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Abstract. Model output statistics (MOS) approaches relying on machine learning algorithms were applied to
downscale regional air quality forecasts produced by CAMS (Copernicus Atmosphere Monitoring Service) at
hundreds of monitoring sites across Europe. Besides the CAMS forecast, the predictors in the MOS typically
include meteorological variables but also ancillary data. We explored first a “local” approach where specific
models are trained at each site. An alternative “global” approach where a single model is trained with data from
the whole geographical domain was also investigated. In both cases, local predictors are used for a given station
in predictive mode. Because of its global nature, the latter approach can capture a variety of meteorological
situations within a very short training period and is thereby more suited to cope with operational constraints in
relation to the training of the MOS (frequent upgrades of the modelling system, addition of new monitoring sites).
Both approaches have been implemented using a variety of machine learning algorithms: random forest, gradient
boosting, and standard and regularized multi-linear models. The quality of the MOS predictions is evaluated in
this work for four key pollutants, namely particulate matter (PM10 and PM2.5), ozone (O3) and nitrogen dioxide
(NO2), according to scores based on the predictive errors and on the detection of pollution peaks (exceedances
of the regulatory thresholds). Both the local and the global approaches significantly improve the performances of
the raw ensemble forecast. The most important result of this study is that the global approach competes with and
can even outperform the local approach in some cases. This global approach gives the best RMSE scores when
relying on a random forest model for the prediction of daily mean, daily max and hourly concentrations. By
contrast, it is the gradient boosting model which is better suited for the detection of exceedances of the European
Union regulated threshold values for O3 and PM10.

1 Introduction

Outdoor air pollution induced by natural sources and human
activities remains a major environmental and health issue
worldwide. Producing reliable short-term forecasts of pol-
lutant concentrations is a key challenge to support national
authorities in their duties regarding the European Air Qual-
ity Directive, like planning and communications about the air
quality status towards the general public in order to limit the
exposure of populations. Progress in computing technologies
during the last decades has allowed for the rise of large-scale

chemistry transport models (CTMs) which provide a com-
prehensive view of the air quality on a given time period
and geographical domain by solving the differential equa-
tions that govern the transport and transformation of pollu-
tants in the atmosphere. An overview of such deterministic
air quality forecasting systems operating in Europe was pro-
vided by Zhang et al. (2012). Ensembles of several CTMs
have also been used in order to improve single-model fore-
casts (Delle Monache and Stull, 2003; Wilczak et al., 2006).
Such an ensemble approach is currently used in the frame of
the Copernicus Atmospheric Monitoring Service (Marécal et
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al., 2015) to provide daily air quality forecasts over the Euro-
pean territory (https://atmosphere.copernicus.eu/air-quality,
last access: 13 April 2023).

Statistical post-processing offers a way to improve the raw
outputs of deterministic models while not undermining in-
herent capacities of CTMs. For instance, one must acknowl-
edge that regional-scale CTMs are primarily designed to cap-
ture background air pollution so that spatial representative-
ness remains a concern in the immediate vicinity of large
emission sources. Spatial downscaling is therefore a good
example of the relevance of hybrid statistical and determin-
istic modelling, but correction of systematic biases and bet-
ter modelling of extreme values can also be achieved at the
deterministic model’s grid scale. Modellers are working to
solve such issues by continuously improving models and in-
put data, but post-processing offers a pragmatic solution that
must be considered.

Running-mean bias correction, Kalman filter and ana-
logues (Delle Monache et al., 2006; Kang et al., 2008;
Djalalova et al., 2015) are the most widespread examples of
model output statistics (MOS) proposed in the literature to
improve air quality forecasts. Another very common type of
MOS is multi-linear regression statistical modelling to pre-
dict a corrected concentration at a given location using any
available information, including the deterministic forecast,
meteorological variables or any other ancillary data. Such
regression-based MOS approaches have been implemented
in Europe in several national air quality forecasting services,
sometimes for more than a decade such as in the French oper-
ational forecasting system PREV’AIR (Honoré et al., 2008;
Rouïl et al., 2009). More recently, Petetin et al. (2022) per-
formed a systematic evaluation of one of the most exhaustive
selections of MOS techniques (including Kalman filter and
analogues in addition to tree-based machine learning algo-
rithms) for the specific case of ozone forecasts in the Iberian
Peninsula.

The goal of this work is to explore the use of several ma-
chine learning algorithms to improve the air quality fore-
casts of the CAMS regional ensemble model at hundreds of
monitoring sites across Europe for the ozone (O3), particu-
late matter (PM10 and PM2.5) and nitrogen dioxide (NO2)
pollutants. The classical MOS approach consists of build-
ing an individual model at each monitoring site using local
data. In this context, some MOS methods (including those
based on machine learning algorithms) need long training
periods, based on model outputs and observations, to reach
optimized performances. The need for a long training pe-
riod (with constant model formulation over this period) is
a difficulty for the maintenance of operational MOS systems
since the evolution of pollutant emissions, the upgrades of
the deterministic model and the addition of new monitoring
sites require frequent recalibrations of the MOS. This issue
is particularly pertinent in our context since, as a regularly
maintained operational model, the CAMS ensemble model
(composed of seven members during the period of study) is

subject to frequent upgrades. Every year there are between
one and two upgrades to the set-up of the CAMS individual
models producing air quality forecasts at regional scale over
Europe. Therefore, an alternative global approach, building
one single model for all the monitoring sites with a very short
training period (a few days preceding the forecast), but us-
ing data from the whole geographical domain was also tested
for comparison. In the following article, we present first, in
Sect. 2, the observations and model datasets used to train and
test the predictive models. Then, MOS approaches and al-
gorithms are presented in Sect. 3. Finally, Sect. 4 explores
the sensitivity of the two MOS approaches to training data,
and Sect. 5 compares and discusses their performances in the
frame of the selected scenarios.

2 Training data

The MOS development is based on 3 years of air pollu-
tion and meteorological data covering the 2017–2019 pe-
riod. These data include hourly in situ observations of
PM10, PM2.5, NO2 and O3 concentrations at hundreds of
urban, suburban and rural background regulatory monitor-
ing stations and is retrieved from the up-to-date (UTD)
dataset of the Air Quality E-reporting database (https://
www.eea.europa.eu/data-and-maps/data/aqereporting-9, last
access: 13 April 2023) of the European Environment Agency.
Daily mean, daily 1 h maximum and daily 1 h minimum were
calculated when 75 % of the hourly data were available for
the considered dates (i.e. at least 18 h over 24 h). All the sta-
tions located in the European region, over a domain ranging
from −25◦W to 45◦ E longitude and from 30◦ S to 70◦ N
latitude, have been considered in this work. The total num-
bers of stations available for training and testing the MOS are
1535 for O3, 957 for PM10, 1468 for NO2 and 498 for PM2.5.

Hourly concentrations from the CAMS European ensem-
ble forecast have been retrieved from the Atmosphere Data
Store (https://ads.atmosphere.copernicus.eu/cdsapp#!/home,
last access: 13 April 2023). During the 2017–2019 period,1

the CAMS ensemble was defined as the median of seven indi-
vidual models covering the European region at the resolution
of 0.1◦ and developed by several European modelling teams,
namely CHIMERE (Mailler et al., 2017), EMEP (Simp-
son et al., 2012), EURAD-IM (Hass et al., 1995), LOTOS-
EUROS (Schaap et al., 2009), MATCH (Robertson et al.,
1999), MOCAGE (Guth et al., 2016) and SILAM (Sofiev
et al., 2015). Note that the CAMS ensemble was upgraded
during the month of June 2019 with the use of a new an-
thropogenic emissions dataset, extension of the geographical
domain, and provision of dust (within PM10) and secondary
inorganic aerosols (aggregation of ammonium sulfates and

1Since then, four new models have been added to the ensemble
calculation, namely DEHM (Christensen, 1997), GEMAQ (Kamin-
ski et al., 2008), MINNI (Mircea et al., 2014) and MONARCH (Ba-
dia and Jorba, 2015).

Atmos. Chem. Phys., 23, 5317–5333, 2023 https://doi.org/10.5194/acp-23-5317-2023

https://atmosphere.copernicus.eu/air-quality
https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://ads.atmosphere.copernicus.eu/cdsapp#!/home


J.-M. Bertrand et al.: Improving European air quality forecast using machine learning techniques 5319

nitrates within PM2.5) in near real-time production. The im-
pact of this upgrade on the MOS will be discussed in the
Conclusion section. Hourly surface meteorological data were
interpolated from the IFS (Integrated Forecasting System2

– ECMWF). The specific list of meteorological variables is
discussed in Sect. 3.3. Both concentration and meteorolog-
ical forecasts were extracted at the locations of monitoring
stations using a distance-weighted average interpolation.

3 Design of the MOS approaches

The MOS strategy can be called “hybrid” modelling in the
sense that it uses both a deterministic forecast (here the
CAMS regional ensemble) and other relevant predictors to
produce a statistically corrected output concentration. In ma-
chine learning terminology it corresponds to a supervised
learning problem as we use a training dataset composed of a
number of predictor variables (also called features) labelled
with the corresponding pollutant concentration observations.
The model fitted with the training data is then applied to fu-
ture situations (new predictors values) to forecast pollutant
concentrations. Three distinct problems have been consid-
ered in this work: prediction of daily mean, daily maximum
and hourly concentrations. The quality of the predictions is
explored for the first day (D+0) or first 24 h of the forecast
in this work, but the methodologies proposed are adapted to
tackle longer forecast leads.

3.1 Machine learning algorithms

Five types of predictive models based on different machine
learning algorithms are tested and compared to each other.
Three of them belong to the family of the linear models,
namely the standard, the LASSO (least absolute shrinkage
and selection operator) and the ridge linear model. They are
formulated as Eq. (1):

y∗ = α0+

p∑
j=1

αjxj , (1)

where y∗ denotes the predicted value for the pollutant’s con-
centration, α0 is the intercept term, xj denotes a continuous
variable or a dummy variable (taking values of 0 or 1) that in-
dicates the absence or presence of some categorical effect, αj
represents the coefficients of the statistical model that have to
be determined, and p is the number of predictors. The coef-
ficients are chosen to minimize the penalized residual sum of
squares (Eq. 2):

PRSS=
N∑
i=1

(
yi −α0−

p∑
j=1

αjxij

)2

+ λ

p∑
j=1

f (αj ), (2)

2https://www.ecmwf.int/en/research/modelling-and-prediction
(last access: 13 April 2023).

where yi denotes an observed concentration, and xij is the
associated value for the predictor j ; N is the number of ob-
servations in the training dataset; λ is a penalty coefficient;
and f denotes either the absolute value or the square func-
tion. In the case where λ is set to zero, the regularization
term on the rightmost part of the equation nullifies, and we
obtain a standard linear model (LM) based on the minimiza-
tion of residual sum of squares. Otherwise, λ will have to be
tuned (see below), and depending on the choice of f – ab-
solute value or square function – we obtain a LASSO or a
ridge linear model, respectively. The ridge and the LASSO
regressions were introduced separately by Hoerl and Ken-
nard (1970) and Tibshirani (1996), respectively. For both
the ridge and LASSO approaches, the regularization term in
Eq. (2) favours solutions with coefficient values of small am-
plitude, thus reducing the risk of overfitting, i.e. of producing
a model that sticks too close to the training data and has poor
generalization skills. In contrast to the ridge regularization,
the LASSO tends to produce exactly zero values for those
coefficients associated with the less important predictors, of-
fering a way to deal with variable selection and improving
model interpretability. In this study, we used the implemen-
tation of the ridge and LASSO regression in the “glmnet”
package in the R language (Friedman et al., 2010).

The other two predictive models are based on the deci-
sion trees described by Breiman et al. (1984). These trees
are based on a series of nodes that represent both a predic-
tor and an associated threshold value. Each node is divided
into two subsequent nodes until we reach a final node (a leaf)
that gives the value of the prediction. The prediction func-
tion can also be seen as a partition of the predictors space
where each sub-region is associated with a constant output
value. Decision trees are an interesting solution as they can
capture complex non-linear interactions and internally han-
dle the selection of relevant predictors. However, they suffer
from poor generalization skills. To tackle this issue, ensem-
ble methods based on an aggregation of decision trees have
been proposed. In this work we have tested two popular tree-
based ensemble algorithms, namely the random forest (RF)
and the gradient boosting model (GBM). RF models were
introduced by Breiman (2001). They rely on an aggregation
of binary decision trees that are built independently, using a
bootstrap sample of the training data and randomly selecting
subsets of candidate predictors at each node. The RF predic-
tion is then given by the average of the trees predictions for
regression problems or using majority vote for classification
problems. Unlike random forest, GBM relies on relatively
small trees that are built sequentially. After the first tree is
trained, each subsequent tree is trained to predict the error
left by the already trained ensemble of trees. When the fi-
nal number of trees is reached, the GBM prediction is given
by the sum of the initial concentration prediction and errors
predicted by each tree. This mechanism, called “boosting”,
was first described by Freund and Schapire (1996) with the
adaBoost algorithm for the prediction of a binary variable.
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The “gradient boosting machine” algorithm is an adaptation,
from Friedman (2001), for the prediction of quantitative vari-
ables. In this study we used the “randomForest” (Liaw and
Wiener, 2002) and “gbm” (Greenwell et al., 2019) R pack-
ages for the implementation of the RF and GBM algorithms,
respectively.

A key challenge with statistical learning methods is to
learn as much as possible from the training data, without los-
ing generalization skills. To reach an optimal balance and
optimize the predictive performances, a learning algorithm
may be tuned by choosing values for some parameters often
referred to as hyper-parameters. The method used for tun-
ing these hyper-parameters consists of a grid search, where
possible values for each hyper-parameter are predefined. A
model is trained and tested for every possible combination
of hyper-parameter value using a fivefold cross-validation
procedure. The best combination of hyper-parameter is then
selected to train the final model but this time using the full
training dataset. The tuning of these hyper-parameters is per-
formed at every monitoring site for the local MOS approach
or every day for the global MOS approach (local and global
approaches are defined in Sect. 3.2). The number of param-
eters to be tuned depends on the algorithm. It is limited to
one for the LASSO and ridge model, two for the random for-
est model, and four for the GBM model. To limit the number
of combinations and computation time, the grids of possible
values for each parameter were kept simple, with very few
values to test, and remained the same in all the learning con-
figurations of this study. The grids of tuning values for each
algorithm are described in Appendix A. The tuning of the
learning algorithms was performed using the caret R pack-
age (Kuhn, 2008).

3.2 Local and global approaches

The first approach tested in this work is local, meaning that
a different MOS model is built for each observation station.
This approach is implemented, for example, in the French na-
tional forecasting system PREV’AIR (Honoré et al., 2008).
As each model is trained with local data only, we expect that
it will be able to correct the deterministic model output in a
way that reflects local specificities contributing to the station
representativeness. A limitation of this local approach (refer-
ring to the methods computing a dedicated model per sta-
tion) is that it often requires long time series of model output
and observations (with constant model formulation and set-
up over this period) to build an optimized predictive model
at each observation site. Any upgrade of the modelling sys-
tem that might sensitively impact the model behaviour and
performances might lead to a deterioration of the MOS per-
formances and thereby requires resource consuming for re-
running simulations with a consistent set-up over past peri-
ods in order to build updated MOS. Newly installed observa-
tion stations will not be integrated into the MOS until enough
data are gathered to train a robust model (typically at least a

full year). Moreover, this local approach is optimized if the
conditions (model set-up, input data) during the predictions
remain close to those of the training period. In practice this
might not be the case, e.g. because of a drastic reduction of
pollutant emissions due to local action plans or even not an-
ticipatable circumstances such as the drop in activity induced
by the COVID crisis. In such situations, the local MOS cor-
rection might be biased due to inadequacy with the training
period’s conditions. This feature is interesting and has been
exploited, for example, to assess the impact of COVID-19
lockdown upon NO2 pollution in Spain (Petetin et al., 2020)
based on a business-as-usual concentration correction, fol-
lowing the meteorological normalization method by Grange
et al. (2018). However, there is also a need for more flexible
MOS approaches that rapidly adapt to unanticipated changes
in emissions. In the present study, the local approach was in-
vestigated using 2017 and 2018 data for training the MOS
and using 2019 data to evaluate its performances.

The second approach, called “global”, has been designed
to address operational constraints such as the CTMs upgrades
or changes in the network or observations. The idea is to
build a single global model with data coming from the whole
set of observation stations. Even if a single model is derived
for Europe, it is subsequently used in predictive mode with
local predictors for each station. Because of their spatial dis-
tribution over the European domain, a large variety of mete-
orological situations can be captured within a relatively short
(a few days) training period. Due to the seasonal variability,
a new model must be trained regularly with the most recent
data in order to remain close to new forecasting situations. In
this study a new global model was trained every day using
the last 3 d, the last 7 d or the last 14 d as training data and
was applied to predict the concentrations of the upcoming
day. This process was repeated 365 times to mimic an oper-
ational system running over the 2019 year period. With this
global approach, any change in the CTM formulation will
automatically be echoed in the MOS within a few days (de-
pending on the choice for the training period duration). An
important shortcoming of such a global approach is to ignore
the local specificity in individual MOS models, whereas one
of the main benefits of MOS approaches applied in addition
to CTM results is precisely to remove systematic biases, i.e.
induced by spatial representativeness limitation of the mod-
els. To tackle the varying spatial representativeness of the
stations, the deterministic raw concentration output at each
station was replaced by an “unbiased concentration” predic-
tor, meaning the raw concentration minus the average error
of the deterministic model at the station during the training
period. As such, the global approach combines tree-based or
regression machine learning algorithm and moving average
(Petetin et al., 2022) unbiasing. This strategy will, for in-
stance, lead to distinct MOS predictions at two stations with
comparable meteorological and raw concentration forecasts
(e.g. two stations located in the same grid cell). We also ex-
pect that this approach will better adapt to rapid changes in
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emissions induced by the situations mentioned above (e.g.
pollution mitigation policies, COVID crisis).

3.3 Predictors

Increasing the number of predictors might improve the per-
formances of a model but can also lead to overfitting and poor
performances if not correctly handled by the machine learn-
ing algorithm. We have carried out tests with different sets
of predictors in order to evaluate the risks and benefits from
adding predictors depending on the machine learning algo-
rithm considered. The following table (Table 1) details the
sets of predictors that have been tested. These predictors fall
into four categories: ensemble forecast, meteorological fore-
cast, observations and other. MOS models have been trained
to work both on an hourly basis and on a daily basis (to focus
on the prediction of daily means or daily max). When design-
ing an hourly model, all the quantitative predictors are hourly
means, either forecasted for the considered time horizon (en-
semble and meteorological forecasts) or observed during the
previous day at the same time. The same model is used for
every hour of the day, and the hour of the day is not explicitly
passed to the model as a predictor (somehow considering that
the other predictors provide enough information). When de-
signing a daily model, a selection procedure is achieved be-
fore the training in order to choose (between the daily mean,
daily min and daily max of each physical quantity) the one
which is best correlated with the output variable. For both
the local and global approaches, this correlation is calculated
based on the full training dataset, meaning typically with 365
records for a local model built with a 1-year training dataset
and 3000 records for a global model based on 1000 monitor-
ing stations spread over the domain and a 3 d training period.

Set1 is the base set of predictors. It includes the ensem-
ble forecasts (including the forecasts of the targeted pollu-
tant and the three others), a first selection of surface meteo-
rological variables (namely the temperature, relative humid-
ity, zonal and meridional wind speed, and boundary layer’s
height) and observations of the previous day. The categori-
cal day of week predictor was only used with the local ap-
proach which includes a long training period. For the global
approach, tests have been performed using as a predictor ei-
ther the raw ensemble (i.e. the median of the seven individual
deterministic models) forecast or the unbiased ensemble con-
centration of the target pollutant. The unbiased concentration
is defined as the forecasted ensemble concentration minus the
bias observed at the station during the previous days (days of
the chosen training period). Set2 includes set1 predictors plus
four additional meteorological predictors, namely the short-
wave radiation, the surface pressure, the cloud cover and pre-
cipitation.

4 Sensitivity of the MOS to training data and
predictors

Specific local approach simulations have been carried out
to evaluate O3 daily max and PM10 daily mean predictions
performances with various input data configurations. Only
O3 daily max and PM10 daily mean predictions have been
considered in this preliminary analysis in order to limit the
number of simulations. These forecasts are critical in Europe
because of the frequent exceedances of the regulatory thresh-
old values that determine pollution peaks (180 µgm−3 for O3
daily max and 50 µgm−3 for PM10 daily mean). Each pollu-
tant was tested with two configurations regarding the size of
the training dataset. For O3, one summer (June–September
2018) or two summers (June–September 2017 and 2018)
have been used as training datasets. For PM10, year-round
data have been used, either 1 year (2018) or 2 years (2017
and 2018). A training period limited to summer months has
been chosen for O3 to optimize the performances during
this season which is regularly subject to critical concentra-
tion levels. Similarly, the model could be optimized for the
cold season using winter months for training, and year-round
modelling could be achieved by switching from one model
to the other at some point during the inter-season. But we
chose to limit our analysis to the hot season when most pol-
lution peaks happen. In addition, both configurations have
been tested using two distinct sets of predictors, namely Set1,
the simplest (includes the base predictors plus the categori-
cal day of week predictor), and Set2, including four addi-
tional meteorological predictors (see Table 1). Performances
have been evaluated with 2019 data, over the summer sea-
son (June–September) for O3 and the whole year for PM10.
As expected, the RMSE of the local MOS score average
over all the monitoring stations, shown in Fig. 1, is signif-
icantly reduced in comparison to that of the raw ensemble
model. The MOS allows us to greatly reduce the bias (see
also Fig. B1) and thus to significantly decrease the RMSE.
The use of larger datasets is beneficial for all the machine
learning algorithms tested and is particularly interesting for
O3 daily max predictions (RMSE strongly decreases when
using 8 months of summer data instead of 4). Results also
suggest being very careful with the choice of predictors, us-
ing more predictors as in Set2 generally leads to no improve-
ment or even a loss in performance, especially if the algo-
rithm is not designed to handle overfitting and if the training
period is too short (see the deterioration of the O3 RMSE
when using the larger set of predictors, Set2, in the standard
linear model). In addition to the raw ensemble and the five
MOS values, the persistence model (Pers), a very simple ref-
erence model which consists of forecasting for the day ahead
the concentration that was observed at the station during the
previous day, is plotted for comparison. Whatever the config-
uration, the MOS models allow us to beat the RMSE score
of this persistence model. Regularized linear models (ridge
and LASSO) give the best RMSE scores independently of
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Table 1. Sets of predictors used in the MOS.

Set name Ensemble forecastsa Meteorological forecasts Observations Other

Set1 PM10 Temperature (2 m) Obs. of the Day of week
(base) O3 Relative humidity (2 m) previous day (7 levels)b

NO2 Wind speed (10 m)
PM2.5 Boundary layer’s height

Set2 PM10 Temperature (2 m) Obs. of the Day of week
O3 Relative humidity (2 m) previous day (7 levels)a

NO2 Wind speed (10 m)
PM2.5 Boundary layer’s height

Short-wave radiation
Surface pressure
Cloud cover
Precipitation

a Raw or unbiased (for the global approach only) concentration forecasts. b Only for the local (or long training) approach.

Figure 1. RMSE score for the raw ensemble (Raw) and local MOS approaches with the linear model (Lm), the LASSO (Lasso), the ridge
(Ridge), the random forest (Rf) and the gradient boosting model (Gbm), depending on the training period and set of predictors. RMSE score
is averaged over 1535 stations for O3 and 957 stations for PM10. Evaluation was done over 2019 summer months for ozone and whole the
year 2019 for PM10.

the set of predictors and of the size of the training period.
With 2017 and 2018 data for training and the simplest set of
predictors (red bar), the RMSE reaches 13.0 µgm−3 for O3
daily max (decrease of 32 % compared to the raw ensemble)
and 5.64 µgm−3 for PM10 daily mean (decrease of 45 %).
The Pearson correlation reaches 0.86 for O3 (against 0.81
for the raw ensemble) and 0.83 for PM10 (against 0.7 for the
raw ensemble). See Figs. B1 and B2 for the mean bias and
correlation scores with the distinct local approach modelling
configurations.

For the global approach, tests have been performed over
the same 2019 periods (summer for O3 and whole year for
PM10) with the simplest set of predictors, Set1, to evaluate
O3 daily max and PM10 daily mean MOS prediction accord-
ing to the size of the training period (3, 7 and 14 d) and
the use of the raw (biased) or unbiased concentration fore-
casts as predictor. Figure 2 illustrates the decrease in RMSE

when using unbiased concentrations instead of raw concen-
trations (compare the blue and plain green bars for 3 d train-
ing). RMSE can further be improved using 7 d as training
period or even 14 d for PM10 daily mean. The random for-
est model gives the best RMSE scores independently of the
length of the training period. With 14 d for training and us-
ing the unbiased concentration predictor, the RMSE reaches
12.5 µgm−3 for O3 daily max (decrease of 34.6 % compared
to the raw ensemble) and 5.5 µgm−3 for PM10 daily mean
(decrease of 46.7 %). The Pearson correlation reaches 0.85
for O3 (against 0.81 for the raw ensemble) and 0.83 for PM10
(against 0.7 for the raw ensemble). See Figs. B3 and B4 for
the mean bias and correlation scores with the distinct global
approach modelling configurations.
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Figure 2. RMSE score for the raw ensemble (Raw) and global MOS approaches with the linear model (Lm), the LASSO (Lasso), the ridge
(Ridge), the random forest (Rf) and the gradient boosting model (Gbm), depending on the training period and the use of biased or unbiased
concentration predictors. RMSE score is averaged over 1535 stations for O3 and 957 stations for PM10. Evaluation was done over 2019
summer months for ozone and the whole year 2019 for PM10.

5 Comparison of the local and global MOS
approaches

For the four pollutants, O3, PM10, NO2 and PM2.5, the lo-
cal and global MOS have been designed for the prediction of
daily mean, daily max and hourly concentrations and com-
pared to each other. For both the local and global approaches,
since the benefit of using four additional predictors in Set2
compared to Set1 was not confirmed in Sect. 4, we used the
simplest sets of predictors (Set1, with unbiased concentra-
tions for the global approach). Moreover, we used in this sec-
tion the more realistic scenario where only 1 full year of data
(2018) is available for training the local approach models.
For the global approach, we present the 3 d training scenario
which is supposed to adapt faster to a change in the mod-
elling system. As mentioned above, performances can be op-
timized using larger training periods, but we chose to test
the scenario which is more prone to cope with operational
constraints. Table 2 shows RMSE scores averaged over the
full set of monitoring stations across Europe with the 2019
testing period. As in the previous section, evaluation is fo-
cused on the June–September period for O3 and whole year
for PM10, PM2.5 and NO2.

The random forest is particularly adapted to optimize the
RMSE of the global MOS approach as the best scores are ob-
tained with this model for the four pollutants and for the pre-
dictions of daily mean, daily max and hourly concentrations.
Depending on the prediction objective and on the pollutant,
the improvement compared to the raw ensemble oscillates
between 48.1 % (decrease in RMSE) and 21.9 %. The choice
of the best algorithm is not that clear for the local MOS ap-
proach. Random forest gives the best RMSE for the predic-
tion of hourly means, but the LASSO and ridge linear mod-
els perform the best for daily means and daily max predic-
tions. RMSE decreases oscillate between 54.1 % (NO2 daily

max) and 20 % (PM2.5 hourly mean) with the best model
scenarios for this local approach. Still considering the best
model scenarios, differences between the local and global
approach reach 6.3 %, in favour of the local approach, for
NO2 daily max predictions and 4.6 %, in favour of the global
approach, for O3 daily max predictions. Table 3 presents the
RMSE scores for the daily mean and daily max extracted
from hourly MOS predictions. These scores are comparable
with those of the models specifically trained for daily mean
predictions but are significantly degraded for daily max pre-
dictions. As an example, the global approach with random
forest model reduces the RMSE by 20.5 % when daily max
values are extracted from hourly predictions, against a re-
duction of 32.8 % with the same model trained for daily max
prediction. Therefore, depending on applications, one might
consider using daily MOS instead of hourly MOS if perfor-
mances must be optimized for the daily max statistics.

For the four pollutants investigated in this study, this re-
duction in RMSE score is associated with a strong decrease
in the mean bias. As illustrated in Fig. 3 for the prediction
of hourly concentrations, the raw ensemble model tends to
overestimate O3 levels and to underestimate PM10, PM2.5
and NO2 concentrations in central Europe (EUC), northern
Europe (EUN), southern Europe (EUS) and western Europe
(EUW). These biases are well corrected by both the local and
global MOS (see the red and blue bars which represent the
local and global MOS approaches with their respective best
model scenarios). The reduction in RMSE is also associated
with a significant increase in the correlation score. Similar
results have been obtained with the MOS designed for daily
mean and daily max (see Appendix C). While the local and
global approaches compete with each other for O3, PM10,
and PM2.5 daily and hourly forecasts, the local approach out-
performs the global approach for the NO2 pollutant. This dif-
ference is attributed to the local nature of this pollutant, i.e.
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Figure 3. Comparison of the raw ensemble model and best model scenarios for the local and global MOS approaches. Scores include station
means of RMSE, mean bias and correlation for the prediction of hourly mean concentrations over central Europe (EUC), northern Europe
(EUN), southern Europe (EUS) and western Europe (EUW).

the fact that concentration levels are more influenced by lo-
cal emission, and to a smaller extent by meteorological con-
ditions. However, the global MOS approach still clearly im-
proves performances compared to the raw ensemble model
for this pollutant.

The European Union has defined concentration thresholds
to characterize pollution peaks. Exceedance of these thresh-
olds requires authorities to inform the exposed population
and the set-up of mitigation actions by local authorities to
reduce the adverse effects of the pollution. We therefore paid

special attention to the ability of the models to detect such
threshold exceedances. The threshold value of 180 µgm−3

for O3 daily max concentration and 50 µgm−3 for PM10 daily
mean are regularly exceeded in Europe. These exceedances
events remain relatively rare. In our 2019 testing dataset
(only summer months for O3), the base rate is 1.3 % and 2 %,
respectively, for O3 and PM10 exceedances. On average, the
duration of these episodes of exceedances at a station is 1.6 d
for O3, with 30 % of the episodes lasting 2 d or more and 4 %
lasting 5 d or more. For PM10, the episodes tend to be a little
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Table 2. The 2019 RMSE score (average of 1535 (O3), 957 (PM10), 1468 (NO2) and 498 (PM2.5) stations) for daily mean, daily maximum
and hourly mean as percentage of decrease compared to the raw model RMSE. Raw model RMSE (in µgm−3) is indicated in the “Raw”
column.

Local Global

Raw Lm Lasso Ridge Rf Gbm Lm Lasso Ridge Rf Gbm

RMSE for daily mean O3 16.1 39 % 42 % 41 % 35 % 35 % 42 % 42 % 43 % 44 % 43 %
PM10 10.3 43 % 44 % 45 % 43 % 42 % 39 % 39 % 42 % 43 % 40 %
NO2 9.6 54 % 54 % 54 % 50 % 52 % 46 % 46 % 48 % 48 % 47 %
PM2.5 6.6 35 % 36 % 37 % 36 % 34 % 32 % 32 % 35 % 37 % 34 %

RMSE for daily max O3 19.1 25 % 28 % 28 % 23 % 22 % 30 % 30 % 32 % 33 % 31 %
PM10 25.2 35 % 36 % 36 % 34 % 30 % 29 % 29 % 32 % 33 % 30 %
NO2 21.9 48 % 48 % 48 % 46 % 46 % 40 % 40 % 42 % 42 % 40 %
PM2.5 14.9 32 % 33 % 33 % 32 % 29 % 27 % 27 % 30 % 31 % 27 %

RMSE for hourly mean O3 22.6 28 % 28 % 28 % 29 % 27 % 25 % 25 % 26 % 29 % 27 %
PM10 13.3 25 % 25 % 25 % 25 % 23 % 23 % 23 % 24 % 25 % 23 %
NO2 12.6 31 % 31 % 31 % 33 % 32 % 27 % 27 % 28 % 29 % 28 %
PM2.5 8.6 20 % 20 % 19 % 20 % 17 % 19 % 18 % 20 % 22 % 18 %

Table 3. The 2019 RMSE scores as percentage of decrease compared to the raw ensemble model for the daily mean and daily max extracted
from the hourly MOS predictions.

Local Global

Raw Lm Lasso Ridge Rf Gbm Lm Lasso Ridge Rf Gbm

RMSE for daily mean O3 16.2 40 % 41 % 41 % 42 % 41 % 40 % 40 % 42 % 44 % 42 %
PM10 10.4 42 % 42 % 43 % 43 % 43 % 39 % 39 % 41 % 43 % 41 %
NO2 9.5 52 % 52 % 52 % 54 % 54 % 46 % 46 % 47 % 48 % 47 %
PM2.5 6.6 35 % 35 % 34 % 36 % 36 % 32 % 31 % 34 % 38 % 34 %

RMSE for daily max O3 19.4 25 % 25 % 25 % 25 % 26 % 16 % 16 % 16 % 21 % 20 %
PM10 25.9 27 % 27 % 26 % 29 % 30 % 23 % 23 % 23 % 27 % 26 %
NO2 22.2 36 % 36 % 34 % 39 % 43 % 32 % 33 % 33 % 36 % 37 %
PM2.5 15.2 25 % 25 % 25 % 28 % 28 % 27 % 27 % 30 % 31 % 27 %

bit longer, with an average duration of 1.8 d, with 40 % of the
episodes lasting 2 d or more and 5 % lasting 5 d or more.

To assess the ability of a model to detect these ex-
ceedances, we use the so-called contingency table which
counts the number of good detections (predicted and ob-
served exceedances), missed (observed but not predicted)
and false alarms (predicted but not observed) over the whole
set of monitoring stations. Figure 4 represents the contin-
gency table for O3 daily max exceedances and PM10 daily
mean exceedances of the raw ensemble model and the local
MOS. The persistence model, referred to as “Pers”, has been
added to the plot as a reference. It is a trivial model which
consists of forecasting for the next day the concentration that
we observed during the previous day. To characterize detec-
tion skills, four scores can be derived from the contingency
table and plotted into a single performance diagram (Figs. 5
and 6). The probability of detection (on the y axis) is de-
fined as the ratio of good detections to the total number of
observed exceedances, the success ratio (x axis) is defined as

the ratio of good detections to the total number of predicted
exceedances, the critical success index (CSI) represented by
the black contours is the ratio of good detections to the to-
tal number of predicted or observed exceedances, and the
frequency bias (dashed straight line) is the ratio of the to-
tal number of predicted exceedances to the total number of
observed exceedances. All these scores take values between
0 and 1, except for the frequency bias which takes any posi-
tive value. A perfect model would take the value of 1 for all
these scores and would be located in the upper right corner
of the performance diagram.

Figures 5 and 6 illustrate the detection performances of
the MOS for O3 and PM10, respectively. In both figures,
four performance diagrams represent the scores for the lo-
cal daily (top left) and global daily (top right), as well as
local hourly (bottom left) and global hourly (bottom right)
MOS approaches. For O3 (Fig. 5), the high value (close to
0.8) of the success ratio for the raw ensemble model means
that when it detects a threshold exceedance there is a high
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Figure 4. Contingency table of the raw ensemble, the local MOS models and the persistence model, over the 2019 testing period, for O3 (a)
and PM10 (b) threshold exceedances.

Figure 5. Detection scores for the local daily (a), global daily (b), local hourly (c) and global hourly (d) MOS approaches for O3 daily max
180 µgm−3 threshold.

probability to actually observe a threshold exceedance. But
the downside is that observed exceedances have a very low
probability to be detected by this model as illustrated by the
very low probability of detection (y axis). In other words, the
raw model is strongly biased (in frequency) with much more
observed than predicted exceedances. In contrast, the MOS
allows us to get a frequency bias closer to 1, reducing the suc-

cess ratio but greatly improving the probability of detection.
Both the local and global approaches enable us to improve
the overall detection performances, reaching CSI scores be-
tween 0.3 and 0.4 for the MOS dedicated to daily predic-
tions (see the top panels). The small loss in the success ratio
is largely compensated by the gain in probability of detec-
tion. In that configuration, with 4 months of data for training,
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Figure 6. Detection scores for the local daily (a), global daily (b), local hourly (c) and global hourly (d) MOS approaches for PM10 daily
mean 50 µgm−3 threshold.

the local approach works better with linear models (standard,
LASSO and ridge) than with tree-based models (RF and
GBM). The best CSI score is obtained with the global-daily
approach and GBM model (0.34). This is much better than
the persistence model which produces a CSI score of 0.22.
Note that, by construction, the frequency bias of the per-
sistence model (grey circle in the performance diagrams) is
equal to one (i.e. located over the bisector of the performance
diagram) since the number of predicted exceedances always
equals the number of observed exceedances (exceedances are
predicted with 1 d of delay). The position on the bisector line
depends on the length of the episodes. Long episodes of ex-
ceedances (several consecutive days) will tend to produce
good scores (closer to the upper right corner of the perfor-
mance diagram). For this O3 threshold of exceedance, perfor-
mances are clearly degraded when using the hourly approach
(bottom panels).

Results are comparable for the detection of exceedances of
PM10 daily mean threshold (Fig. 6), with success ratio scores
between 0.59 and 0.68, probability of detection between 0.42
and 0.51, and CSI between 0.35 and 0.4 depending on the
MOS approach and on the model considered. The best CSI
score of 0.4 is obtained with the global-hourly approach as-
sociated with the random forest model. Unlike the O3 pol-

lutant, detection performances of the hourly approaches are
similar to those of the daily approaches.

6 Conclusion

This work allows us to compare the performances of two
model output statistics (MOS) approaches for the correction
of the Copernicus Atmosphere Monitoring Service (CAMS)
forecasts for four regulated pollutants for the upcoming day
at daily and hourly timescales, at monitoring sites covering
the European territory. Both approaches (local and global)
are implemented with five distinct machine learning algo-
rithms ranging from simple linear regressions to more so-
phisticated tree-based models. The construction of optimized
local MOS needs relatively long periods of data available
for training individual models at each site. It was therefore
tested with a reasonable scenario, where a full year of train-
ing data was available for PM10, PM2.5 and NO2 pollutants.
For O3, we focused on summer predictions, and the MOS
was trained with 4 months of summer data. In this context,
the local MOS approach performs best with the linear models
for the RMSE of daily predictions and for detection perfor-
mances, while the random forest model gives the best RMSE
scores for the hourly predictions. We insist that this result is
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only true with 1 year (four summer months for O3) of train-
ing data. It could be different with a shorter training period
as linear models are more prone to overfitting as suggested
by the results described in Sect. 4. The global MOS is an
innovative approach designed to cope with operational con-
straints. Its very short training period (3 d) allows us to adapt
in a short time to any changes in the modelling system (up-
grade of the deterministic model, addition of new monitoring
stations). In addition to its operational flexibility, the global
approach shows performances that compete with those of the
local approach. For this global approach, the random forest
algorithm gives the best RMSE scores whatever the pollutant
and timescale considered. However, if the MOS is designed
for hourly prediction, the gradient boosting machine (GBM)
algorithm is more adapted than random forest to detect O3
daily max threshold exceedances. We would therefore rec-
ommend the GBM model in that situation. But one might
also consider using a MOS specifically designed for daily
maximum predictions to further improve detection skills.

As mentioned above, the local approach was performed
in this study with a relatively large training dataset. Interest-
ingly, such a local approach was tested with CAMS O3 fore-
casts by Petetin et al. (2022) using a selection of MOS meth-
ods (including basic methods such as persistence or mov-
ing average to more sophisticated methods such as GBM)
to build a model at every monitoring station located in the
Iberian Peninsula. To compare the distinct MOS methods,
Petetin et al. (2022) mimic a worst-case operational scenario
where very few prior data are available for training; that is,
new models are trained regularly with a growing history,
starting with 30 d and ending with 2 years of data for a Febru-
ary 2018–December 2019 simulation. Performances cannot
be directly compared to this work because of their distinct
spatial and temporal (year-round versus summer months)
coverage. Nevertheless, the authors highlight that the GBM
model presents poor detection skills (worse than the persis-
tence model) despite having the best RMSE and correlation
performances. Our study confirms this result for the GBM
and random forest models, even with four summer months
for training. We further demonstrate that with a constant
3 d training period, the global approach offers stable per-
formances, with optimized continuous and categorical skills,
from the very first days following a deterministic modelling
system upgrade. As mentioned in Sect. 2, the CAMS ensem-
ble model was subject to an upgrade in June 2019 (i.e. during
the testing period). We verified that no breakup in the scores
occurred during this period and thus consider that this up-
grade had little impact on the local MOS (despite being cal-
ibrated with a slightly different CAMS ensemble version).
Nevertheless, we emphasize that there is no reason that the
local MOS will behave the same way in future upgrades and
reaffirm the benefit of the global (short training) MOS ap-
proach to deal with those situations. In the future, such a
global approach could also be used with a gradually expand-
ing training dataset as in Petetin et al. (2022), being mindful,

however, of the computing demand of automated learning of
such a MOS in an operational set-up. Because of its flexibil-
ity, we also expect that this global approach is prone to adapt
in real time to rapid changes in pollutant emissions as exper-
imented with during the COVID crisis. Further investigation
could be made using 2020 data to test this approach in such
a situation.

Appendix A: Grids of tuning values for the
hyper-parameters of each algorithm

For both the LASSO and ridge models, the penalty coeffi-
cient (lambda) is tested with values in {0, 0.05, [0.1 to 5.0 by
increments of 0.1], 6, 7, 8, 10, 12, 15}. For the random for-
est algorithm, the number of trees (ntree) to grow is fixed to
100, and the number of variables randomly sampled at each
split (mtry) is taken as the largest integer less than or equal
to the square root of P , where P is the number of predic-
tors. For the GBM algorithm, the number of trees (n.tree)
is fixed to 100. The learning rate (shrinkage) takes values
in {0.05,0.1,0.3}. The number of splits to perform in each
tree (interaction.depth) takes values in {2,7}, and the min-
imum number of observations in a node (n.minobsinnode)
takes values in {1,5}.
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Appendix B

Figure B1. Mean bias score for the raw ensemble model and the local MOS approach with four training configurations.

Figure B2. Correlation score for the raw ensemble model and the local MOS approach with four training configurations.

Figure B3. Mean bias score for the raw ensemble model and the global MOS approach with four training configurations.
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Figure B4. Correlation score for the raw ensemble model and the global MOS approach with four training configurations.

Appendix C

Figure C1. Comparison of the raw ensemble model and best model scenarios for the local and global MOS approaches. Scores include
station means of RMSE, mean bias and correlation for the prediction of daily mean concentrations over central Europe (EUC), northern
Europe (EUN), southern Europe (EUS) and western Europe (EUW).
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Figure C2. Comparison of the raw ensemble model and best model scenarios for the local and global MOS approaches. Scores include
station means of RMSE, mean bias and correlation for the prediction of daily max concentrations over central Europe (EUC), northern
Europe (EUN), southern Europe (EUS) and western Europe (EUW).
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