Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Liviana Klein
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Ulrich K. Krieger
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Alison Bain
Department of Chemistry, McGill University, Montréal, Quebec, Canada
Brandon J. Wallace
Department of Chemistry, McGill University, Montréal, Quebec, Canada
Thomas C. Preston
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Department of Chemistry, McGill University, Montréal, Quebec, Canada
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Related authors
No articles found.
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
Atmos. Chem. Phys., 25, 5773–5792, https://doi.org/10.5194/acp-25-5773-2025, https://doi.org/10.5194/acp-25-5773-2025, 2025
Short summary
Short summary
We implemented the BAT-VBS (Binary Activity Thermodynamics volatility basis set) aerosol thermodynamics model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake, nonideal mixing, and impacts on the gas–particle partitioning of semi-volatile organics. Compared to GEOS-Chem's complex (dry) scheme, we show that the BAT-VBS model can predict substantial enhancements in organic aerosol mass concentration at moderate-to-high relative humidity.
Alison Bain, Kunal Ghosh, Konstantin Tumashevich, Nønne L. Prisle, and Bryan R. Bzdek
Atmos. Chem. Phys., 25, 5633–5645, https://doi.org/10.5194/acp-25-5633-2025, https://doi.org/10.5194/acp-25-5633-2025, 2025
Short summary
Short summary
We measure the surface tension of picoliter-volume droplets containing strong ionic surfactants and cosolutes and compare this to surface tension predictions using two independent surfactant partitioning models. Under high-water-activity conditions, experimental measurements and model predictions show no change when NaCl cosolute is replaced with sea salt. Model predictions show that total surfactant concentrations in the range of tens to hundreds of millimolar are required to lower the surface tension of accumulation-mode aerosol.
Vahid Shahabadi, Cassandra Lefort, Hoi Tang Law, Man Nin Chan, and Thomas C. Preston
EGUsphere, https://doi.org/10.5194/egusphere-2025-2170, https://doi.org/10.5194/egusphere-2025-2170, 2025
Short summary
Short summary
This research explores how organosulfate surfactants affect aerosol particles and their response to changes in relative humidity in the atmosphere. Using optical trapping and strong electric fields to investigate single particles, it is found that these surfactants can significantly lower surface tension, even in very small amounts. These findings are important for understanding how such particles influence cloud formation and properties like brightness.
Marcel Müller, Marcel Reichmuth, and Ulrich Karl Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1238, https://doi.org/10.5194/egusphere-2025-1238, 2025
Short summary
Short summary
The initiation of autoxidation by ozonolysis was investigated on levitated linoleic acid droplets using electrodynamic balance–mass spectrometry. Exposing the droplets to ozone for one hour before switching the gas phase to air without ozone led to a shortening of the autoxidation initiation phase in comparison to experiments without ozone exposure. Results were compared to a bulk reaction model to investigate the synergistic effects of ozonolysis and autoxidation.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024, https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1 h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024, https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Short summary
An aerosol optical tweezer (AOT) Raman spectroscopy system is developed to capture a single aerosol droplet for phase transition monitoring and morphology studies. Rapid droplet capture is achieved and accurate droplet size and refractive index are retrieved. Results indicate that mixed inorganic/organic droplets are more inclined to form core–shell morphology when RH decreases. The phase transitions of secondary mixed organic aerosol/inorganic droplets vary with their precursors.
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023, https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023, https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
Short summary
Kinetic multi-layer models (KMs) successfully describe heterogeneous and multiphase atmospheric chemistry. In applications requiring repeated execution, however, these models can be too expensive. We trained machine learning surrogate models on output of the model KM-SUB and achieved high correlations. The surrogate models run orders of magnitude faster, which suggests potential applicability in global optimization tasks and as sub-modules in large-scale atmospheric models.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Cited articles
Abel, E., Redlich, O., and Hersch, F.:
Freezing-point measurements. III Activity coefficients and dissociation of iodic acid,
Z. Phys. Chem. A,
170A, 112–122, https://doi.org/10.1515/zpch-1934-17010, 1934. a
Abrams, D. S. and Prausnitz, J. M.:
Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems,
AIChE J.,
21, 116–128, https://doi.org/10.1002/aic.690210115, 1975. a
Al-Sahhaf, T. A. and Jabbar, N. J.:
Vapor-liquid equilibrium of the acetone-water-salt system,
J. Chem. Eng. Data,
38, 522–526, https://doi.org/10.1021/je00012a010, 1993. a, b, c
Al-Sahhaf, T. A. and Kapetanovic, E.:
Salt Effects of Lithium Chloride, Sodium Bromide, or Potassium Iodide on Liquid-Liquid Equilibrium in the System Water + 1-Butanol,
J. Chem. Eng. Data,
42, 74–77, https://doi.org/10.1021/je960234r, 1997. a, b
Al-Sahhaf, T. A., Kapetanovic, E., and Kadhem, Q.:
Salt effects on liquid-liquid equilibria in the partially miscible systems water + 2-butanone and water + ethyl acetate,
Fluid Phase Equilibr.,
157, 271–283, https://doi.org/10.1016/S0378-3812(99)00040-0, 1999. a, b, c
Allan, J. D., Topping, D. O., Good, N., Irwin, M., Flynn, M., Williams, P. I., Coe, H., Baker, A. R., Martino, M., Niedermeier, N., Wiedensohler, A., Lehmann, S., Müller, K., Herrmann, H., and McFiggans, G.: Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates, Atmos. Chem. Phys., 9, 9299–9314, https://doi.org/10.5194/acp-9-9299-2009, 2009. a
Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. a
Altaf, M. B. and Freedman, M. A.:
Effect of Drying Rate on Aerosol Particle Morphology,
J. Phys. Chem. Lett.,
8, 3613–3618, https://doi.org/10.1021/acs.jpclett.7b01327, 2017. a
Altshuller, A. P. and Everson, H. E.:
The Solubility of Ethyl Acetate in Aqueous Electrolyte Solutions,
J. Am. Chem. Soc.,
75, 4823–4827, https://doi.org/10.1021/ja01115a059, 1953. a, b
Andronova, A. V., Gomes, L., Smirnov, V. V., Ivanov, A. V., and Shukurova, L. M.:
Physico-chemical characteristics of dust aerosols deposited during the Soviet-American experiment (Tadzhikistan, 1989),
Atmos. Environ. A-Gen.,
27, 2487–2493, https://doi.org/10.1016/0960-1686(93)90020-Y, 1993. a
Apelblat, A. and Korin, E.:
The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K,
J. Chem. Thermodyn.,
30, 59–71, https://doi.org/10.1006/jcht.1997.0275, 1998. a, b, c
Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M., Baltensperger, U., Zieger, P., and Schmale, J.:
Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions,
Nat. Commun.,
11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020. a, b
Baker, A. R.:
Inorganic iodine speciation in tropical Atlantic aerosol,
Geophys. Res. Lett.,
31, L23S02, https://doi.org/10.1029/2004GL020144, 2004. a, b
Baker, A. R.:
Marine Aerosol Iodine Chemistry: The Importance of Soluble Organic Iodine,
Environ. Chem.,
2, 295–298, https://doi.org/10.1071/EN05070, 2005. a
Baker, A. R. and Yodle, C.: Measurement report: Indirect evidence for the controlling influence of acidity on the speciation of iodine in Atlantic aerosols, Atmos. Chem. Phys., 21, 13067–13076, https://doi.org/10.5194/acp-21-13067-2021, 2021. a, b
Baker, A. R., Thompson, D., Campos, M. L. A. M., Parry, S. J., and Jickells, T. D.:
Iodine concentration and availability in atmospheric aerosol,
Atmos. Environ.,
34, 4331–4336, https://doi.org/10.1016/S1352-2310(00)00208-9, 2000. a, b, c
Barthel, J. and Lauermann, G.:
Vapor pressure measurements on non-aqueous electrolyte solutions. Part 3: Solutions of sodium lodide in ethanol, 2-propanol, and acetonitrile,
J. Solution Chem.,
15, 869–877, https://doi.org/10.1007/BF00646093, 1986. a
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011. a
Bonner, O. D.:
The osmotic and activity coefficients of some salts having relatively large molar volumes,
J. Chem. Eng. Data,
21, 498–499, https://doi.org/10.1021/je60071a020, 1976. a, b
Bonner, O. D. and Prichard, P. R.:
The ionization of trichloroacetic acid and evidence for an unusual type of ion pairing,
J. Solution Chem.,
8, 113, https://doi.org/10.1007/BF00650511, 1979. a, b, c, d
Burns, J. A. and Furter, W. F.:
Salt Effect in Vapor–Liquid Equilibrium at Fixed Liquid Composition,
Adv. Chem. Ser.,
177, 11–26, 1979. a
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.:
Large contribution of natural aerosols to uncertainty in indirect forcing,
Nature,
503, 67–71, https://doi.org/10.1038/nature12674, 2013. a, b
Chen, W.-M. and Zhang, Y.-M.:
Vapor-Liquid Equilibria for Alcohol-Water-KI/NaAc Systems,
J. Chem. Eng. Chin. Univ.,
17, 123–127, https://doi.org/10.3321/j.issn:1003-9015.2003.02.002, 2003. a, b, c, d
Chen, X., Yang, B., Abdeltawab, A. A., Al-Deyab, S. S., Yu, G., and Yong, X.:
Isobaric Vapor–Liquid Equilibrium for Acetone + Methanol + Phosphate Ionic Liquids,
J. Chem. Eng. Data,
60, 612–620, https://doi.org/10.1021/je5007373, 2015. a
Cheng, W., Li, Z., and Cheng, F.:
Solubility of Li2CO3 in Na–K–Li–Cl brines from 20 to 90 ∘C,
J. Chem. Thermodyn.,
67, 74–82, https://doi.org/10.1016/j.jct.2013.07.024, 2013. a, b, c
Clarke, A. G. and Karani, G. N.:
Characterisation of the carbonate content of atmospheric aerosols,
J. Atmos. Chem.,
14, 119–128, https://doi.org/10.1007/BF00115228, 1992. a
Clegg, S., Whitfield, M., and Pitzer, K.:
Activity coefficients in electrolyte solutions,
edited by: Pitzer, K. S.,
CRC Press, 279–434, ISBN 9781351069472, 1991. a
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.:
Thermodynamic model of the system H+– – – –H2O at tropospheric temperatures,
J. Phys. Chem. A,
102, 2137–2154, https://doi.org/10.1021/jp973042r, 1998a. a
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.:
Thermodynamic model of the system H+– –Na+– – –Cl−–H2O at 298.15 K,
J. Phys. Chem. A,
102, 2155–2171, https://doi.org/10.1021/jp973043j, 1998b. a
Dall´Osto, M., Simo, R., Harrison, R. M., Beddows, D. C. S., Saiz-Lopez, A., Lange, R., Skov, H., Nøjgaard, J. K., Nielsen, I. E., and Massling, A.:
Abiotic and biotic sources influencing spring new particle formation in North East Greenland,
Atmos. Environ.,
190, 126–134, https://doi.org/10.1016/j.atmosenv.2018.07.019, 2018. a
De Visscher, A., Vanderdeelen, J., Königsberger, E., Churagulov, B. R., Ichikuni, M., and Tsurumi, M.:
IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg,
J. Phys. Chem. Ref. Data,
41, 013105–013105, https://doi.org/10.1063/1.3675992, 2012. a, b, c
Decesari, S., Facchini, M. C., Fuzzi, S., and Tagliavini, E.:
Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach,
J. Geophys. Res.-Atmos.,
105, 1481–1489, https://doi.org/10.1029/1999JD900950, 2000. a
Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J.:
Role of mineral aerosol as a reactive surface in the global troposphere,
J. Geophys. Res.-Atmos.,
101, 22869–22889, https://doi.org/10.1029/96JD01818, 1996. a
Dlugokencky, E. and Tans, P.: Trends in Atmospheric Carbon Dioxide, National Oceanic & Atmospheric Administration, Earth System Research
Laboratory (NOAA/ESRL), available at: https://gml.noaa.gov/ccgg/trends/, last access: 6 July 2021. a
Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318, https://doi.org/10.5194/acp-11-3303-2011, 2011. a
Dong, M., Cheng, W., Li, Z., and Demopoulos, G. P.:
Solubility and Stability of Nesquehonite (MgCO3 ⋅ 3H2O) in NaCl, KCl, MgCl2, and NH4Cl Solutions,
J. Chem. Eng. Data,
53, 2586–2593, https://doi.org/10.1021/je800438p, 2008. a, b
Dong, M., Li, Z., Mi, J., and Demopoulos, G. P.:
Solubility and Stability of Nesquehonite (MgCO3 ⋅ 3H2O) in Mixed NaCl + MgCl2, NH4Cl + MgCl2, LiCl, and LiCl + MgCl2 Solutions,
J. Chem. Eng. Data,
54, 3002–3007, https://doi.org/10.1021/je900054j, 2009. a, b, c
Duce, R. A., Woodcock, A. H., and Moyers, J. L.:
Variation of ion ratios with size among particles in tropical oceanic air,
Tellus,
19, 369–379, https://doi.org/10.3402/tellusa.v19i3.9806, 1967. a
Durig, J. R., Bonner, O. D., and Breazeale, W. H.:
Raman Studies of Iodic Acid and Sodium Iodate,
J. Phys. Chem.,
69, 3886–3892, https://doi.org/10.1021/j100895a041, 1965. a, b, c, d
Ellingboe, J. L. and Runnels, J. H.:
Solubilities of Sodium Carbonate and Sodium Bicarbonate in Acetone–Water and Methanol–Water Mixtures,
J. Chem. Eng. Data,
11, 323–324, https://doi.org/10.1021/je60030a009, 1966. a
Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Dall'Osto, M., Marullo, S., Bellacicco, M., Simó, R., Liu, D., Flynn, M., Zuend, A., and O'Dowd, C.:
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei,
Sci. Rep.-UK,
8, 13844, https://doi.org/10.1038/s41598-018-32047-4, 2018. a
Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Preißler, J., Snider, J. R., Huang, R.-J., Zuend, A., and O'Dowd, C.:
Sea-spray regulates sulfate cloud droplet activation over oceans,
npj Clim. Atmos. Sci.,
3, 14, https://doi.org/10.1038/s41612-020-0116-2, 2020. a
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. a
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.:
Group-contribution estimation of activity coefficients in nonideal liquid mixtures,
AIChE J.,
21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. a
Fu, C., Song, W., Yi, C., and Xie, S.:
Creating efficient novel aqueous two-phase systems: Salting-out effect and high solubility of salt,
Fluid Phase Equilibr.,
490, 77–85, https://doi.org/10.1016/j.fluid.2019.03.002, 2019. a
Fu, C., Li, Z., Song, W., Yi, C., and Xie, S.:
A new process for separating biofuel based on the salt + 1-butanol + water system,
Fuel,
278, 118402, https://doi.org/10.1016/j.fuel.2020.118402, 2020. a
Ganbavale, G., Zuend, A., Marcolli, C., and Peter, T.: Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures, Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, 2015. a
Gelbach, R. W.:
The Activity Coefficients and Transference Numbers of Potassium Iodide,
J. Am. Chem. Soc.,
55, 4857–4860, https://doi.org/10.1021/ja01339a020, 1933. a
Gerlach, T. and Smirnova, I.:
Liquid–Liquid Equilibria of Quaternary Systems Composed of 1,3-Propanediol, Short-Chain Alcohol, Water, and Salt,
J. Chem. Eng. Data,
61, 3548–3558, https://doi.org/10.1021/acs.jced.6b00472, 2016. a
Gettelman, A.: Putting the clouds back in aerosol–cloud interactions, Atmos. Chem. Phys., 15, 12397–12411, https://doi.org/10.5194/acp-15-12397-2015, 2015. a
Gilfedder, B. S., Chance, R., Dettmann, U., Lai, S. C., and Baker, A. R.:
Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI),
Anal. Bioanal. Chem.,
398, 519–526, https://doi.org/10.1007/s00216-010-3923-1, 2010. a, b
Gillette, D. A., Stensland, G. J., Williams, A. L., Barnard, W., Gatz, D., Sinclair, P. C., and Johnson, T. C.:
Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States,
Global Biogeochem. Cy.,
6, 437–457, https://doi.org/10.1029/91GB02965, 1992. a
Glasstone, S., Dimond, D. W., and Jones, E. C.:
CCCXCI.–Solubility influences. Part II. The effect of various salts on the solubility of ethyl acetate in water,
J. Chem. Soc., 129, 2935–2939, https://doi.org/10.1039/JR9262902935, 1926. a
Goeller, G. M. and Osol, A.:
The Salting-out of Molecular Benzoic Acid in Aqueous Salt Solutions at 35∘,
J. Am. Chem. Soc.,
59, 2132–2134, https://doi.org/10.1021/ja01290a013, 1937. a, b
Goldberg, R. N.:
Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni-bivalent electrolytes,
J. Phys. Chem. Ref. Data,
10, 671–764, https://doi.org/10.1063/1.555646, 1981. a
Goldberg, R. N. and Nuttall, R. L.:
Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides,
J. Chem. Eng. Data,
7, 263–310, https://doi.org/10.1063/1.555569, 1978. a, b, c, d
Goldman, S., Bates, R. G., and Robinson, R. A.:
Osmotic coefficients and activity coefficients of lodic acid at high concentrations,
J. Solution Chem.,
3, 593–602, https://doi.org/10.1007/BF00650403, 1974. a, b, c
Goldstein, A. H. and Galbally, I. E.:
Known and Unexplored Organic Constituents in the Earth's Atmosphere,
Environ. Sci. Technol.,
41, 1514–1521, https://doi.org/10.1021/es072476p, 2007. a
Gomes, L. and Gillette, D. A.:
A comparison of characteristics of aerosol from dust storms in Central Asia with soil-derived dust from other regions,
Atmos. Environ. A-Gen.,
27, 2539–2544, https://doi.org/10.1016/0960-1686(93)90027-V, 1993. a, b, c
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.:
Emulsified and Liquid–Liquid Phase-Separated States of α-Pinene Secondary Organic Aerosol Determined Using Aerosol Optical Tweezers,
Environ. Sci. Technol.,
51, 12154–12163, https://doi.org/10.1021/acs.est.7b03250, 2017. a
Gregoriou, G. A., Ioannou-Kakouri, H., Dais, P. J., and Scordou-Matinopoulos, A.:
The question of the measure of electrolytes in organic reactions. Calculation of activity coefficients of electrolytes in solvolytic media,
J. Chem. Soc. Perk. T. 2,
p. 1552, https://doi.org/10.1039/p29790001552, 1979. a
Harned, H. S.:
The Electromotive Forces of Uni-univalent Halides in Concentrated Aqueous Solutions,
J. Am. Chem. Soc.,
51, 416–427, https://doi.org/10.1021/ja01377a011, 1929. a, b, c, d
Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., Cahill, J. F., Duong, H. T., Sorooshian, A., Jonsson, H. H., Shiraiwa, M., Zuend, A., Nenes, A., Prather, K. A., Flagan, R. C., and Seinfeld, J. H.:
Composition and hygroscopicity of the Los Angeles Aerosol: CalNex,
J. Geophys. Res.-Atmos.,
118, 3016–3036, https://doi.org/10.1002/jgrd.50307, 2013. a
Hetzer, H. B., Robinson, R. A., and Bates, R. G.:
Thermodynamics of Aqueous Solutions of Hydriodic Acid from Electromotive Force Measurements of Hydrogen-Silver Iodide Cells,
J. Phys. Chem.,
68, 1929–1933, https://doi.org/10.1021/j100789a043, 1964. a
Hiaki, T. and Kawai, A.:
Vapor–liquid equilibria determination for a hydrofluoroether with several alcohols,
Fluid Phase Equilibr.,
158–160, 979–989, https://doi.org/10.1016/S0378-3812(99)00064-3, 1999. a
Hill, A. E. and Ricci, J. E.:
Ternary Systems. XI. Magnesium Iodate, Sodium Iodate and Water. XII. Sodium Iodate, Potassium Iodate and Water. XIII. Potassium Iodate, Potassium Chloride and Water. XIV. Potassium Iodate, Potassium Sulfate and Water,
J. Am. Chem. Soc.,
53, 4305–4315, https://doi.org/10.1021/ja01363a007, 1931. a, b
Huang, Y., Mahrt, F., Xu, S., Shiraiwa, M., Zuend, A., and Bertram, A. K.:
Coexistence of three liquid phases in individual atmospheric aerosol particles,
P. Natl. Acad. Scie. USA,
118, e2102512118, https://doi.org/10.1073/pnas.2102512118, 2021. a
Il'In, K. K. and Cherkasov, D. G.:
Solid–Liquid and Solid–Liquid–Liquid Equilibria in the KI + H2O + i-C3H7OH Ternary System within 10–120 ∘C,
Chem. Eng. Commun.,
203, 642–648, https://doi.org/10.1080/00986445.2015.1076802, 2016. a
Iliuta, M. C. and Thyrion, F. C.:
Vapour–liquid equilibrium for the acetone–methanol–inorganic salt system,
Fluid Phase Equilibr.,
103, 257–284, https://doi.org/10.1016/0378-3812(94)02586-P, 1995. a, b, c, d
Janado, M., Yano, Y., Doi, Y., and Sakamoto, H.:
Peculiar effects of alkali thiocyanates on the activity coefficients of aromatic hydrocarbons in water,
J. Solution Chem.,
12, 741–754, https://doi.org/10.1007/BF00647385, 1983. a, b
Ji, X., Lu, X., Lin, W., Zhang, L., Wang, Y., Shi, J., and Lu, B. C. Y.:
Mean activity coefficients of NaCl in (sodium chloride + sodium bicarbonate + water) from T = (293.15 to 308.15) K,
J. Chem. Thermodyn.,
33, 1107–1120, https://doi.org/10.1006/jcht.2000.0827, 2001. a, b
Kacperska, A.:
Solubilities of Sodium and Potassium Iodides in Water-n-Propyl Alcohol Mixtures at 25 ∘C,
Phys. Chem. Liq.,
26, 273–280, https://doi.org/10.1080/00319109408029500, 1994. a, b
Kielland, J.:
Individual Activity Coefficients of Ions in Aqueous Solutions,
J. Am. Chem. Soc.,
59, 1675–1678, https://doi.org/10.1021/ja01288a032, 1937. a
Kim, S. H., Anantpinijwatna, A., Kang, J. W., and Gani, R.:
Analysis and modeling of alkali halide aqueous solutions,
Fluid Phase Equilibr.,
412, 177–198, https://doi.org/10.1016/j.fluid.2015.12.008, 2016. a
Kiriukhin, M. Y. and Collins, K. D.:
Dynamic hydration numbers for biologically important ions,
Biophys. Chem.,
99, 155–168, https://doi.org/10.1016/S0301-4622(02)00153-9, 2002. a, b
Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez, R. P., Guo, H., Hall, S. R., Kinnison, D., Nault, B. A., Ullmann, K., Jimenez, J. L., Saiz-Lopez, A., and Volkamer, R.:
Quantitative detection of iodine in the stratosphere,
P. Natl. Acad. Scie. USA,
117, 1860–1866, https://doi.org/10.1073/pnas.1916828117, 2020. a
Krieger, U. K., Marcolli, C., and Reid, J. P.:
Exploring the complexity of aerosol particle properties and processes using single particle techniques,
Chem. Soc. Rev.,
41, 6631–6662, https://doi.org/10.1039/C2CS35082C, 2012. a, b
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.:
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol,
Nat. Chem.,
3, 133–139, https://doi.org/10.1038/nchem.948, 2011. a
Kumar, R., Saunders, R. W., Mahajan, A. S., Plane, J. M. C., and Murray, B. J.: Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3, Atmos. Chem. Phys., 10, 12251–12260, https://doi.org/10.5194/acp-10-12251-2010, 2010. a, b, c
Kusik, C. L. and Meissner, H. P.:
Electrolytic activity coefficients in inorganic processing,
AIChE Sym. S.,
74, 14–20, 1978. a
Lee, S. H., Murphy, D. M., Thomson, D. S., and Middlebrook, A. M.:
Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles,
J. Geophys. Res.-Atmos.,
107, 4003, https://doi.org/10.1029/2000JD000011, 2002. a
Li, J. D., Polka, H. M., and Gmehling, J.:
A gE model for single and mixed-solvent electrolyte systems. 1. Model and results for strong electrolytes,
Fluid Phase Equilibr.,
94, 89–114, https://doi.org/10.1016/0378-3812(94)87052-7, 1994. a
Li, W., Sun, D., Zhang, T., Dai, S., Pan, F., and Zhang, Z.:
Separation of acetone and methanol azeotropic system using ionic liquid as entrainer,
Fluid Phase Equilibr.,
383, 182–187, https://doi.org/10.1016/j.fluid.2014.10.011, 2014. a
Li, W., Yin, H., Guo, H., Li, J., and Zhang, T.:
Separation abilities of three acetate-based ionic liquids for benzene-methanol mixture through vapor-liquid equilibrium experiment at 101.3 kPa,
Fluid Phase Equilibr.,
492, 80–87, https://doi.org/10.1016/j.fluid.2019.03.022, 2019. a
Liu, W., Wang, J., Zhuo, K., Wang, C., and Lu, J.:
Salt effect in nonaqueous mixed solvent systems,
Acta Chim. Sinica,
56, 21–31, https://doi.org/10.3321/j.issn:0567-7351.1998.01.004, 1998. a, b
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005. a
Loÿe-Pilot, M. D., Martin, J. M., and Morelli, J.:
Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,
Nature,
321, 427–428, https://doi.org/10.1038/321427a0, 1986. a
Macy, R. and Thomas, E. W.:
The System: Sodium Iodide–Acetone–Water,
J. Am. Chem. Soc.,
48, 1547–1550, https://doi.org/10.1021/ja01417a015, 1926. a
Mamontov, M. N. and Gorbachev, A. V.:
The thermodynamic properties of lithium carbonate aqueous solution studied by the potentiometric method,
J. Chem. Thermodyn.,
148, 106146, https://doi.org/10.1016/j.jct.2020.106146, 2020. a
Marcolli, C. and Krieger, U. K.:
Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols,
J. Phys. Chem. A,
110, 1881–1893, https://doi.org/10.1021/jp0556759, 2006. a
Marcus, Y.:
A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes,
Biophys. Chem.,
51, 111–127, https://doi.org/10.1016/0301-4622(94)00051-4, 1994. a, b
Marion, G. M.:
Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system,
Geochim. Cosmochim. Ac.,
65, 1883–1896, https://doi.org/10.1016/S0016-7037(00)00588-3, 2001. a
Mato, F. and Cocero, M. J.:
Measurement of vapor pressures of electrolyte solutions by vapor pressure osmometry,
J. Chem. Eng. Data,
33, 38–39, https://doi.org/10.1021/je00051a013, 1988. a, b
McGlashan, M. L.:
Deviations from Raoult's law,
J. Chem. Educ.,
40, 516–518, https://doi.org/10.1021/ed040p516, 1963. a, b
Miñambres, L., Méndez, E., Sánchez, M. N., Castaño, F., and Basterretxea, F. J.:
Water uptake properties of internally mixed sodium halide and succinic acid particles,
Atmos. Environ.,
45, 5896–5902, https://doi.org/10.1016/j.atmosenv.2011.06.062, 2011. a
Millero, F. J., Milne, P. J., and Thurmond, V. L.:
The solubility of calcite, strontianite and witherite in NaCl solutions at 25 ∘C,
Geochim. Cosmochim. Ac.,
48, 1141–1143, https://doi.org/10.1016/0016-7037(84)90205-9, 1984. a
Murphy, D. M. and Thomson, D. S.:
Chemical composition of single aerosol particles at Idaho Hill: Negative ion measurements,
J. Geophys. Res.-Atmos.,
102, 6353–6368, https://doi.org/10.1029/96JD00858, 1997. a
Murray, B. J., Haddrell, A. E., Peppe, S., Davies, J. F., Reid, J. P., O'Sullivan, D., Price, H. C., Kumar, R., Saunders, R. W., Plane, J. M. C., Umo, N. S., and Wilson, T. W.: Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer, Atmos. Chem. Phys., 12, 8575–8587, https://doi.org/10.5194/acp-12-8575-2012, 2012. a, b
Nasehzadeh, A., Noroozian, E., and Omrani, H.:
Experimental and theoretical studies of thermodynamics of lithium halide solutions – ethanol mixtures,
J. Chem. Thermodyn.,
36, 245–252, https://doi.org/10.1016/j.jct.2003.12.002, 2004. a, b
Nasirzadeh, K., Neueder, R., and Kunz, W.:
Vapor Pressures and Osmotic Coefficients of Aqueous LiOH Solutions at Temperatures Ranging from 298.15 to 363.15 K,
Ind. Eng. Chem. Res.,
44, 3807–3814, https://doi.org/10.1021/ie0489148, 2005. a
Onasch, T. B., McGraw, R., and Imre, D.:
Temperature-Dependent Heterogeneous Efflorescence of Mixed Ammonium Sulfate/Calcium Carbonate Particles,
J. Phys. Chem. A,
104, 10797–10806, https://doi.org/10.1021/jp0024064, 2000. a
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O' Dowd, C.:
Surface tension prevails over solute effect in organic-influenced cloud droplet activation,
Nature,
546, 637–641, https://doi.org/10.1038/nature22806, 2017. a, b, c
Pankow, J. F.:
Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework,
Atmos. Environ.,
37, 3323–3333, https://doi.org/10.1016/S1352-2310(03)00346-7, 2003. a
Partanen, J. I.:
Re-evaluation of the Thermodynamic Activity Quantities in Aqueous Alkali Metal Iodide Solutions at 25 ∘C,
J. Chem. Eng. Data,
55, 3708–3719, https://doi.org/10.1021/je100250n, 2010. a, b
Patil, K. R., Tripathi, A. D., Pathak, G., and Katti, S. S.:
Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of LICI, LiBr, and LiI,
J. Chem. Eng. Data,
35, 166–168, https://doi.org/10.1021/je00060a020, 1990. a
Pawar, R. R., Golait, S. M., Hasan, M., and Sawant, A. B.:
Solubility and Density of Potassium Iodide in a Binary Propan-1-ol–Water Solvent Mixture at (298.15, 303.15, 308.15, and 313.15) K,
J. Chem. Eng. Data,
55, 1314–1316, https://doi.org/10.1021/je9006426, 2010. a
Pawar, R. R., Aher, C. S., Pagar, J. D., Nikam, S. L., and Hasan, M.:
Solubility, Density and Solution Thermodynamics of NaI in Different Pure Solvents and Binary Mixtures,
J. Chem. Eng. Data,
57, 3563–3572, https://doi.org/10.1021/je300754n, 2012. a, b, c
Pearce, J. N. and Nelson, A. F.:
The vapor pressures of aqueous solutions of lithium nitrate and the activity coefficients of some alkali salts in solutions at high concentrations at 25 ∘C,
J. Am. Chem. Soc.,
54, 3544–3555, https://doi.org/10.1021/ja01348a008, 1932. a, b
Pechtl, S., Schmitz, G., and von Glasow, R.: Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry, Atmos. Chem. Phys., 7, 1381–1393, https://doi.org/10.5194/acp-7-1381-2007, 2007. a
Peiper, J. C. and Pitzer, K. S.:
Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate, and chloride,
J. Chem. Thermodyn.,
14, 613–638, https://doi.org/10.1016/0021-9614(82)90078-7, 1982. a
Pethybridge, A. D. and Prue, J. E.:
Equilibria in aqueous solutions of iodic acid,
T. Faraday Soc.,
63, 2019–2033, https://doi.org/10.1039/TF9676302019, 1967. a
Pitzer, K. S.:
Activity Coefficients in Electrolyte Solutions,
CRC Press, Roca Raton, FL, USA, 1991. a
Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-VanWertz, G., Capps, S. L., Appel, K. W., Foroutan, H., Xu, L., Ng, N. L., and Goldstein, A. H.: Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US, Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, 2018. a, b, c
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020. a, b, c
Raso, A. R. W., Custard, K. D., May, N. W., Tanner, D., Newburn, M. K., Walker, L., Moore, R. J., Huey, L. G., Alexander, L., Shepson, P. B., and Pratt, K. A.:
Active molecular iodine photochemistry in the Arctic,
P. Natl. Acad. Scie. USA,
114, 10053–10058, https://doi.org/10.1073/pnas.1702803114, 2017. a
Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge, D. G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A., Virtanen, A., and Riipinen, I.:
Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate,
Geophys. Res. Lett.,
44, 5167–5177, https://doi.org/10.1002/2017GL073056, 2017. a, b
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson, J. W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts, Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, 2016. a
Revie, R. W. and Uhlig, H. H.:
Corrosion and Corrosion Control – An Introduction to Corrosion Science and Engineering, 4th edn.,
John Wiley & Sons,
available at: https://app.knovel.com/hotlink/toc/id:kpCCCAICSK/corrosion-corrosion-control/corrosion-corrosion-control (last access: 6 May 2021), 2008. a
Ricci, J. E.:
The Ternary Systems KIO3-KBr-H2O and NaIO3-NaBr-H2O,
J. Am. Chem. Soc.,
56, 290–295, https://doi.org/10.1021/ja01317a007, 1934. a, b
Ricci, J. E.:
The Ternary Systems KClO3-KBr-H2O, KClO3-KI-H2O and KIO3-KI-H2O at 25∘,
J. Am. Chem. Soc.,
59, 866–867, https://doi.org/10.1021/ja01284a029, 1937. a
Robinson, R. A.:
The Activity Coefficients of the Alkali Bromides and Iodides in Aqueous Solution from Vapor Pressure Measurements,
J. Am. Chem. Soc.,
57, 1161–1165, https://doi.org/10.1021/ja01310a004, 1935. a, b
Robinson, R. A. and Harned, H. S.:
Some Aspects of the Thermodynamics of Strong Electrolytes from Electromotive Force and Vapor Pressure Measurements,
Chem. Rev.,
28, 419–476, https://doi.org/10.1021/cr60091a001, 1941. a
Robinson, R. A. and Macaskill, J. B.:
Osmotic coefficients of aqueous sodium carbonate solutions at 25 ∘C,
J. Solution Chem.,
8, 35–40, https://doi.org/10.1007/BF00646807, 1979. a
Robinson, R. A. and Sinclair, D. A.:
The Activity Coefficients of the Alkali Chlorides and of Lithium Iodide in Aqueous Solution from Vapor Pressure Measurements,
J. Am. Chem. Soc.,
56, 1830–1835, https://doi.org/10.1021/ja01324a003, 1934. a
Robinson, R. A., Stokes, R. H., and Wilson, J. M.:
A thermodynamic study of bivalent metal halides in aqueous solution,
T. Faraday Soc.,
36, 733–748, https://doi.org/10.1039/TF9403600733, 1940. a, b, c
Roy, R. N., Gibbons, J. J., Williams, R., Godwin, L., Baker, G., Simonson, J. M., and Pitzer, K. S.:
The thermodynamics of aqueous carbonate solutions II. Mixtures of potassium carbonate, bicarbonate, and chloride,
J. Chem. Thermodyn.,
16, 303–315, https://doi.org/10.1016/0021-9614(84)90170-8, 1984. a, b, c
Roy, R. N., Hufford, K., Lord, P. J., Mrad, D. R., Roy, L. N., and Johnson, D. A.:
The first acidity constant of carbon dioxide in solutions of ammonium chloride from e.m.f. measurements at 278.15 to 318.15 K,
J. Chem. Thermodyn.,
20, 63–77, https://doi.org/10.1016/0021-9614(88)90210-8, 1988. a
Safarov, J. T.:
Vapor Pressure Measurements of LiI + C2H5OH Solutions,
Z. Phys. Chem.,
219, 1133–1144, https://doi.org/10.1524/zpch.2005.219.8.1133, 2005. a
Saiz-Lopez, A., Plane, J. M., Baker, A. R., Carpenter, L. J., von Glasow, R., Martín, J. C., McFiggans, G., and Saunders, R. W.:
Atmospheric Chemistry of Iodine,
Chem. Rev.,
112, 1773–804, https://doi.org/10.1021/cr200029u, 2012. a, b, c, d
Salabat, A. and Hashemi, M.:
Liquid–liquid equilibria for aliphatic alcohols + water + potassium carbonate systems; experiment and correlation,
Phys. Chem. Liq.,
45, 231–239, https://doi.org/10.1080/10683160500520502, 2007. a
Sarbar, M., Covington, A. K., Nuttall, R. L., and Goldberg, R. N.:
The activity and osmotic coefficients of aqueous sodium bicarbonate solutions,
J. Chem. Thermodyn.,
14, 967–976, https://doi.org/10.1016/0021-9614(82)90006-4, 1982a. a, b
Sarbar, M., Covington, A. K., Nuttall, R. L., and Goldberg, R. N.:
Activity and osmotic coefficients of aqueous potassium carbonate,
J. Chem. Thermodyn.,
14, 695–702, https://doi.org/10.1016/0021-9614(82)90085-4, 1982b. a
Saxena, P. and Hildemann, L.:
Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds,
J. Atmos. Chem.,
24, 57–109, https://doi.org/10.1007/BF00053823, 1996. a
Seto, F. Y. B. and Duce, R. A.:
A laboratory study of iodine enrichment on atmospheric sea-salt particles produced by bubbles,
J. Geophys. Res.,
77, 5339–5349, https://doi.org/10.1029/JC077i027p05339, 1972. a
Sharygin, A. V. and Wood, R. H.:
Densities of aqueous solutions of sodium carbonate and sodium bicarbonate at temperatures from (298 to 623) K and pressures to 28 MPa,
J. Chem. Thermodyn.,
30, 1555–1570, https://doi.org/10.1006/jcht.1998.0426, 1998. a
Smith, M. L., Kuwata, M., and Martin, S. T.:
Secondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate,
Aerosol Sci. Technol.,
45, 244–261, https://doi.org/10.1080/02786826.2010.532178, 2011. a
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012. a
Soonsin, V., Zardini, A. A., Marcolli, C., Zuend, A., and Krieger, U. K.: The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol, Atmos. Chem. Phys., 10, 11753–11767, https://doi.org/10.5194/acp-10-11753-2010, 2010. a, b, c
Stokes, R. H.:
Isopiestic Vapor Pressure Measurements on Concentrated Solutions of Sodium Hydroxide at 25∘,
J. Am. Chem. Soc.,
67, 1689–1691, https://doi.org/10.1021/ja01226a022, 1945. a, b
Stokes, R. H.:
A thermodynamic study of bivalent metal halides in aqueous solution. Part XVII–revision of data for all 2:1 and 1:2 electrolytes at 25∘, and discussion of results,
T. Faraday Soc.,
44, 295–307, https://doi.org/10.1039/TF9484400295, 1948. a, b, c
Stokes, R. H. and Robinson, R. A.:
Interactions in aqueous nonelectrolyte solutions, I. Solute-solvent equilibria,
J. Phys. Chem.,
70, 2126–2130, https://doi.org/10.1021/j100879a010, 1966. a
Sugunan, S. and Thomas, B.:
Salting coefficient of hydroxybenzoic acids,
Indian J. Chem. A,
34, 134–136, 1995. a
Sun, R.:
Effect of Salt on Relative Volatility of Binary Solution,
J. Chem. Ind. Eng. (China),
36, 204–214, 1985. a
Sun, R.:
Molecular thermodynamics of salt effect in vapor-liquid equilibrium–calculation of isobaric VLE salt effect parameters for ethanol-water-1-1 type electrolytic systems,
J. Chem. Ind. Eng. (China),
47, 401–409, 1996. a
Sun, X., Sun, Q., and Sun, R.:
Determination and calculation of salt effect parameters in vapor – liquid equilibrium of polar – nonpolar binary solution,
Chem. Res.,
11, 17–22, https://doi.org/10.14002/j.hxya.2000.02.005, 2000. a
Sviridenkov, M. A., Gillette, D. A., Isakov, A. A., Sokolik, I. N., Smirnov, V. V., Belan, B. D., Pachenko, M. V., Andronova, A. V., Kolomiets, S. M., Zhukov, V. M., and Zhukovsky, D. A.:
Size distributions of dust aerosol measured during the Soviet-American experiment in Tadzhikistan, 1989,
Atmos. Environ. A-Gen.,
27, 2481–2486, https://doi.org/10.1016/0960-1686(93)90019-U, 1993. a
Tegen, I., Lacis, A. A., and Fung, I.:
The influence on climate forcing of mineral aerosols from disturbed soils,
Nature,
380, 419–422, https://doi.org/10.1038/380419a0, 1996. a
Tsukada, H., Hara, H., Iwashima, K., and Yamagata, N.:
The Iodine Content of Atmospheric Aerosols as Determined by the Use of a Fluoropore Filter for Collection,
B. Chem. Soc. Jpn.,
60, 3195–3198, https://doi.org/10.1246/bcsj.60.3195, 1987. a
Tu, C.-H., Wu, Y.-S., and Liu, T.-L.:
Vapor-liquid equilibria of the binary systems formed by methanol, acetone and methyl vinyl ketone at 100.0 ± 0.2 kPa,
Fluid Phase Equilibr.,
129, 129–137, https://doi.org/10.1016/S0378-3812(96)03183-4, 1997. a
Vanderzee, C. E.:
Thermodynamic properties of solutions of a hydrolyzing electrolyte: relative partial molar enthalpies and heat capacities, solvent activities, osmotic coefficients, and solute activity coefficients of aqueous sodium carbonate,
J. Chem. Thermodyn.,
14, 1051–1067, https://doi.org/10.1016/0021-9614(82)90149-5, 1982. a
Veghte, D. P., Altaf, M. B., and Freedman, M. A.:
Size Dependence of the Structure of Organic Aerosol,
J. Am. Chem. Soc.,
135, 16046–16049, https://doi.org/10.1021/ja408903g, 2013. a
Wang, J., Wu, X., and Zhang, S.:
Development of a thermodynamic model for the Li2CO3-NaCl-Na2SO4-H2O system and its application,
J. Chem. Thermodyn.,
123, 62–73, https://doi.org/10.1016/j.jct.2018.03.027, 2018. a, b
Wexler, A. S. and Clegg, S. L.:
Atmospheric aerosol models for systems including the ions H+, , Na+, , , Cl−, Br−, and H2O,
J. Geophys. Res.-Atmos.,
107, 14–1, https://doi.org/10.1029/2001JD000451, 2002. a, b
Xie, S., Song, W., Fu, C., Yi, C., and Qiu, X.:
Separation of acetone: From a water miscible system to an efficient aqueous two-phase system,
Sep. Purif. Technol.,
192, 55–61, https://doi.org/10.1016/j.seppur.2017.09.056, 2018. a
Xu, S., Xie, Z., Li, B., Liu, W., Sun, L., Kang, H., Yang, H., and Zhang, P.:
Iodine speciation in marine aerosols along a 15 000-km round-trip cruise path from Shanghai, China, to the Arctic Ocean,
Environ. Chem.,
7, 406–412, https://doi.org/10.1071/EN10048, 2010. a
Yamamoto, H., Fukase, K., and Shibata, J.:
Vapor–Liquid Equilibria for Alcohol + Alcohol + Sodium Iodide at 298.15 K,
J. Chem. Eng. Data,
42, 414, https://doi.org/10.1021/je9603640, 1997. a
Yan, W. D., Topphoff, M., Rose, C., and Gmehling, J.:
Prediction of vapor–liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept,
Fluid Phase Equilibr.,
162, 97–113, https://doi.org/10.1016/S0378-3812(99)00201-0, 1999. a
Yang, L., Zhuo, K., Zhao, Y., and Wang, J.:
Thermodynamics of the Interaction between Electrolyte (CaCl2, NaCl, NaBr, NaI) and Monosaccharide (D-mannose, D-ribose) in Water at 298.15 K,
Z. Phys. Chem.,
218, 349–362, https://doi.org/10.1524/zpch.218.3.349.26494, 2004. a, b
Yang, M., Leng, C., Li, S., and Sun, R.:
Study of activity coefficients for sodium iodide in (methanol + benzene) system by (vapour + liquid) equilibrium measurements,
J. Chem. Thermodyn.,
39, 49–54, https://doi.org/10.1016/j.jct.2006.06.002, 2007. a
Yin, L., Zhao, H., Chen, G., Xu, Y., Chen, Y., and Li, Y.:
Experimental results for fluid phase equilibria of (n-propanol + water + salt) and comparison with predictions,
Desalin. Water Treat.,
132, 144–149, https://doi.org/10.5004/dwt.2018.23128, 2018. a
Young, T. F., Maranville, L. F., and Smith, H. M.:
Raman Spectral Investigations of Ionic Equilibria in
Solutions of Strong Electrolytes, in: The Structure of Electrolytic Solutions, Wiley, New York, USA, 441 pp., ISBN 9780598639080, 1959. a
Zafarani-Moattar, M. T. and Jahanbin-Sardroodi, J.:
Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for electrolyte solutions of some lithium salts in ethanol,
Fluid Phase Equilibr.,
166, 207–223, https://doi.org/10.1016/S0378-3812(99)00293-9, 1999. a
Zardini, A. A., Sjogren, S., Marcolli, C., Krieger, U. K., Gysel, M., Weingartner, E., Baltensperger, U., and Peter, T.: A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles, Atmos. Chem. Phys., 8, 5589–5601, https://doi.org/10.5194/acp-8-5589-2008, 2008. a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.:
Model for Simulating Aerosol Interactions and Chemistry (MOSAIC),
J. Geophys. Res.-Atmos.,
113, D13204, https://doi.org/10.1029/2007JD008782, 2008. a, b
Zdanovskii, A. B.:
Novyi metod rascheta rastvorimostei elektrolitov v mnogokomponentny sistema. 1. (New methods of calculating solubilities of electrolytes in multicomponent systems, 1.),
Zh. Fiz. Khim.+,
22, 1478–1485, 1948. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.:
Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes,
Geophys. Res. Lett.,
34, L13801, https://doi.org/10.1029/2007GL029979, 2007. a
Zhuo, K., Liu, H., Zhang, H., Liu, Y., and Wang, J.:
Activity Coefficients and Volumetric Properties for the NaI + Maltose + Water System at 298.15 K,
J. Chem. Eng. Data,
53, 57–62, https://doi.org/10.1021/je700366w, 2008. a, b
Zuend, A.: andizuend/AIOMFAC: AIOMFAC-web v3.02 (v3.02), Zenodo [code], https://doi.org/10.5281/zenodo.5866756, 2022. a
Zuend, A. and Seinfeld, J. H.: Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation, Atmos. Chem. Phys., 12, 3857–3882, https://doi.org/10.5194/acp-12-3857-2012, 2012. a
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010.
a
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011. a, b, c, d, e, f, g, h, i, j
Zuend, A., Levac, N., and Seinfeld, J. H.: AIOMFAC-web website and online model, available at: https://aiomfac.lab.mcgill.ca (last access: 6 December 2021), 2012. a
Zuend, A., Yin, H., and Lilek, J.: AIOMFAC-web v3.00 – Public model code repository, GitHub [code], available at: https://github.com/andizuend/AIOMFAC, last access: 6 December 2021. a
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Iodine and carbonate species are important components in marine and dust aerosols, respectively....
Altmetrics
Final-revised paper
Preprint