Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5317-2023
https://doi.org/10.5194/acp-23-5317-2023
Technical note
 | 
11 May 2023
Technical note |  | 11 May 2023

Technical note: Improving the European air quality forecast of the Copernicus Atmosphere Monitoring Service using machine learning techniques

Jean-Maxime Bertrand, Frédérik Meleux, Anthony Ung, Gaël Descombes, and Augustin Colette

Related authors

Country and species-dependent parameters for the Heating Degree Day method to distribute NOx and PM emissions from residential heating in the EU-27: application to air quality modelling and multi-year emission projections
Antoine Guion, Florian Couvidat, Marc Guevara, and Augustin Colette
EGUsphere, https://doi.org/10.5194/egusphere-2024-2911,https://doi.org/10.5194/egusphere-2024-2911, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023,https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023,https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022,https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Historical reconstruction of background air pollution over France for 2000–2015
Elsa Real, Florian Couvidat, Anthony Ung, Laure Malherbe, Blandine Raux, Alicia Gressent, and Augustin Colette
Earth Syst. Sci. Data, 14, 2419–2443, https://doi.org/10.5194/essd-14-2419-2022,https://doi.org/10.5194/essd-14-2419-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024,https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
A machine learning approach to downscale EMEP4UK: analysis of UK ozone variability and trends
Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno
Atmos. Chem. Phys., 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024,https://doi.org/10.5194/acp-24-3163-2024, 2024
Short summary
Automated detection and monitoring of methane super-emitters using satellite data
Berend J. Schuit, Joannes D. Maasakkers, Pieter Bijl, Gourav Mahapatra, Anne-Wil van den Berg, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Sander Houweling, Daniel J. Varon, Jason McKeever, Dylan Jervis, Marianne Girard, Itziar Irakulis-Loitxate, Javier Gorroño, Luis Guanter, Daniel H. Cusworth, and Ilse Aben
Atmos. Chem. Phys., 23, 9071–9098, https://doi.org/10.5194/acp-23-9071-2023,https://doi.org/10.5194/acp-23-9071-2023, 2023
Short summary
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023,https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023,https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary

Cited articles

Badia, A. and Jorba, O.: Gas-phase evaluation of the online NMMB/BSC-CTM model over Europe for 2010 in the framework of the AQMEII-Phase2 project, Atmos. Environ., 115, 657–669, https://doi.org/10.1016/j.atmosenv.2014.05.055, 2015. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001. 
Breiman, L., Friedman, J. H., Ohlsen, R. A., and Stone C. J.: Classification and Regression Trees, Chapman and Hall/CRC, ISBN 13:978-0412048418, 1984. 
Christensen, J. H.: The Danish Eulerian hemispheric model – A three-dimensional air pollution model used for the Arctic, Atmos. Environ., 31, 4169–4191, 1997. 
Delle Monache, L. and Stull, R. B.: An ensemble air quality forecast over western Europe during an ozone episode, Atmos. Environ., 37, 3469–3474, 2003. 
Download
Short summary
Post-processing methods based on machine learning algorithms were applied to refine the forecasts of four key pollutants at monitoring sites across Europe. Performances show significant improvements compared to those of the deterministic model raw outputs. Taking advantage of the large modelling domain extension, an innovative global approach is proposed to drastically reduce the period necessary to train the models and thus facilitate the implementation in an operational context.
Altmetrics
Final-revised paper
Preprint