gas and aerosol particulate matter (PM1, PM2.5 and PM10) collected during a recent episode of eruptions in Iceland, which is still ongoing at the time of writing. We identified fine-scale fluctuations in ground-level concentrations of these pollutants and we discuss the implications of these for population exposures.
Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal
Atmos. Chem. Phys., 25, 1227–1252, https://doi.org/10.5194/acp-25-1227-2025, https://doi.org/10.5194/acp-25-1227-2025, 2025
Short summary
Short summary
The lowermost stratosphere (LMS) plays an important role in the Earth's climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS was changing between 1979–2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also indicating large-scale circulation changes. We find that both the upper and the lower LMS boundaries show an (upward) trend, which has implications for the LMS mass.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4088, https://doi.org/10.5194/egusphere-2024-4088, 2025
Short summary
Short summary
Across four reanalyses, shallow branch of the stratospheric overturning circulation was found to be driven by the largest waves with wavenumbers 1 to 3, and deep branch of the circulation was found to be driven by smaller-scale waves. Yet, the height of the level separating the branches is depended on the reanalysis considered. Thus using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation.
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
Atmos. Chem. Phys., 24, 13653–13679, https://doi.org/10.5194/acp-24-13653-2024, https://doi.org/10.5194/acp-24-13653-2024, 2024
Short summary
Short summary
The tropopause separates the troposphere, where many greenhouse gases originate, from the stratosphere. This study examines a tropopause defined by potential vorticity – an analogue for angular momentum that changes sharply in the subtropics, creating a transport barrier. Between 1980 and 2017, this tropopause shifted poleward at lower altitudes and equatorward above, suggesting height-dependent changes in atmospheric circulation that may affect greenhouse gas distribution and global warming.
Magali Verkerk, Thomas J. Aubry, Christopher Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3635, https://doi.org/10.5194/egusphere-2024-3635, 2024
Short summary
Short summary
Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions, and can be used in case of large eruption in the future.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Matthew Davison and Peter Haynes
Weather Clim. Dynam., 5, 1153–1185, https://doi.org/10.5194/wcd-5-1153-2024, https://doi.org/10.5194/wcd-5-1153-2024, 2024
Short summary
Short summary
A simple model is used to study the relation between small-scale convection and large-scale variability in the tropics arising from the coupling between moisture and dynamics. In the model, moisture preferentially lies at either moist or dry states, which merge to form large-scale aggregated regions. On an equatorial β plane, these aggregated regions are localised at the Equator and propagate zonally. This forms an intermediate model between past simpler models and general circulation models.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Kasturi Shah and Peter H. Haynes
Weather Clim. Dynam., 5, 559–585, https://doi.org/10.5194/wcd-5-559-2024, https://doi.org/10.5194/wcd-5-559-2024, 2024
Short summary
Short summary
Long-lived rising bubbles of wildfire smoke or volcanic aerosol contained within strong vortices have been observed in the stratosphere. Heating through absorption of solar radiation has been hypothesised as driving these structures. We present simple models incorporating two-way interaction between dynamics and aerosol combined with insight from vortex dynamics to explain aspects of observed behaviours, including ascent rate and vorticity magnitude, and to suggest criteria for formation.
Laura Wainman, Lauren R. Marshall, and Anja Schmidt
Clim. Past, 20, 951–968, https://doi.org/10.5194/cp-20-951-2024, https://doi.org/10.5194/cp-20-951-2024, 2024
Short summary
Short summary
The Mt Samalas eruption had global-scale impacts on climate and has been linked to historical events throughout latter half of the 13th century. Using model simulations and multi-proxy data, we constrain the year and season of the eruption to summer 1257 and investigate the regional-scale variability in surface cooling following the eruption. We also evaluate our model-to-proxy comparison framework and discuss current limitations of the approach.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
John Staunton-Sykes, Thomas J. Aubry, Youngsub M. Shin, James Weber, Lauren R. Marshall, Nathan Luke Abraham, Alex Archibald, and Anja Schmidt
Atmos. Chem. Phys., 21, 9009–9029, https://doi.org/10.5194/acp-21-9009-2021, https://doi.org/10.5194/acp-21-9009-2021, 2021
Rachel Furner, Peter Haynes, Dave Munday, Brooks Paige, Daniel C. Jones, and Emily Shuckburgh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-132, https://doi.org/10.5194/gmd-2021-132, 2021
Revised manuscript not accepted
Short summary
Short summary
Traditional weather & climate models are built from physics-based equations, while data-driven models are built from patterns found in datasets using Machine Learning or statistics. There is growing interest in using data-driven models for weather & climate prediction, but confidence in their use depends on understanding the patterns they're finding. We look at this with a simple regression model of ocean temperature and see the patterns found by the regression model are similar to the physics.
Philip Rupp and Peter Haynes
Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
Short summary
Short summary
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020, https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Lina Boljka and Thomas Birner
Weather Clim. Dynam., 1, 555–575, https://doi.org/10.5194/wcd-1-555-2020, https://doi.org/10.5194/wcd-1-555-2020, 2020
Short summary
Short summary
This study addresses the origin and impacts of a source of large-scale atmospheric waves in the lower stratosphere, which have not been examined before. This wave source is caused by interactions of waves of smaller scales. Here we show that as it lies in the lower stratosphere, this wave source can precede extreme events in the stratosphere and that such events can then lead to a response of the tropospheric weather patterns several weeks later (potential for long-term forecasting).
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere
Dynamics. Academic Press Inc., 491 pp., ISBN 9780120585762, 1987.
Anstey, J. A., Banyard, T. P., Butchart, N., Coy, L., Newman, P. A., Osprey,
S., and Wright, C. J.: Prospect of Increased Disruption to the QBO in a
Changing Climate, Geophys. Res. Lett., 48, e2021GL093058, https://doi.org/10.1029/2021GL093058, 2021.
Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D., and Waugh, D. W.:
Modifications of the quasi-biennial oscillation by a geoengineering
perturbation of the stratospheric aerosol layer, Geophys. Res. Lett., 41,
1738–1744, https://doi.org/10.1002/2013GL058818, 2014.
Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020.
Aubry, T. J., Staunton-Sykes, J., Marshall, L. R., Haywood, J., Abraham, N. L., and Schmidt, A.: Climate change
modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative
forcing from tropical eruptions, Nat. Comm., 12, 4708,
https://doi.org/10.1038/s41467-021-24943-7, 2021.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229.
https://doi.org/10.1029/1999RG000073, 2001.
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification,
GMAO Office Note No. 9 (Version 1.1), 73 pp., GMAO [data set], http://gmao.gsfc.nasa.gov/pubs/office_notes (last access: December 2021), 2015.
Brenna, H., Kutterolf, S., Mills, M. J., Niemeier, U., Timmreck, C., and
Krüger, K.: Decadal Disruption of the QBO by Tropical Volcanic
Supereruptions, Geophys. Res. Lett., 48, e2020GL089687,
https://doi.org/10.1029/2020GL089687, 2021.
Brown, F., Marshall, L., Haynes, P., and Schmidt, A.: UM-UKCA model data for study investigating the QBO response to large tropical eruptions, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/5f7206e5854246a9ae7498305d620590, 2023.
DallaSanta, K., Orbe, C., Rind, D., Nazarenko, L., and Jonas, J.: Response
of the Quasi-Biennial Oscillation to historical volcanic eruptions, Geophys.
Res. Lett., 48, e2021GL095412, https://doi.org/10.1029/2021GL095412, 2021.
Diallo, M., Riese, M., Birner, T., Konopka, P., Müller, R., Hegglin, M. I., Santee, M. L., Baldwin, M., Legras, B., and Ploeger, F.: Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016, Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, 2018.
Dunkerton, T. J.: Modification of stratospheric circulation by trace
constituent changes?, J. Geophys. Res., 88, 10831–10836,
https://doi.org/10.1029/JC088iC15p10831, 1983.
Dunkerton, T. J.: Nonlinear propagation of zonal winds in an atmosphere with
Newtonian cooling and equatorial wavedriving, J. Atmos. Sci., 48, 236–263,
1991.
Franke, H., Niemeier, U., and Visioni, D.: Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species, Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021, 2021.
Garcia, R. R.: On the mean meridional circulation of the middle atmosphere, J.
Atmos. Sci., 44, 3599–3609, 1987.
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, 2018.
Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G., and Shine, K. P.: On the
“downward control” of extratropical diabatic circulations by eddy-induced
mean zonal forces, J. Atmos. Sci., 48, 651–678, 1991.
Haywood, J. M., Jones, A., Johnson, B. T., and McFarlane Smith, W.: Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies, Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, 2022.
Hitchcock, P., Haynes, P. H., Randel, W. J., and Birner, T.: The emergence
of shallow easterly jets within QBO westerlies. J. Atmos. Sci., 75,
21–40, https://doi.org/10.1175/JAS-D-17-0108.1, 2018.
Holton, J. and Tan, H.: The Influence of the Equatorial Quasi-Biennial
Oscillation in the Global circulation at 50 mb, J. Atmos. Sci., 37,
2200–2208, 1980.
Huang, F. T., Mayr, H. G., Reber, C. A., Russell, J. M., M Mlynczak, and Mengel, J. G.: Stratospheric and mesospheric temperature variations for the quasi-biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS), Ann. Geophys., 24, 2131–2149, https://doi.org/10.5194/angeo-24-2131-2006, 2006.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric
jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/NGEO2424, 2015.
Kinne, S. and Toon, O. B.: Buffering of stratospheric circulation by
changing amounts of tropical ozone: a Pinatubo case study, Geophys. Res.
Lett., 19, 1927–1930, 1992.
Labitzke, K.: Stratospheric temperature changes after the Pinatubo eruption,
J. Atmos. Sol.-Terr. Phys., 56, 1027–1034, 1994.
Labitzke, K. and McCormick, M. P.: Stratospheric temperature increases due
to Pinatubo aeorosols, Geophys. Res. Lett., 19, 207–210, 1992.
Lindzen, R. and Holton, J.: A Theory of the Quasi-Biennial Oscilation, J.
Atmos. Sci., 25, 1095–1107, 1968.
Mann, G. W., Carslaw, K. S., Ridley, D. A., Spracklen, D. V., Pringle, K. J., Merikanto, J., Korhonen, H., Schwarz, J. P., Lee, L. A., Manktelow, P. T., Woodhouse, M. T., Schmidt, A., Breider, T. J., Emmerson, K. M., Reddington, C. L., Chipperfield, M. P., and Pickering, S. J.: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model, Atmos. Chem. Phys., 12, 4449–4476, https://doi.org/10.5194/acp-12-4449-2012, 2012.
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010.
Marshall, L., Johnson, J. S., Mann, G. W., Lee, L., Dhomse, S. S., Regayre,
L., Yoshioka, M., Carslaw, K. S., and Schmidt, A.: Exploring How Eruption
Source Parameters Affect Volcanic Radiative Forcing Using Statistical
Emulation. J. Geophys. Res.-Atmos., 124, 964–985,
https://doi.org/10.1029/2018JD028675, 2019.
Ming, A., Hitchcock, P., and Haynes, P. H.: The response of the lower
stratosphere to zonally symmetric thermal and mechanical forcing, J. Atmos.
Sci., 73, 1903–1922, 2016.
Minschwaner, K., Su, H., and Jiang, J. H.: The upward branch of the
Brewer-Dobson circulation quantified by tropical stratospheric water vapor
and carbon monoxide measurements from the Aura Microwave Limb Sounder. J.
Geophys. Res.-Atmos., 121, 2790–2804,
https://doi.org/10.1002/2015JD023961, 2016.
Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere, Geosci. Model Dev., 2, 43–57, https://doi.org/10.5194/gmd-2-43-2009, 2009.
Mulcahy, J. P., Jones, C. G., Rumbold, S. T., Kuhlbrodt, T., Dittus, A. J., Blockley, E. W., Yool, A., Walton, J., Hardacre, C., Andrews, T., Bodas-Salcedo, A., Stringer, M., de Mora, L., Harris, P., Hill, R., Kelley, D., Robertson, E., and Tang, Y.: UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model, Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, 2023.
Naujokat, B.: An Update of the Observed Quasi-Biennial
Oscillation of the Stratospheric Winds over the Tropics, J. Atmos. Sci.,
43, 1873–1877, https://doi.org/10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2, 1986.
Newman, P. A., Coy, L., Pawson, S., and Lait, L. R.: The anomalous change
in the QBO in 2015–2016, Geophys. Res. Lett., 43, 8791–8797,
https://doi.org/10.1002/2016GL070373, 2016.
Niemeier, U. and Schmidt, H.: Changing transport processes in the stratosphere by radiative heating of sulfate aerosols, Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, 2017.
Niemeier, U., Richter, J. H., and Tilmes, S.: Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models, Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, 2020.
Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K.,
Anstey, J. A., Schenzinger, V., and Zhang, C.: An unexpected disruption of
the atmospheric quasi-biennial oscillation, Science, 353, 1424–1427,
https://doi.org/10.1126/science.aah4156, 2016.
Pitari, G., Di Genova, G., Mancini, E., Visioni, D., Gandolfi, I., and Cionni,
I.: Stratospheric Aerosols from Major Volcanic Eruptions: A
Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding
Time, Atmosphere, 7, 75, https://doi.org/10.3390/atmos7060075, 2016.
Plumb, R. A.: The interaction of two internal waves with the mean flow:
Implications for the theory of the quasi-biennial oscillation, J. Atmos.
Sci., 34, 1847–1858, 1977.
Plumb, R. A.: Zonally symmetric Hough modes and meridional circulations in
the middle atmosphere, J. Atmos. Sci., 39, 983–991, 1982.
Plumb, R. A. and Bell, R. C.: A model of the quasi- biennial oscillation
on an equatorial beta-plane, Q. J. Roy. Meteor. Soc., 108, 335–352,
1982.
Punge, H. J., Konopka, P., Giorgetta, M. A., and Müller, R.: Effects of
the quasi-biennial oscillation on low-latitude transport in the stratosphere
derived from trajectory calculations, J. Geophys. Res., 114, D03102,
https://doi.org/10.1029/2008JD010518, 2009.
Ranjithkumar, A., Gordon, H., Williamson, C., Rollins, A., Pringle, K., Kupc, A., Abraham, N. L., Brock, C., and Carslaw, K.: Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements, Atmos. Chem. Phys., 21, 4979–5014, https://doi.org/10.5194/acp-21-4979-2021, 2021.
Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J. J., Kravitz, B.,
Macmartin, D. G., Vitt, F., and Lamarque, J.-F.: Stratospheric Dynamical
Response and Ozone Feedbacks in the Presence of SO2 Injections, J. Geophys.
Res.-Atmos., 122, 12557–12573, https://doi.org/10.1002/2017JD026912, 2017.
Rieger, L. A., Cole, J. N. S., Fyfe, J. C., Po-Chedley, S., Cameron-Smith, P. J., Durack, P. J., Gillett, N. P., and Tang, Q.: Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment, Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, 2020.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
2000.
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a
Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office
Unified Model, J. Atmos. Sci., 59, 1473–1489,
https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2, 2002.
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M.,
Dunstone, N., Knight, J., Maclachlan, C., Manzini, E., Müller, W. A.,
Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability of
the quasi-biennial oscillation and its northern winter teleconnection on
seasonal to decadal timescales, Geophys. Res. Lett., 41, 1752–1758.
https://doi.org/10.1002/2013GL059160, 2014.
Schenzinger, V., Osprey, S., Gray, L., and Butchart, N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models, Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, 2017.
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric
control of the Madden–Julian oscillation, J. Climate, 30, 1909–1922,
https://doi.org/10.1175/JCLI-D-16-0620.1, 2017.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount
Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J.
Geophys. Res.-Atmos., 107, ACL 28-1–ACL 28-16,
https://doi.org/10.1029/2002JD002090, 2002.
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., Macmartin, D. G.,
Vitt, F., Tribbia, J. J., and Lamarque, J. F.: Sensitivity of aerosol
distribution and climate response to stratospheric SO2 injection locations,
J. Geophys. Res.-Atmos., 122, 12591–12615, https://doi.org/10.1002/2017JD026888, 2017.
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., MacMartin, D. G.,
Garcia, R. R., Kinnison, D. E., Lamarque, J. F., Tribbia, J., and Vitt,
F.: Effects of Different Stratospheric SO2 Injection Altitudes on
Stratospheric Chemistry and Dynamics, J. Geophys. Res.-Atmos., 123,
4654–4673, https://doi.org/10.1002/2017JD028146, 2018.
Wallace, J. M. and Holton, J. R.: A diagnostic numerical model of the
quasi-biennial oscillation, J. Atmos. Sci., 25, 280–292, 1968.
Webster, S., Brown, A. R., Cameron, D. R., and Jones, C. P.: Improvements
to the representation of orography in the Met Office Unified Model, Q. J. Roy.
Meteor. Soc., 129, 1989–2010,
https://doi.org/10.1256/qj.02.133, 2003.
Wei, K., Chen, W., Ma, J., and Wang, T.: Necessity of Standardizing the
Definition of QBO Phases, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-667074/v1, 2021.
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns,...
Altmetrics
Final-revised paper
Preprint