Articles | Volume 23, issue 23
https://doi.org/10.5194/acp-23-15149-2023
https://doi.org/10.5194/acp-23-15149-2023
Research article
 | 
13 Dec 2023
Research article |  | 13 Dec 2023

Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants

Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle

Related authors

Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics​​​​​​​
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022,https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A global dust emission dataset for estimating dust radiative forcings in climate models
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025,https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025,https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025,https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025,https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025,https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary

Cited articles

AIOMFAC-web: version 3.04, https://aiomfac.lab.mcgill.ca (last access: 13 April 2023), 2023. a
Álvarez Silva, E., García-Abuín, A., Gómez-Díaz, D., Navaza, J. M., and Vidal-Tato, I.: Density, Speed of Sound, Surface Tension, and Electrical Conductivity of Sodium Dodecanoate Aqueous Solutions from T = (293.15 to 323.15) K, J. Chem. Eng. Data, 55, 4058–4061, https://doi.org/10.1021/je100186x, 2010. a, b
Booth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.: Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions, Phys. Chem. Chem. Phys., 11, 8021–8028, https://doi.org/10.1039/B906849J, 2009. a
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.: Precise, contactless measurements of the surface tension of picolitre aerosol droplets, Chem. Sci., 7, 274–285, https://doi.org/10.1039/C5SC03184B, 2016. a
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension of surfactant-containing, finite volume droplets, P. Natl. Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020. a, b, c, d, e, f, g, h, i
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Share
Altmetrics
Final-revised paper
Preprint