Articles | Volume 23, issue 8
https://doi.org/10.5194/acp-23-4727-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4727-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transport pathways of carbon monoxide from Indonesian fire pollution to a subtropical high-altitude mountain site in the western North Pacific
Saginela Ravindra Babu
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Chang-Feng Ou-Yang
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Stephen M. Griffith
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Shantanu Kumar Pani
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Steven Soon-Kai Kong
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Neng-Huei Lin
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
Center for Environmental Monitoring and Technology, National Central University, Taoyuan 32001, Taiwan
Related authors
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Saginela Ravindra Babu and Yuei-An Liou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-513, https://doi.org/10.5194/acp-2020-513, 2020
Revised manuscript not accepted
Short summary
Short summary
This is the first paper to utilize the high-resolution temperature measurements from the recently launched COSMIC-2 radio occultation data to delineate the detailed vertical structure and day-to-day temperature variability in response to the eruption of the Taal volcano in January 2020.
Ghouse Basha, M. Venkat Ratnam, Pangaluru Kishore, S. Ravindrababu, and Isabella Velicogna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-743, https://doi.org/10.5194/acp-2019-743, 2019
Preprint withdrawn
Short summary
Short summary
The Asian Summer Monsoon Anticyclone (ASMA) plays an important role in confining the trace gases and aerosols for a longer period. This study explores the variability of tropopause parameters, trace gases and aerosols and its relation with ENSO and QBO in ASMA. Further, the influence of the Indian summer monsoon activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years and strong La Niña, El Niño years.
M. Venkat Ratnam, S. Ravindra Babu, S. S. Das, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 16, 8581–8591, https://doi.org/10.5194/acp-16-8581-2016, https://doi.org/10.5194/acp-16-8581-2016, 2016
Short summary
Short summary
The impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. It is shown that cyclones have a significant impact on the tropopause structure, ozone and water vapour budget, and consequentially STE in the UTLS region. The cross-tropopause mass flux from the stratosphere to the troposphere for cyclonic storms is found to be 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2.
S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, https://doi.org/10.5194/acp-15-10239-2015, 2015
Short summary
Short summary
The effect of tropical cyclones (TCs) that occurred over the north Indian Ocean in the last decade on the tropical tropopause parameters has been quantified for the first time. The vertical structure of temperature and tropopause parameters within the 5º radius away from the cyclone centre during TC period is also presented. The water vapour variability in the vicinity of TC is investigated.
It is demonstrated that the TCs can significantly affect the tropical tropopause and thus STE processes.
M. Venkat Ratnam, N. Pravallika, S. Ravindra Babu, G. Basha, M. Pramitha, and B. V. Krishna Murthy
Atmos. Meas. Tech., 7, 1011–1025, https://doi.org/10.5194/amt-7-1011-2014, https://doi.org/10.5194/amt-7-1011-2014, 2014
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2549, https://doi.org/10.5194/egusphere-2024-2549, 2024
Short summary
Short summary
The accuracy of the chemical transport model, a key focus of our research, is strongly dependent on the dry deposition parameterization. Our finding shows that the refined CMAQ dust model correlated well with the ground and high altitude in-situ measurements by implementing the suggested dry deposition schemes. Furthermore, we reveal the mixing state of two types of aerosols at the upper level, a finding supported by both the optimized model and measurement.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Jackson Hian-Wui Chang, Stephen M. Griffith, Steven Soon-Kai Kong, Ming-Tung Chuang, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 6357–6382, https://doi.org/10.5194/acp-23-6357-2023, https://doi.org/10.5194/acp-23-6357-2023, 2023
Short summary
Short summary
A novel CMAQ–PMF-based composite index is developed to identify the key VOC source species for an effective ozone abatement strategy. The index provides information as to which VOC species are key to ozone formation and where to reduce sources of these VOC species. Using the composite index, we recommended the VOC control measures in southern Taiwan should prioritize solvent usage, vehicle emissions, and the petrochemical industry.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Maggie Chel-Gee Ooi, Ming-Tung Chuang, Joshua S. Fu, Steven S. Kong, Wei-Syun Huang, Sheng-Hsiang Wang, Sittichai Pimonsree, Andy Chan, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 12521–12541, https://doi.org/10.5194/acp-21-12521-2021, https://doi.org/10.5194/acp-21-12521-2021, 2021
Short summary
Short summary
There is very limited local modeling effort in Southeast Asia, where haze is an annually recurring threat. In this work, the accuracy of haze prediction is improved not only at the burning source but also at the downwind site in northern Southeast Asia to highlight the influence of trans-boundary haze, which is often regional. The burning haze is carried to the populated west of Taiwan via several mechanisms, with the most severe conditions related to the boreal winter pressure system.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Ming-Tung Chuang, Maggie Chel Gee Ooi, Neng-Huei Lin, Joshua S. Fu, Chung-Te Lee, Sheng-Hsiang Wang, Ming-Cheng Yen, Steven Soon-Kai Kong, and Wei-Syun Huang
Atmos. Chem. Phys., 20, 14947–14967, https://doi.org/10.5194/acp-20-14947-2020, https://doi.org/10.5194/acp-20-14947-2020, 2020
Short summary
Short summary
This study evaluated the impact of Asian haze from the three biggest industrial regions on Taiwan and analyzed the process during transport. The production and removal process revealed the mechanisms of long-range transport. This is the first time that the brute force method and process analysis technique has been applied in a Community Multiscale Air Quality Modeling System. Also, this study simulated the interesting transboundary transport of pollutants from southern mainland China to Taiwan.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Saginela Ravindra Babu and Yuei-An Liou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-513, https://doi.org/10.5194/acp-2020-513, 2020
Revised manuscript not accepted
Short summary
Short summary
This is the first paper to utilize the high-resolution temperature measurements from the recently launched COSMIC-2 radio occultation data to delineate the detailed vertical structure and day-to-day temperature variability in response to the eruption of the Taal volcano in January 2020.
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma C. Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020, https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Short summary
We update the tropospheric trends and emissions of six perfluorocarbon (PFC) gases, including separate isomers. Trends for these strong greenhouse gases are still increasing, but at slower rates than previously. The lack of natural sinks results in the global accumulation of 833 million metric tonnes of CO2 equivalent for these six PFCs by 2017. Modelling results indicate potential source regions and types in East Asia, but we find that many emissions are unaccounted for in emission reports.
Ghouse Basha, M. Venkat Ratnam, Pangaluru Kishore, S. Ravindrababu, and Isabella Velicogna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-743, https://doi.org/10.5194/acp-2019-743, 2019
Preprint withdrawn
Short summary
Short summary
The Asian Summer Monsoon Anticyclone (ASMA) plays an important role in confining the trace gases and aerosols for a longer period. This study explores the variability of tropopause parameters, trace gases and aerosols and its relation with ENSO and QBO in ASMA. Further, the influence of the Indian summer monsoon activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years and strong La Niña, El Niño years.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Lauren Schmeisser, Elisabeth Andrews, John A. Ogren, Patrick Sheridan, Anne Jefferson, Sangeeta Sharma, Jeong Eun Kim, James P. Sherman, Mar Sorribas, Ivo Kalapov, Todor Arsov, Christo Angelov, Olga L. Mayol-Bracero, Casper Labuschagne, Sang-Woo Kim, András Hoffer, Neng-Huei Lin, Hao-Ping Chia, Michael Bergin, Junying Sun, Peng Liu, and Hao Wu
Atmos. Chem. Phys., 17, 12097–12120, https://doi.org/10.5194/acp-17-12097-2017, https://doi.org/10.5194/acp-17-12097-2017, 2017
Short summary
Short summary
Three methods are used to classify aerosol type from aerosol optical properties measured in situ at 24 surface sites. Classification methods work best at sites with stable, homogenous aerosol at particularly polluted and dust-prone continental and marine sites. Classification methods are poor at remote marine and Arctic sites. Using these methods to extrapolate aerosol type from optical properties can help determine aerosol radiative forcing and improve aerosol satellite retrieval algorithms.
David E. Oram, Matthew J. Ashfold, Johannes C. Laube, Lauren J. Gooch, Stephen Humphrey, William T. Sturges, Emma C. Leedham Elvidge, Grant L. Forster, Neil R. P. Harris, Mohammed Iqbal Mead, Azizan Abu Samah, Siew Moi Phang, Chang-Feng Ou-Yang, Neng-Huei Lin, Jia-Lin Wang, Angela K. Baker, Carl A. M. Brenninkmeijer, and David Sherry
Atmos. Chem. Phys., 17, 11929–11941, https://doi.org/10.5194/acp-17-11929-2017, https://doi.org/10.5194/acp-17-11929-2017, 2017
Short summary
Short summary
We have observed large amounts of man-made chlorine compounds in E and SE Asia and in the upper tropical troposphere. These relatively short-lived compounds are not controlled by the Montreal Protocol, but if significant quantities were able to reach the stratosphere, the long-term recovery of stratospheric ozone would be delayed. We have also identified an important atmospheric transport mechanism that can rapidly transport these chemicals from E Asia to the upper troposphere via the tropics.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
M. Venkat Ratnam, S. Ravindra Babu, S. S. Das, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 16, 8581–8591, https://doi.org/10.5194/acp-16-8581-2016, https://doi.org/10.5194/acp-16-8581-2016, 2016
Short summary
Short summary
The impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. It is shown that cyclones have a significant impact on the tropopause structure, ozone and water vapour budget, and consequentially STE in the UTLS region. The cross-tropopause mass flux from the stratosphere to the troposphere for cyclonic storms is found to be 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2.
S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, https://doi.org/10.5194/acp-15-10239-2015, 2015
Short summary
Short summary
The effect of tropical cyclones (TCs) that occurred over the north Indian Ocean in the last decade on the tropical tropopause parameters has been quantified for the first time. The vertical structure of temperature and tropopause parameters within the 5º radius away from the cyclone centre during TC period is also presented. The water vapour variability in the vicinity of TC is investigated.
It is demonstrated that the TCs can significantly affect the tropical tropopause and thus STE processes.
M. Venkat Ratnam, N. Pravallika, S. Ravindra Babu, G. Basha, M. Pramitha, and B. V. Krishna Murthy
Atmos. Meas. Tech., 7, 1011–1025, https://doi.org/10.5194/amt-7-1011-2014, https://doi.org/10.5194/amt-7-1011-2014, 2014
C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin
Hydrol. Earth Syst. Sci., 17, 3815–3826, https://doi.org/10.5194/hess-17-3815-2013, https://doi.org/10.5194/hess-17-3815-2013, 2013
J.-L. Wang, G. Jacobson, C. W. Rella, C.-Y. Chang, I. Liu, W.-T. Liu, C. Chew, C.-F. Ou-Yang, W.-C. Liao, and C.-C. Chang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-7633-2013, https://doi.org/10.5194/amtd-6-7633-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Interannual variations in the Δ(17O) signature of atmospheric CO2 at two mid-latitude sites suggest a close link to stratosphere–troposphere exchange
Atmospheric NH3 in urban Beijing: long-term variations and implications for secondary inorganic aerosol control
How rainfall events modify trace gas mixing ratios in central Amazonia
Airborne in-situ quantification of methane emissions from oil and gas production in Romania
Uncertainty in continuous ΔCO-based ΔffCO2 estimates derived from 14C flask and bottom-up ΔCO ∕ ΔffCO2 ratios
Dynamical drivers of free-tropospheric ozone increases over equatorial Southeast Asia
Air mass transport to the tropical western Pacific troposphere inferred from ozone and relative humidity balloon observations above Palau
Mixing-layer-height-referenced ozone vertical distribution in the lower troposphere of Chinese megacities: stratification, classification, and meteorological and photochemical mechanisms
Six years of continuous carbon isotope composition measurements of methane in Heidelberg (Germany) – a study of source contributions and comparison to emission inventories
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Ozone in the boreal forest in the Alberta Oil Sands Region
Zugspitze ozone 1970–2020: the role of stratosphere–troposphere transport
High sulfur dioxide deposition velocities measured with the flux–gradient technique in a boreal forest in the Alberta Oil Sands Region
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements
Global warming will largely increase waste treatment CH4 emissions in Chinese megacities: insight from the first city-scale CH4 concentration observation network in Hangzhou, China
Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements
Airborne glyoxal measurements in the marine and continental atmosphere: comparison with TROPOMI observations and EMAC simulations
Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics
Diurnal variability of atmospheric O2, CO2, and their exchange ratio above a boreal forest in southern Finland
How adequately are elevated moist layers represented in reanalysis and satellite observations?
Quantitative impacts of vertical transport on the long-term trend of nocturnal ozone increase over the Pearl River Delta region during 2006–2019
Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: a case study from the CoMet mission
Enhanced natural releases of mercury in response to the reduction in anthropogenic emissions during the COVID-19 lockdown by explainable machine learning
Temporal variability of tropospheric ozone and ozone profiles in the Korean Peninsula during the East Asian summer monsoon: insights from multiple measurements and reanalysis datasets
Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model
Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19)
Evaluation of correlated Pandora column NO2 and in situ surface NO2 measurements during GMAP campaign
Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection
Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network
Continuous CH4 and δ13CH4 measurements in London demonstrate under-reported natural gas leakage
Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest
Declines and peaks in NO2 pollution during the multiple waves of the COVID-19 pandemic in the New York metropolitan area
Measurement report: Characterization of uncertainties in fluxes and fuel sulfur content from ship emissions in the Baltic Sea
Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg
Positive and negative influences of typhoons on tropospheric ozone over southern China
Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe, and Xinglong in North China
The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling
Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework
Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau
New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition
Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations
Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia
Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic
Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, China
Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia
A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories
Pharahilda M. Steur, Hubertus A. Scheeren, Gerbrand Koren, Getachew A. Adnew, Wouter Peters, and Harro A. J. Meijer
Atmos. Chem. Phys., 24, 11005–11027, https://doi.org/10.5194/acp-24-11005-2024, https://doi.org/10.5194/acp-24-11005-2024, 2024
Short summary
Short summary
We present records of the triple oxygen isotope signature (Δ(17O)) of atmospheric CO2 obtained with laser absorption spectroscopy from two mid-latitude stations. Significant interannual variability is observed in both records. A model sensitivity study suggests that stratosphere–troposphere exchange, which carries high-Δ(17O) CO2 from the stratosphere into the troposphere, causes most of the variability. This makes Δ(17O) a potential tracer for stratospheric intrusions into the troposphere.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2135, https://doi.org/10.5194/egusphere-2024-2135, 2024
Short summary
Short summary
This article provide insights from airborne in-situ measurements during the ROMEO campaign with support from two model simulations. The results from the evaluations performed for this article are independently consistent with the results from previously published article which was based on ground-based measurements during the ROMEO campaign. The results show that reported methane emissions from oil and gas industry in Romania are largely under-reported to UNFCCC in 2019.
Fabian Maier, Ingeborg Levin, Sébastien Conil, Maksym Gachkivskyi, Hugo Denier van der Gon, and Samuel Hammer
Atmos. Chem. Phys., 24, 8205–8223, https://doi.org/10.5194/acp-24-8205-2024, https://doi.org/10.5194/acp-24-8205-2024, 2024
Short summary
Short summary
We assess the uncertainty in continuous fossil fuel carbon dioxide (ffCO2) estimates derived from carbon monoxide (CO) observations and radiocarbon (14CO2) flask measurements from an urban and a rural site. This study provides the basis for using continuous CO-based ffCO2 observations in atmospheric transport inversion frameworks to derive ffCO2 emission estimates. We also compare the flask-based CO / ffCO2 ratios with modeled ratios to validate an emission inventory for central Europe.
Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Ninong Komala, Habib Khirzin Al-Ghazali, Dian Yudha Risdianto, Ambun Dindang, Ahmad Fairudz bin Jamaluddin, Mohan Kumar Sammathuria, Norazura Binti Zakaria, Bryan J. Johnson, and Patrick D. Cullis
Atmos. Chem. Phys., 24, 5221–5234, https://doi.org/10.5194/acp-24-5221-2024, https://doi.org/10.5194/acp-24-5221-2024, 2024
Short summary
Short summary
SHADOZ balloon-borne ozone measurements over equatorial Southeast Asia from 1998–2022 reveal that ozone increases during the early months of the year are linked to reduced convective storm activity, which typically redistributes and cleans the atmosphere of ozone. These findings challenge models to replicate the trends produced by the SHADOZ and meteorological observations and emphasize the importance of studying monthly or seasonal instead of annual changes for understanding ozone trends.
Katrin Müller, Peter von der Gathen, and Markus Rex
Atmos. Chem. Phys., 24, 4693–4716, https://doi.org/10.5194/acp-24-4693-2024, https://doi.org/10.5194/acp-24-4693-2024, 2024
Short summary
Short summary
The transport history of tropospheric air masses above the tropical western Pacific is studied by local ozone and relative humidity profile measurements from Palau. A prominent anti-correlation between both tracers separates air masses of different origin and genesis. Back trajectories confirm a local convective origin of the year-round humid ozone-poor background. Anomalously dry ozone-rich air is generated in tropical Asia by pollution and dehydrated during transport via radiative cooling.
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024, https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Short summary
This study collected 1897 ozonesondes from two Chinese megacities (Beijing and Hong Kong) in 2000–2022 to investigate the climatological vertical heterogeneity of lower-tropospheric ozone distribution with a mixing-layer-height-referenced (h-referenced) vertical coordinate system. This vertical coordinate system highlighted O3 stratification features existing at the mixing layer–free troposphere interface and provided a better understanding of O3 pollution in urban regions.
Antje Hoheisel and Martina Schmidt
Atmos. Chem. Phys., 24, 2951–2969, https://doi.org/10.5194/acp-24-2951-2024, https://doi.org/10.5194/acp-24-2951-2024, 2024
Short summary
Short summary
In Heidelberg, Germany, methane and its stable carbon isotope composition have been measured continuously with a cavity ring-down spectroscopy (CRDS) analyser since April 2014. These 6-year time series are analysed with the Keeling plot method for the isotopic composition of the sources, as well as seasonal variations and trends in methane emissions. The source contributions derived from atmospheric measurements were used to evaluate global and regional emission inventories of methane.
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024, https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Short summary
We hypothesize that the cause of the worsening O3 trends in the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and Pearl River Delta from 2015 to 2020 is attributable to the increased occurrence of meteorological conditions of high solar radiation and a positive temperature anomaly under the influence of West Pacific subtropical high, tropical cyclones, and mid–high-latitude wave activities.
Joseph Seitz, Shiyuan Zhong, Joseph J. Charney, Warren E. Heilman, Kenneth L. Clark, Xindi Bian, Nicholas S. Skowronski, Michael R. Gallagher, Matthew Patterson, Jason Cole, Michael T. Kiefer, Rory Hadden, and Eric Mueller
Atmos. Chem. Phys., 24, 1119–1142, https://doi.org/10.5194/acp-24-1119-2024, https://doi.org/10.5194/acp-24-1119-2024, 2024
Short summary
Short summary
Atmospheric turbulence affects wildland fire behaviors and heat and smoke transfer. Turbulence data collected during an experimental fire on a 10 m x 10 m densely instrumented burn plot are analyzed, and the results reveal substantial heterogeneity in fire-induced turbulence characteristics across the small plot, which highlights the necessity for coupled atmosphere–fire behavior models to have 1–2 m grid spacing so that adequate simulations of fire behavior and smoke transfer can be achieved.
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023, https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Short summary
We investigated the impact of societal restriction measures during the COVID-19 pandemic on surface ozone at 41 high-elevation sites worldwide. Negative ozone anomalies were observed for spring and summer 2020 for all of the regions considered. In 2021, negative anomalies continued for Europe and partially for the eastern US, while western US sites showed positive anomalies due to wildfires. IASI satellite data and the Carbon Monitor supported emission reductions as a cause of the anomalies.
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023, https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary
Short summary
Measurements of ozone in the atmosphere were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements show that the emissions of other pollutants from oil sands production and processing reduce the amount of ozone in the forest. By using an atmospheric model combined with measurements, we find that the rate at which ozone is absorbed by the forest is lower than typical rates from similar measurements in other forests.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023, https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Short summary
Large cities emit greenhouse gases which contribute to global warming. In this study, we measured the release of one important green house gas, methane, in Hamburg. Multiple sources that contribute to methane emissions were located and quantified. Methane sources were found to be mainly caused by human activity (e.g., by release from oil and gas refineries). Moreover, potential natural sources have been located, such as the Elbe River and lakes.
Truls Andersen, Zhao Zhao, Marcel de Vries, Jaroslaw Necki, Justyna Swolkien, Malika Menoud, Thomas Röckmann, Anke Roiger, Andreas Fix, Wouter Peters, and Huilin Chen
Atmos. Chem. Phys., 23, 5191–5216, https://doi.org/10.5194/acp-23-5191-2023, https://doi.org/10.5194/acp-23-5191-2023, 2023
Short summary
Short summary
The Upper Silesian Coal Basin, Poland, is one of the hot spots of methane emissions in Europe. Using an uncrewed aerial vehicle (UAV), we performed atmospheric measurements of methane concentrations downwind of five ventilation shafts in this region and determined the emission rates from the individual shafts. We found a strong correlation between quantified shaft-averaged emission rates and hourly inventory data, which also allows us to estimate the methane emissions from the entire region.
Cheng Hu, Junqing Zhang, Bing Qi, Rongguang Du, Xiaofei Xu, Haoyu Xiong, Huili Liu, Xinyue Ai, Yiyi Peng, and Wei Xiao
Atmos. Chem. Phys., 23, 4501–4520, https://doi.org/10.5194/acp-23-4501-2023, https://doi.org/10.5194/acp-23-4501-2023, 2023
Short summary
Short summary
We build the first city-scale tower-based atmospheric CH4 concentration observation network in China. The a priori total annual anthropogenic CH4 emissions and emissions from waste treatment were overestimated by 36.0 % and 47.1 %, respectively, in Hangzhou. Global warming will largely enhance the CH4 emission factor of waste treatment, which will increase by 17.6 %, 9.6 %, 5.6 % and 4.0 % for Representative Concentration Pathway (RCP) 8.5, RCP6.0, RCP4.5 and RCP2.6, respectively, by 2100.
Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, and Artem Kozlov
Atmos. Chem. Phys., 23, 2293–2314, https://doi.org/10.5194/acp-23-2293-2023, https://doi.org/10.5194/acp-23-2293-2023, 2023
Short summary
Short summary
We measured CH4 and CO2 from aircraft over the Russian Arctic. Analyzing our data with the Lagrangian model FLEXPART, we find a sharp east–west gradient in atmospheric composition. Western Siberia is influenced by strong wetland CH4 emissions, deep CO2 gradient from biospheric uptake, and long-range transport from Europe and North America. Eastern flights document less variability. Over the Arctic Ocean, we find a small influence from marine CH4 emissions compatible with reasonable inventories.
Flora Kluge, Tilman Hüneke, Christophe Lerot, Simon Rosanka, Meike K. Rotermund, Domenico Taraborrelli, Benjamin Weyland, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 1369–1401, https://doi.org/10.5194/acp-23-1369-2023, https://doi.org/10.5194/acp-23-1369-2023, 2023
Short summary
Short summary
Using airborne glyoxal concentration and vertical column density measurements, vertical profiles are inferred for eight global regions in aged biomass burning plumes and the tropical marine boundary layer. Using TROPOMI observations, an analysis of space- and airborne measurements is performed. A comparison to EMAC simulations shows a general glyoxal underprediction, which points to various missing sources and precursors from anthropogenic activities, biomass burning, and the sea surface.
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023, https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Marc Prange, Stefan A. Buehler, and Manfred Brath
Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023, https://doi.org/10.5194/acp-23-725-2023, 2023
Short summary
Short summary
We investigate the representation of elevated moist layers (EMLs) in two satellite retrieval products and ERA5 reanalysis. EMLs occur in the vicinity of tropical convective storms and are thought to have an impact on their evolution through radiative heating. We provide a first dedicated assessment of EMLs in long-term data products in terms of moist layer strength, vertical thickness and altitude by comparing to collocated radiosondes over the western Pacific, a region where EMLs often occur.
Yongkang Wu, Weihua Chen, Yingchang You, Qianqian Xie, Shiguo Jia, and Xuemei Wang
Atmos. Chem. Phys., 23, 453–469, https://doi.org/10.5194/acp-23-453-2023, https://doi.org/10.5194/acp-23-453-2023, 2023
Short summary
Short summary
Relying on observed and simulated data, we determine the spatiotemporal characteristics of nocturnal O3 increase (NOI) events in the Pearl River Delta region during 2006–2019. Low-level jets and convective storms are the main meteorological processes causing NOI. Daytime O3 is another essential influencing factor. More importantly, a more prominent role of meteorological processes in NOI has been demonstrated. Our study highlights the important role of meteorology in nocturnal O3 pollution.
Justyna Swolkień, Andreas Fix, and Michał Gałkowski
Atmos. Chem. Phys., 22, 16031–16052, https://doi.org/10.5194/acp-22-16031-2022, https://doi.org/10.5194/acp-22-16031-2022, 2022
Short summary
Short summary
Determination of emissions from coal mines on a local scale requires instantaneous data. We analysed temporal emission data for ventilation shafts and factors influencing their variability. They were saturation of the seams with methane, the permeability of the rock mass, and coal output. The data for the verification should reflect the actual values of emissions from point sources. It is recommended to achieve this by using a standardised emission measurement system for all coal mines.
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 22, 15851–15865, https://doi.org/10.5194/acp-22-15851-2022, https://doi.org/10.5194/acp-22-15851-2022, 2022
Short summary
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Juseon Bak, Eun-Ji Song, Hyo-Jung Lee, Xiong Liu, Ja-Ho Koo, Joowan Kim, Wonbae Jeon, Jae-Hwan Kim, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 14177–14187, https://doi.org/10.5194/acp-22-14177-2022, https://doi.org/10.5194/acp-22-14177-2022, 2022
Short summary
Short summary
Our study investigates the temporal variations of ozone profiles at Pohang in the Korean Peninsula from multiple ozone products. We discuss the quantitative relationships between daily surface measurements and key meteorological variables, different seasonality of ozone between the troposphere and stratosphere, and interannual changes in the lower tropospheric ozone, linked by the weather pattern driven by the East Asian summer monsoon.
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022, https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Short summary
CH4 works as the second-most important greenhouse gas, its reported emission inventories being far less than CO2. In this study, we developed a self-adjusted model to estimate the CH4 emission rate from strong point sources by the UAV-based AirCore system. This model would reduce the uncertainty in CH4 emission rate quantification accrued by errors in measurements of wind and concentration. Actual measurements on Pniówek coal demonstrate the high accuracy and stability of our developed model.
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022, https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Short summary
Gaseous elemental mercury (GEM) was observed in Southeast China over the period 2012–2020. The observed GEM concentrations showed no distinct inter-annual variation trends. The interpretation rate of transportation and meteorology on GEM variations displayed an increasing trend. In contrast, anthropogenic emissions have shown a decreasing interpretation rate since 2012, indicating the effectiveness of emission mitigation measures in reducing GEM concentrations in the study region.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Lim-Seok Chang, Donghee Kim, Hyunkee Hong, Deok-Rae Kim, Jeong-Ah Yu, Kwangyul Lee, Hanlim Lee, Daewon Kim, Jinkyu Hong, Hyun-Young Jo, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 10703–10720, https://doi.org/10.5194/acp-22-10703-2022, https://doi.org/10.5194/acp-22-10703-2022, 2022
Short summary
Short summary
Our study explored the synergy of combined column and surface measurements during GMAP (GEMS Map of Air Pollution) campaign. It has several points to note for vertical distribution analysis. Particularly under prevailing local wind meteorological conditions, Pandora-based vertical structures sometimes showed negative correlations between column and surface measurements. Vertical analysis should be done carefully in some local meteorological conditions when employing either surface or columns.
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
Atmos. Chem. Phys., 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, https://doi.org/10.5194/acp-22-8221-2022, 2022
Short summary
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Eric Saboya, Giulia Zazzeri, Heather Graven, Alistair J. Manning, and Sylvia Englund Michel
Atmos. Chem. Phys., 22, 3595–3613, https://doi.org/10.5194/acp-22-3595-2022, https://doi.org/10.5194/acp-22-3595-2022, 2022
Short summary
Short summary
Continuous measurements of atmospheric methane concentrations and its carbon-13 isotope have been made in central London since early 2018. These measurements were used to evaluate methane emissions reported in global and UK-specific emission inventories for the London area. Compared to atmospheric methane measurements from March 2018 to October 2020, both inventories are under-reporting natural gas leakage for the London area.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Maria Tzortziou, Charlotte F. Kwong, Daniel Goldberg, Luke Schiferl, Róisín Commane, Nader Abuhassan, James J. Szykman, and Lukas C. Valin
Atmos. Chem. Phys., 22, 2399–2417, https://doi.org/10.5194/acp-22-2399-2022, https://doi.org/10.5194/acp-22-2399-2022, 2022
Short summary
Short summary
The COVID-19 pandemic created an extreme natural experiment in which sudden changes in human behavior significantly impacted urban air quality. Using a combination of model, satellite, and ground-based data, we examine the impact of multiple waves and phases of the pandemic on atmospheric nitrogen pollution in the New York metropolitan area, and address the role of weather as a key driver of high pollution episodes observed even during – and despite – the stringent early lockdowns.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, https://doi.org/10.5194/acp-21-17907-2021, 2021
Short summary
Short summary
The radon tracer method is applied to atmospheric methane and radon observations from the upper Rhine valley to independently estimate methane emissions from the region. Comparison of our top-down results with bottom-up inventory data requires high-resolution footprint modelling and representative radon flux data. In agreement with inventories, observed emissions decreased, but only until 2005. A limitation of this method is that point-source emissions are not captured or not fully captured.
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021, https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary
Short summary
This study introduces the in situ CO2 measurement system installed in Beijing (urban), Xianghe (suburban), and Xinglong (rural) in North China for the first time. The spatial and temporal variations in CO2 mole fractions at the three sites between June 2018 and April 2020 are discussed on both seasonal and diurnal scales.
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021, https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Short summary
Megacities are a significant source of emissions of various substances in the atmosphere, including carbon dioxide, which is the most important anthropogenic greenhouse gas. In 2019–2020, the Emission Monitoring Mobile Experiment was carried out in St Petersburg, which is the second-largest industrial city in Russia. The results of this experiment, coupled with numerical modelling, helped to estimate the amount of CO2 emitted by the city. This value was twice as high as predicted.
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Youwen Sun, Hao Yin, Yuan Cheng, Qianggong Zhang, Bo Zheng, Justus Notholt, Xiao Lu, Cheng Liu, Yuan Tian, and Jianguo Liu
Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021, https://doi.org/10.5194/acp-21-9201-2021, 2021
Short summary
Short summary
We quantified the variability, source, and transport of urban CO over the Himalayas and Tibetan Plateau (HTP) by using measurement, model simulation, and the analysis of meteorological fields. Urban CO over the HTP is dominated by anthropogenic and biomass burning emissions from local, South Asia and East Asia, and oxidation sources. The decreasing trends in surface CO since 2015 in most cities over the HTP are attributed to the reduction in local and transported CO emissions in recent years.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Da Gao, Min Xie, Jane Liu, Tijian Wang, Chaoqun Ma, Haokun Bai, Xing Chen, Mengmeng Li, Bingliang Zhuang, and Shu Li
Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, https://doi.org/10.5194/acp-21-5847-2021, 2021
Short summary
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Yuming Jin, Ralph F. Keeling, Eric J. Morgan, Eric Ray, Nicholas C. Parazoo, and Britton B. Stephens
Atmos. Chem. Phys., 21, 217–238, https://doi.org/10.5194/acp-21-217-2021, https://doi.org/10.5194/acp-21-217-2021, 2021
Short summary
Short summary
We propose a new atmospheric coordinate (Mθe) based on equivalent potential temperature (θe) but with mass as the unit. This coordinate is useful in studying the spatial and temporal distribution of long-lived chemical tracers (CO2, CH4, O2 / N2, etc.) from sparse data, like airborne observation. Using this coordinate and sparse airborne observation (HIPPO and ATom), we resolve the Northern Hemisphere mass-weighted average CO2 seasonal cycle with high accuracy.
Cited articles
AIRS project: Aqua/AIRS L3 Monthly Standard Physical Retrieval (AIRS-only) 1 degree × 1 degree V7.0, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA [data set], https://doi.org/10.5067/UBENJB9D3T2H, 2019.
Bowman, K. P.: Transport of carbon monoxide from the tropics to the extratropics, J. Geophys. Res.-Atmos., 111, D02107, https://doi.org/10.1029/2005JD006137, 2006.
Chandra, S., Ziemke, J. R., Duncan, B. N., Diehl, T. L., Livesey, N. J., and Froidevaux, L.:
Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning, Atmos. Chem. Phys., 9, 4239–4249, https://doi.org/10.5194/acp-9-4239-2009, 2009.
Chi, K. H., Hung, N. T., Lin, C. Y., Wang, S. H., Ou-Yang, C. F., Lee, C. T., and Lin, N. H.:
Evaluation of Atmospheric PCDD/Fs at Two High-Altitude Stations in Vietnam and Taiwan during Southeast Asia Biomass Burning, Aerosol Air Qual. Res., 16, 2706–2715, https://doi.org/10.4209/aaqr.2015.11.0653, 2016.
Chuang, M. T., Fu, J. S., Lee, C. Te, Lin, N. H., Gao, Y., Wang, S. H., Sheu, G. R., Hsiao, T. C., Wang, J. L., Yen, M. C., Lin, T. H., and Thongboonchoo, N.:
The simulation of long-range transport of biomass burning plume and short-range transport of anthropogenic pollutants to a mountain observatory in east Asia during the 7-SEAS/2010 Dongsha experiment, Aerosol Air Qual. Res., 16, 2933–2949, https://doi.org/10.4209/aaqr.2015.07.0440, 2016.
Cooper, O. R., Gao, R. S., Tarasick, D., Leblanc, T., and Sweeney, C.:
Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010, J. Geophys. Res.-Atmos.,117, 1990–2010, https://doi.org/10.1029/2012JD018261, 2012.
Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez-Alonso, S., Worden, H. M., Ziskin, D., and Andreae, M. O.:
Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580, https://doi.org/10.5194/amt-12-4561-2019, 2019.
Duncan, B. N., Bey, I., Chin, M., Mickley, L. J., Fairlie, T. D., Martin, R. V., and Matsueda, H.:
Indonesian wildfires of 1997: Impact on tropospheric chemistry, J. Geophys. Res., 108, 4458, https://doi.org/10.1029/2002JD003195, 2003a.
Field, R. D., van der Werf, G. R., and Shen, S. S. P.:
Human amplification of drought-induced biomass burning in Indonesia since 1960, Nat. Geosci., 2, 185–188, https://doi.org/10.1038/ngeo443, 2009.
Field, R. D., van der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., and Worden, H. M.:
Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Ni ̃no-induced drought, P. Natl. Acad. Sci. USA, 113, 9204–9209, https://doi.org/10.1073/pnas.1524888113, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. da, Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Giglio, L., Schroeder, W., and Justice, C. O.:
The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 178, 31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Hadley, G.:
Concerning the cause of the general trade-winds, Philos. Trans. R. Soc. Lond., 29, 58–62, https://doi.org/10.1098/rstl.1735.0014, 1735.
Heymann, J., Reuter, M., Buchwitz, M., Schneising, O., Bovensmann, H., Burrows, J. P., Massart, S., Kaiser, J. W., and Crisp, D.:
CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations, Geophys. Res. Lett., 44, 1537–1544, https://doi.org/10.1002/2016gl072042, 2017.
Hsiao, T. C., Ye, W. C., Wang, S. H., Tsay, S. C., Chen, W. N., Lin, N. H., Lee, C. Te, Hung, H. M., Chuang, M. T., and Chantara, S.:
Investigation of the CCN activity, BC and UVBC mass concentrations of biomass burning aerosols during the 2013 BASELInE campaign, Aerosol Air Qual. Res., 16, 2742–2756, https://doi.org/10.4209/aaqr.2015.07.0447, 2016.
Huang, H. Y., Wang, S. H., Huang, W. X., Lin, N. H., Chuang, M. T., da Silva, A. M., and Peng, C. M.: Influence of Synoptic-Dynamic Meteorology on the Long-Range Transport of Indochina Biomass Burning Aerosols, J. Geophys. Res.-Atmos., 125, e2019JD031260, https://doi.org/10.1029/2019JD031260, 2020.
Huang, L., Lin, W., Li, F., Wang, Y., and Jiang, B.:
Climate Impacts of the Biomass Burning in Indochina on Atmospheric Conditions over Southern China, Aerosol Air Qual. Res., 19, 2707–2720, https://doi.org/10.4209/aaqr.2019.01.0028, 2019.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., and van Weele, M.:
Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997, Sci. Rep.-UK, 6, 26886, https://doi.org/10.1038/srep26886, 2016.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Lin, C. C., Chen, W. N., Loftus, A. M., Lin, C. Y., Fu, Y. T., Peng, C. M., and Yen, M. C.:
Influences of the long-range transport of biomass-burning pollutants on surface air quality during 7-SEAS field campaigns, Aerosol Air Qual. Res., 17, 2595–2607, https://doi.org/10.4209/aaqr.2017.08.0273, 2017.
Lin, C.-Y., Hsu, H.-M., Lee, Y. H., Kuo, C. H., Sheng, Y.-F., and Chu, D. A.:
A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmos. Chem. Phys., 9, 7901–7911, https://doi.org/10.5194/acp-9-7901-2009, 2009.
Lin, N.-H., Tsay, S.-C., Maring, H. B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K. H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J. S., Reid, J. S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C. N., Sayer, A. M., Holben, B. N., Chu, Y.-C., Nguyen, X. A., Sopajaree, K., Chen, S.-J., Cheng, M.-T., Tsuang, B.-J., Tsai, C.-J., Peng, C.-M., Schnell, R. C., Conway, T., Chang, C.-T., Lin, K.-S., Tsai, Y. I., Lee, W.-J., Chang, S.-C., Liu, J.-J., Chiang, W.-L., Huang, S.-J., Lin, T.-H., and Liu, G.-R.: An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmos. Environ., 78, 1–19, https://doi.org/10.1016/j.atmosenv.2013.04.066, 2013.
Logan, J. A., Megretskaia, I., Nassar, R., Murray, L. T., Zhang, L., Bowman, K. W., Worden, H. M., and Luo, M.:
Effects of the 2006 El Niño on tropospheric composition as revealed by data from the Tropospheric Emission Spectrometer (TES), Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2007GL031698, 2008.
Matsueda, H. and Inoue, H. Y.:
Aircraft measurements of trace gases between Japan and Singapore in October of 1993, 1996, and 1997, Geophys. Res. Lett., 26, 2413–2416, https://doi.org/10.1029/1999GL900089, 1999.
Matsueda, H., Inoue, H. Y., and Ishii, M.:
Aircraft observation of carbon dioxide at 8–13 km altitude over the western Pacific from 1993 to 1999, Tellus B, 54, 1–21, https://doi.org/10.1034/j.1600-0889.2002.00304.x, 2002.
Matsueda, H., Buchholz, R. R., Ishijima, K., Worden, H. M., Hammerling, D., and Machida, T.:
Interannual Variation of Upper Tropospheric CO over the Western Pacific Linked with Indonesian Fires, SOLA, 15, 205–210, https://doi.org/10.2151/sola.2019-037, 2019.
McMillan, W. W., Barnet, C., Strow, L., Chahine, M. T., McCourt, M. L., Warner, J. X., Novelli, P. C., Korontzi, S., Maddy, E. S., and Datta, S.: Daily global maps of carbon monoxide from NASA's Atmospheric Infrared Sounder, Geophys. Res. Lett., 32, L11801, https://doi.org/10.1029/2004GL021821, 2005.
McMillan, W. W., Evans, K. D., Barnet, C. D., Maddy, E. S., Sachse, G. W., and Diskin, G. S.: Validating the AIRS Version 5 CO retrieval with DACOM in situ measurements during INTEX-A and -B, IEEE T. Geosci. Remote, 49, 2802–2813, https://doi.org/10.1109/TGRS.2011.2106505, 2011.
Nara, H., Tanimoto, H., Nojiri, Y., Mukai, H., Zeng, J., Tohjima, Y., and Machida, T.:
CO emissions from biomass burning in South-east Asia in the 2006 El Nino year: shipboard and AIRS satellite observations, Environ. Chem., 8, 213–223, https://doi.org/10.1071/EN10113, 2011.
NASA: Measurements Of Pollution In The Troposphere, https://asdc.larc.nasa.gov/project/MOPITT (last access: 31 March 2023), 2023a.
NASA: GES DISC, https://disc.gsfc.nasa.gov (last access: 31 March 2023), 2023b.
NASA: Active Fire Data, https://firms.modaps.eosdis.nasa.gov/active_fire/ (last access: 31 March 2023), 2023c.
Nassar, R., Logan, J. A., Megretskaia, I. A., Murray, L. T., Zhang, L., and Jones, D. B. A.:
Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS Chem model, J. Geophys. Res.-Atmos., 114, D17304, https://doi.org/10.1029/2009JD011760, 2009.
NOAA: Niño 3.4 SST Index, https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/ (last access: 31 March 2023), 2023a.
NOAA: Dipole Mode Index (DMI), https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ (last access: 31 March 2023), 2023b.
Ou-Yang, C. F., Lin, N. H., Sheu, G. R., Lee, C. T., and Wang, J. L.: Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia, Atmos. Environ., 46, 279–288, https://doi.org/10.1016/j.atmosenv.2011.09.060, 2012.
Ou-Yang, C. F., Lin, N. H., Lin, C. C., Wang, S. H., Sheu, G. R., Lee, C. Te, Schnell, R. C., Lang, P. M., Kawasato, T., and Wang, J. L.:
Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia, Atmos. Environ., 89, 613–622, https://doi.org/10.1016/j.atmosenv.2014.02.060, 2014.
Ou-Yang, C. F., Ravindra Babu, S., Lee, J.-R., Yen, M.-C., Griffith, S. M., Lin, C.-C., Chang, S.-C., and Lin, N.-H.:
Detection of stratospheric intrusion events and their role in ozone enhancement at a mountain background site in sub-tropical East Asia, Atmos. Environ., 268, 118779, https://doi.org/10.1016/j.atmosenv.2021.118779, 2022.
Pan, X., Chin, M., Ichoku, C. M., and Field, R. D.:
Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean dipole during 1979–2016, J. Geophys. Res.-Atmos., 123, 1–15, https://doi.org/10.1029/2018JD028402, 2018.
Pani, S. K., Wang, S. H., Lin, N. H., Lee, C. Te, Tsay, S. C., Holben, B. N., Janjai, S., Hsiao, T. C., Chuang, M. T., and Chantara, S.:
Radiative effect of springtime biomass-burning aerosols over northern Indochina during 7-SEAS/BASELInE 2013 campaign, Aerosol Air Qual. Res., 16, 2802–2817, https://doi.org/10.4209/aaqr.2016.03.0130, 2016.
Pani, S. K., Ou-Yang, C.-F., Wang, S.-H., Ogren, J. A., Sheridan, P. J., Sheu, G.-R., and Lin, N.-H. J. A. E.:
Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia, Atmos. Environ, 210, 86–99, https://doi.org/10.1016/j.atmosenv.2019.04.053, 2019.
Park, S., Kim, S. W., Lin, N. H., Pani, S. K., Sheridan, P. J., and Andrews, E.:
Variability of Aerosol Optical Properties Observed at a Polluted Marine (Gosan, Korea) and a High-altitude Mountain (Lulin, Taiwan) Site in the Asian Continental Outflow, Aerosol Air Qual. Res., 19, 1283, https://doi.org/10.4209/aaqr.2018.11.0416, 2019.
Parker, R. J., Boesch, H., Wooster, M. J., Moore, D. P., Webb, A. J., Gaveau, D., and Murdiyarso, D.:
Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes, Atmos. Chem. Phys., 16, 10111–10131, https://doi.org/10.5194/acp-16-10111-2016, 2016.
Pochanart, P., Akimoto, H., Kajii, Y., and Sukasem, P.: Carbon monoxide, regional-scale, and biomass burning in tropical continental Southeast Asia: Observations in rural Thailand, J. Geophys. Res.-Atmos., 108, 4552, https://doi.org/10.1029/2002JD003360, 2003.
Ravindra Babu, S. and Liou, Y. A.:
Tropical tropopause layer evolution during 2015–16 El Niño event inferred from COSMIC RO measurements, J. Atmos. Sol.-Terr. Phy., 212, 105507, https://doi.org/10.1016/j.jastp.2020.105507, 2021.
Ravindra Babu, S., VenkataRatnam, M., Basha, G., Liou, Y.-A., and Narendra Reddy, N.:
Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere (UTLS) Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements, Remote Sens.-Basel, 11, 687, https://doi.org/10.3390/rs11060687, 2019.
Ravindra Babu, S., Venkat Ratnam, M., Basha, G., Pani, S. K., and Lin, N.-H.:
Structure, dynamics, and trace gas variability within the Asian summer monsoon anticyclone in the extreme El Niño of 2015–2016, Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, 2021.
Ravindra Babu, S., Nguyen, L. S. P., Sheu, G.-R., Griffith, S. M., Pani, S. K., Huang, H.-Y., and Lin, N.-H.:
Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties, Atmos. Environ., 268, 118806, https://doi.org/10.1016/j.atmosenv.2021.118806, 2022a.
Ravindra Babu, S., Pani, S. K., Ou-Yang, C. F., Lin, N. H.:
Impact of 21 June 2020 Annular Solar Eclipse on Meteorological Parameters, O3 and CO at a High Mountain Site in Taiwan, Aerosol Air Qual. Res., 22, 220248, https://doi.org/10.4209/aaqr.220248, 2022b.
Reid, J. S., Hyer, E. J., Johnson, R., Holben, B. N., Yokelson, R. J., Zhang, J., Campbell, J. R., Christopher, S. A., Di Girolamo, L., Giglio, L., Holz, R. E., Kearney, C., Miettinen, J., Reid, E. A., Turk, F. J., Wang, J., Xian, P., Zhao, G., Balasubramanian, R., Chew, B. N., Janai, S., Lagrosas, N., Lestari, P., Lin, N.-H., Mahmud, M., Nguyen, A. X., Norris, B., Oahn, N. T. K., Oo, M., Salinas, S. V., Welton, E. J., Liew, S. C.:
Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403–468, https://doi.org/10.1016/j.atmosres.2012.06.005, 2013.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., and Lee, C.-T.:
Lulin Atmospheric Background Station: A New High-Elevation Baseline Station in Taiwan, J-STAGE, 24, 84–89, https://doi.org/10.11203/jar.24.84, 2009.
Tsay, S. C., Maring, H. B., Lin, N. H., Buntoung, S., Chantara, S., Chuang, H. C., Gabriel, P. M., Goodloe, C. S., Holben, B. N., Hsiao, T. C., Christina Hsu, N., Janjai, S., Lau, W. K. M., Lee, C. Te, Lee, J., Loftus, A. M., Nguyen, A. X., Nguyen, C. M., Pani, S. K., Pantina, P., Sayer, A. M., Tao, W. K., Wang, S. H., Welton, E. J., Wiriya, W., and Yen, M. C.:
Satellitesurface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE, Aerosol Air Qual. Res., 16, 2581–2602, https://doi.org/10.4209/aaqr.2016.08.0350, 2016.
van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P. S., Giglio, L., Murdiyarso, D., Peters, W., Morton, D. C., Collatz, G. J., Dolman, A. J., and DeFries, R. S.:
Climate regulation of fire emissions and deforestation in equatorial Asia, P. Natl. Acad. Sci. USA, 105, 20350–20355, https://doi.org/10.1073/pnas.0803375105, 2008.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.:
Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Wang, C.: ENSO, Atlantic climate variability, and the Walker and Hadley circulations, in: The Hadley circulation: Present, past and future, Springer, Berlin, 173–202, https://doi.org/10.1007/978-1-4020-2944-8_7, 2004.
Wang, S.-H., Welton, E. J., Holben, B. N., Tsay, S.-C., Lin, N.-H., Giles, D., Stewart, S. A., Janjai, S., Nguyen, X. A., Hsiao, T.-C., Chen, W.-N., Lin, T.-H., Buntoung, S., Chantara, S., and Wiriya, W.:
Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign, Aerosol Air Qual. Res., 15, 2037–2050, https://doi.org/10.4209/aaqr.2015.05.0310, 2015.
Warner, J., Carminati, F., Wei, Z., Lahoz, W., and Attié, J.-L.: Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions, Atmos. Chem. Phys., 13, 12469–12479, https://doi.org/10.5194/acp-13-12469-2013, 2013.
Warner, J. X., Comer, M. M., Barnet, C. D., McMillan, W. W., Wolf, W., Maddy, E., and Sachse, G.: A Comparison of Satellite Tropospheric Carbon Monoxide Measurements from AIRS and MOPITT During INTEX-A, J. Geophys. Res., 112, D12S17, https://doi.org/10.1029/2006JD007925, 2007.
Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Nedélec, P. P.: Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals, J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242, 2010.
Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., and Buchmann, B.: Inter-comparison of four different carbon monoxide measurement techniques and evaluation of the long-term carbon monoxide time series of Jungfraujoch, Atmos. Chem. Phys., 9, 3491–3503, https://doi.org/10.5194/acp-9-3491-2009, 2009.
Zhang, L., Li, Q. B., Jin, J., Liu, H., Livesey, N., Jiang, J. H., Mao, Y., Chen, D., Luo, M., and Chen, Y.: Impacts of 2006 Indonesian fires and dynamics on tropical upper tropospheric carbon monoxide and ozone, Atmos. Chem. Phys., 11, 10929–10946, https://doi.org/10.5194/acp-11-10929-2011, 2011.
Short summary
In October 2006 and 2015, extensive fire episodes occurred in Indonesia, releasing an enormous amount of CO emissions. By combining in situ and satellite CO measurements and reanalysis products, we reported plausible transport pathways of CO from Indonesia to the Lulin Atmospheric Background Station (LABS; 23.47° N, 120.87° E; 2862 m a.s.l.) in Taiwan. We identified (i) horizontal transport in the free troposphere and (ii) vertical transport through the Hadley circulation.
In October 2006 and 2015, extensive fire episodes occurred in Indonesia, releasing an enormous...
Altmetrics
Final-revised paper
Preprint