Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-2079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-2079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
Zhibo Xie
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Innovation excellence center for urban atmospheric environment of CAS, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
now at: Center for Aerosol Science and Engineering, Washington
University in St. Louis, St. Louis, MO 63130, USA
Huaqiao Gui
CORRESPONDING AUTHOR
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Yang Liu
Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of
China, Hefei, Anhui, 230026, China
Bo Yang
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Haosheng Dai
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Hang Xiao
Innovation excellence center for urban atmospheric environment of CAS, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Douguo Zhang
Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of
China, Hefei, Anhui, 230026, China
Da-Ren Chen
Particle Laboratory, Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
Jianguo Liu
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Innovation excellence center for urban atmospheric environment of CAS, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Related authors
No articles found.
Xiuli Wei, Xiaofeng Lu, Huaqiao Gui, Jie Wang, Dexia Wu, and Jianguo Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2662, https://doi.org/10.5194/egusphere-2025-2662, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We propose a novel method which is accurate in identification of micro-dynamics phase transition processes for ammonium sulfate aerosols by using two-dimensional correlation spectroscopy. we explore more sophisticated structural evolution patterns and the precise sequence of hydrogen-bonding rearrangements. These findings deepen the mechanistic understanding of aerosol phase transitions at the molecular scale, which could inspire new research directions in atmospheric heterogeneous chemistry.
Jing Li, Jiaoshi Zhang, Xianda Gong, Steven Spielman, Chongai Kuang, Ashish Singh, Maria A. Zawadowicz, Lu Xu, and Jian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-726, https://doi.org/10.5194/egusphere-2025-726, 2025
Short summary
Short summary
Using measurements at a rural coastal site, we quantified aerosols in representative air masses and identified major source of organics in Houston area. Our results show cooking aerosol is likely overestimated by earlier studies. Additionally, diurnal variation of highly oxidized organics is mostly driven by air mass changes instead of photochemistry. This study highlights the impacts of emissions, atmospheric chemistry, and meteorology on aerosol properties in the coastal-rural environment.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Shipeng Kang, Tongzhu Yu, Yixin Yang, Jiguang Wang, Huaqiao Gui, Jianguo Liu, and Da-Ren Chen
Atmos. Meas. Tech., 16, 3245–3255, https://doi.org/10.5194/amt-16-3245-2023, https://doi.org/10.5194/amt-16-3245-2023, 2023
Short summary
Short summary
A new aerosol electrometer, the thermal precipitation aerosol electrometer (TPAE), was designed for particles in sizes less than 300 nm, and its prototype performance was experimentally evaluated. The TPAE combines the thermal precipitator in the disk-to-disk configuration with a microcurrent measurement circuit board (i.e., pre-amplifier) for measuring the current carried by collected particles. Our performance study shows that the TPAE performance is consistent with the reference.
Jiaoshi Zhang, Yang Wang, Steven Spielman, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 15, 2579–2590, https://doi.org/10.5194/amt-15-2579-2022, https://doi.org/10.5194/amt-15-2579-2022, 2022
Short summary
Short summary
New nonparametric, regularized methods are developed to invert the growth factor probability density function (GF-PDF) from humidity-controlled fast integrated mobility spectrometer measurements. These algorithms are computationally efficient, require no prior assumptions of the GF-PDF distribution, and reduce the error in inverted GF-PDF. They can be applied to humidified tandem differential mobility analyzer data. Among all algorithms, Twomey’s method retrieves GF-PDF with the smallest error.
Xiuli Wei, Haosheng Dai, Huaqiao Gui, Jiaoshi Zhang, Yin Cheng, Jie Wang, Yixin Yang, Youwen Sun, and Jianguo Liu
Atmos. Chem. Phys., 22, 3097–3109, https://doi.org/10.5194/acp-22-3097-2022, https://doi.org/10.5194/acp-22-3097-2022, 2022
Short summary
Short summary
We demonstrated the usage of the Fourier transform infrared (FTIR) spectroscopic technique to characterize in real time the hygroscopic growth properties of nanoparticles and their phase transition micro-dynamics at the molecular level. We first realize real-time measurements of water content and dry nanoparticle mass to characterize hygroscopic growth factors. We then identify in real time the hydration interactions and the dynamic hygroscopic growth process of the functional groups.
Lingling Xu, Jiayan Shi, Yuping Chen, Yanru Zhang, Mengrong Yang, Yanting Chen, Liqian Yin, Lei Tong, Hang Xiao, and Jinsheng Chen
Atmos. Chem. Phys., 21, 18543–18555, https://doi.org/10.5194/acp-21-18543-2021, https://doi.org/10.5194/acp-21-18543-2021, 2021
Short summary
Short summary
Mercury (Hg) isotopic compositions in aerosols are the mixed results of emission sources and atmospheric processes. This study presents Hg isotopic compositions in PM2.5 from different types of locations and total Hg from offshore surface seawater. The results indicate that atmospheric transformations induce significant mass independent fractionation of Hg isotopes, which obscures Hg isotopic signatures of initial emissions.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Youwen Sun, Hao Yin, Yuan Cheng, Qianggong Zhang, Bo Zheng, Justus Notholt, Xiao Lu, Cheng Liu, Yuan Tian, and Jianguo Liu
Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021, https://doi.org/10.5194/acp-21-9201-2021, 2021
Short summary
Short summary
We quantified the variability, source, and transport of urban CO over the Himalayas and Tibetan Plateau (HTP) by using measurement, model simulation, and the analysis of meteorological fields. Urban CO over the HTP is dominated by anthropogenic and biomass burning emissions from local, South Asia and East Asia, and oxidation sources. The decreasing trends in surface CO since 2015 in most cities over the HTP are attributed to the reduction in local and transported CO emissions in recent years.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Youwen Sun, Hao Yin, Cheng Liu, Lin Zhang, Yuan Cheng, Mathias Palm, Justus Notholt, Xiao Lu, Corinne Vigouroux, Bo Zheng, Wei Wang, Nicholas Jones, Changong Shan, Min Qin, Yuan Tian, Qihou Hu, Fanhao Meng, and Jianguo Liu
Atmos. Chem. Phys., 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021, https://doi.org/10.5194/acp-21-6365-2021, 2021
Short summary
Short summary
This study mapped the drivers of HCHO variability from 2015 to 2019 over eastern China. Hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO abundance were analyzed. Contributions of various emission sources and geographical regions to the observed HCHO summertime enhancements were determined.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Ke Tang, Min Qin, Wu Fang, Jun Duan, Fanhao Meng, Kaidi Ye, Helu Zhang, Pinhua Xie, Yabai He, Wenbin Xu, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 13, 6487–6499, https://doi.org/10.5194/amt-13-6487-2020, https://doi.org/10.5194/amt-13-6487-2020, 2020
Short summary
Short summary
We present an improved instrument for the simultaneous detection of atmospheric nitrous acid (HONO) and nitrogen dioxide (NO2). The robustness of the system is verified by simulating the influence of the relative change in light intensity on the measurement results. The instrument's capability to make fast high-sensitivity measurements of HONO and NO2 is of great significance for understanding the source of HONO and studying its role in atmospheric chemistry.
Wenjing Su, Cheng Liu, Ka Lok Chan, Qihou Hu, Haoran Liu, Xiangguang Ji, Yizhi Zhu, Ting Liu, Chengxin Zhang, Yujia Chen, and Jianguo Liu
Atmos. Meas. Tech., 13, 6271–6292, https://doi.org/10.5194/amt-13-6271-2020, https://doi.org/10.5194/amt-13-6271-2020, 2020
Short summary
Short summary
The paper presents an improved retrieval of the TROPOMI tropospheric HCHO column over China. The new retrieval optimized both slant column retrieval and air mass factor calculation for TROPOMI observations of HCHO over China. The improved TROPOMI HCHO is subsequently validated by MAX-DOAS observations. Compared to the operational product, the improved HCHO agrees better with the MAX-DOAS data and thus is better suited for the analysis of regional- and city-scale pollution in China.
Cited articles
Abbatt, J., Broekhuizen, K., and Pradeepkumar, P.: Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles, Atmos. Environ., 39, 4767–4778,
https://doi.org/10.1016/j.atmosenv.2005.04.029, 2005.
Agarwal, S., Aggarwal, S. G., Okuzawa, K., and Kawamura, K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10, 5839–5858, https://doi.org/10.5194/acp-10-5839-2010, 2010.
Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., and Ault, A. P.: The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, 2018.
Chow, J., Waston, J., Chen, L., Arnott, W., Moosmüller, H., and Fung,
K.: Equivalence of Elemental Carbon by Thermal/Optical Reflectance and
Transmittance with Different Temperature Protocols. Environ. Sci. Technol.,
38, 4414–4422, https://doi.org/10.1021/es034936u, 2004.
Craig, R. L., Bondy, A. L., and Ault, A. P.: Surface Enhanced Raman
Spectroscopy Enables Observations of Previously Undetectable Secondary
Organic Aerosol Components at the Individual Particle Level, Anal. Chem.,
87, 7510–7514, https://doi.org/10.1021/acs.analchem.5b01507, 2015.
Dai, H., Zhang, J., Gui, H., Shen, L., Wei, X., Xie, Z., Chen, S., Wu, Z.,
Chen, D., and Liu, J.: Characteristics of aerosol size distribution and
liquid water content under ambient RH conditions in Beijing, Atmos. Environ.,
291, 119397–119406, https://doi.org/10.1016/j.atmosenv.2022.119397, 2022.
Ding, Q., Liu, J., Lu, Y., Wang, Y., Lu, F., and Shi, J.: Research and
development of an on-line carbonaceous aerosol analyzer, Chinese Journal of
Scientific Instrument, 35, 1246–1253, https://doi.org/10.19650/j.cnki.cjsi.2014.06.007, 2014.
Ebert, M., Inerle-Hof, M., and Weinbruch, S.: Environmental scanning
electron microscopy as a new technique to determine the hygroscopic
behaviour of individual aerosol particles, Atmos. Environ., 36, 5909–5916, https://doi.org/10.1016/S1352-2310(02)00774-4, 2002.
Estillore, A., Morris, H., Or, V., Lee, H., Alves, M., Marciano, M.,
Laskina, O., Qin, Z., Tivanski, A., and Grassian, H.: Linking hygroscopicity
and the surface microstructure of model inorganic salts, simple and complex
carbohydrates, and authentic sea spray aerosol particles, Phys. Chem. Chem.
Phys., 19, 21101–21111, https://doi.org/10.1039/c7cp04051b, 2017.
Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., Jin, X., Ren, J., Wang, Y., Wu, H., Li, S., Sun, Y., and Li, Z.: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions, Atmos. Chem. Phys., 20, 915–929, https://doi.org/10.5194/acp-20-915-2020, 2020.
Fang, Y., Wang, H., Yu, H., Liu, X., Wang, W., Chen, H. Y., and Tao, N. J.:
Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles, Acc.
Chem. Res., 49, 2614–2624, https://doi.org/10.1021/acs.accounts.6b00348, 2016.
Gen, M. and Chan, C. K.: Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles, Atmos. Chem. Phys., 17, 14025–14037, https://doi.org/10.5194/acp-17-14025-2017, 2017.
Gupta, D., Eom, H.-J., Cho, H.-R., and Ro, C.-U.: Hygroscopic behavior of NaCl–MgCl2 mixture particles as nascent sea-spray aerosol surrogates and observation of efflorescence during humidification, Atmos. Chem. Phys., 15, 11273–11290, https://doi.org/10.5194/acp-15-11273-2015, 2015.
Halpern, A., Wood, J., Wang, Y., and Corn, R.: Single-Nanoparticle
Near-Infrared Surface Plasmon Resonance Microscopy for Real-Time
Measurements of DNA Hybridization Adsorption, ACS Nano., 8, 1022–1030, https://doi.org/10.1021/nn405868e, 2014.
Harmon, C. W., Grimm, R. L., McIntire, T. M., Peterson, M. D., Njegic, B.,
Angel, V. M., Alshawa, A., Underwood, J. S., Tobias, D. J., Gerber, R. B.,
Gordon, M. S., Hemminger, J. C., and Nizkorodov, S. A.: Hygroscopic growth
and deliquescence of NaCl nanoparticles mixed with surfactant SDS, J. Phys.
Chem. B., 114, 2435–2449, https://doi.org/10.1021/jp909661q, 2010.
Hiranuma, N., Brooks, S. D., Auvermann, B. W., and Littleton, R.: Using
environmental scanning electron microscopy to determine the hygroscopic
properties of agricultural aerosols, Atmos. Environ., 42, 1983–1994, https://doi.org/10.1016/j.atmosenv.2007.12.003, 2008.
Huang, B., Yu, F., and Zare, R.: Surface Plasmon Resonance Imaging Using a
High Numerical Aperture Microscope Objective, Anal. Chem., 79, 2979–2983, https://doi.org/10.1021/ac062284x, 2007.
Jacobson, M. C., Hansson, H. C., Noone, K. J., and Charlson, R. J.: Organic
atmospheric aerosols: Review and state of the science, Rev. Geophys., 38,
267–294, https://doi.org/10.1029/1998RG000045, 2000.
Kirpes, R. M., Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., Ault, A. P., and Pratt, K. A.: Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic, Atmos. Chem. Phys., 18, 3937–3949, https://doi.org/10.5194/acp-18-3937-2018, 2018.
Krieger, U. K., Marcolli, C., and Reid, J. P.: ChemInform Abstract:
Exploring the Complexity of Aerosol Particle Properties and Processes Using
Single Particles Techniques, Chem. Soc. Rev., 41, 6631–6662, https://doi.org/10.1002/chin.201248273, 2012.
Kuai, Y., Chen, J., Tang, X., Xiang, Y., Lu, F., Kuang, C., Xu, L., Shen,
W., Cheng, J., Gui, H., Zou, G., Wang, P., Ming, H., Liu, J., Liu, X.,
Lakowicz, J., and Zhang, D.: Label-free surface-sensitive photonic
microscopy with high spatial resolution using azimuthal rotation
illumination, Sci. Adv., 5, 1–10, https://doi.org/10.1126/sciadv.aav5335, 2019.
Kuai, Y., Xie, Z., Chen, J., Gui, H., Xu, L., Kuang, C., Kuang, C., Wang,
P., Xu, L., Liu J., Lakowicz, J., and Zhang, D.: Real-Time Measurement of
the Hygroscopic Growth Dynamics of Single Aerosol Nanoparticles with Bloch
Surface Wave Microscopy, ACS Nano., 14, 9136–9144, https://doi.org/10.1021/acsnano.0c04513, 2020.
Li, R., Hu, Y., Li, L., Fu, H., and Chen, J.: Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing, Atmos. Chem. Phys., 17, 5079–5093, https://doi.org/10.5194/acp-17-5079-2017, 2017.
Lv, X. J., Wang, Y., Cai, C., Pang, S. F., Ma, J. B., and Zhang, Y. H.:
Investigation of gel formation and volatilization of acetate acid in
magnesium acetate droplets by the optical tweezers, Spectrochim. Acta A. Mol.
Biomol. Spectrosc., 200, 179–185, https://doi.org/10.1016/j.saa.2018.04.027, 2018.
Mikhailov, E. F., Mironov, G. N., Pöhlker, C., Chi, X., Krüger, M. L., Shiraiwa, M., Förster, J.-D., Pöschl, U., Vlasenko, S. S., Ryshkevich, T. I., Weigand, M., Kilcoyne, A. L. D., and Andreae, M. O.: Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign, Atmos. Chem. Phys., 15, 8847–8869, https://doi.org/10.5194/acp-15-8847-2015, 2015.
Morris, H. S., Grassian, V. H., and Tivanski, A. V.: Humidity-dependent
surface tension measurements of individual inorganic and organic
submicrometre liquid particles, Chem. Sci., 6, 3242–3247, https://doi.org/10.1039/c4sc03716b, 2015.
Morris, H. S., Estillore, A. D., Laskina, O., Grassian, V. H., and Tivanski,
A. V.: Quantifying the Hygroscopic Growth of Individual Submicrometer
Particles with Atomic Force Microscopy, Anal. Chem., 88, 3647–3654, https://doi.org/10.1021/acs.analchem.5b04349, 2016.
Peng, C., Chan, M., and Chan, C.: The Hygroscopic Properties of Dicarboxylic
and Multifunctional Acids: Measurements and UNIFAC Predictions, Environ.
Sci. Technol., 35, 4495–4501, https://doi.org/10.1021/es0107531, 2001.
Penner, J., Charlson, R., Hales, J., Laulainen, N., Novakov, R., Radke, J.,
Schwartz, S., and Travis, L.: Quantifying and Minimizing Uncertainty of
Climate Forcing by Anthropogenic Aerosols, B. Am. Meteorol. Soc., 75,
375–400, https://doi.org/10.1175/1520-0477(1994)075<0375:QAMUOC>2.0.CO;2, 1993.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pilinis, C., Pandis, S., and Seinfeld, J.: Sensitivity of direct climate
forcing by atmospheric aerosols to aerosol size and composition, J. Geophys.
Res., 100, 18739–18754, https://doi.org/10.1029/95JD02119, 1995.
Sloane, C. and Wolff, G.: Prediction of ambient light scattering using a
physical model responsive to relative humidity: Validation with measurements
from detroit, Atmos. Environ., 19, 669–680, https://doi.org/10.1016/0004-6981(85)90046-0, 1985.
Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010, 2010.
Syal, K., Iriya, R., Yang, Y., Yu, H., Wang, S., Haydel, S. E., Chen, H. Y.,
and Tao, N.: Antimicrobial Susceptibility Test with Plasmonic Imaging and
Tracking of Single Bacterial Motions on Nanometer Scale, ACS Nano., 10,
845–852, https://doi.org/10.1021/acsnano.5b05944, 2016.
Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P. W., Deng, X., and Wu,
D.: An analysis of aerosol liquid water content and related impact factors
in Pearl River Delta, Sci. Total. Environ., 579, 1822–1830, https://doi.org/10.1016/j.scitotenv.2016.11.167, 2017.
Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., and Wang, X.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, 2019.
Wang, S., Shan, X., Patel, U., Huang, X., Lu, J., Li, J., and Tao, N.:
Label-free imaging, detection, and mass measurement of single viruses by
surface plasmon resonance, P. Natl. Acad. Sci. USA, 107, 16028–16032, https://doi.org/10.1073/pnas.1005264107, 2010.
Wang, W., Yang, Y., Wang, S., Nagaraj, V. J., Liu, Q., Wu, J., and Tao, N.:
Label-free measuring and mapping of binding kinetics of membrane proteins in
single living cells, Nat. Chem., 4, 846–853, https://doi.org/10.1038/NCHEM.1434, 2012.
Xie, Z., Kuai, Y., Liu J., Gui, H., Zhang, J., Dai, H., Xiao, H., Chen, D.,
and Zhang, D.: In Situ Quantitative Observation of Hygroscopic Growth of
Single Nanoparticle Aerosol by Surface Plasmon Resonance Microscopy, Anal.
Chem., 92, 11062–11071, https://doi.org/10.1021/acs.analchem.0c00431, 2020.
Young, G., Hundt, N., Cole, D., Fineberg, A., Andrecka, J., Tyler, A.,
Olerinyova, A., Ansari, A., Marklund, E., Collier, M., Chandler, S.,
Tkachenko, O., Allen, J., Crispin, M., Billington, N., Takagi, Y., Sellers,
J., Eichmann, C., Selenko, P., Frey, L., Benesch, J., and Kukura, P.:
Quantitative mass imaging of single biological macromolecules, Science, 360,
423–427, https://doi.org/10.1126/science.aar5839, 2018.
Zhang, J., Chen, Z., Lu, Y., Gui, H., Liu, J., Liu, W., Wang, J., Yu, T.,
Cheng, Y., Chen, Y., Ge, B., Fan, Y., and Luo, X.: Characteristics of
aerosol size distribution and vertical backscattering coefficient profile
during 2014 APEC in Beijing, Atmos. Environ., 148, 30–41, https://doi.org/10.1016/j.atmosenv.2016.10.020, 2017.
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic...
Altmetrics
Final-revised paper
Preprint