Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-8221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection
Zhixiong Chen
Key Laboratory for Humid Subtropical Eco-Geographical Processes of
the Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, China
Key Laboratory of Middle Atmosphere and Global Environment
Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China
Key Laboratory for Humid Subtropical Eco-Geographical Processes of
the Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, China
Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
Xiushu Qie
CORRESPONDING AUTHOR
Key Laboratory of Middle Atmosphere and Global Environment
Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China
Xugeng Cheng
Key Laboratory for Humid Subtropical Eco-Geographical Processes of
the Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, China
Yukun Shen
Key Laboratory for Humid Subtropical Eco-Geographical Processes of
the Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, China
Mengmiao Yang
Key Laboratory for Humid Subtropical Eco-Geographical Processes of
the Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, China
Rubin Jiang
Key Laboratory of Middle Atmosphere and Global Environment
Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China
Xiangke Liu
Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Shandong Meteorological Administration, Jinan, China
Related authors
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3745, https://doi.org/10.5194/egusphere-2024-3745, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant, whose distribution and time variability is mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences, but also consistently higher pre- than post-COVID trends.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Xinran Xia, Rubin Jiang, Min Min, Shengli Wu, Peng Zhang, and Xiangao Xia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-395, https://doi.org/10.5194/essd-2024-395, 2024
Revised manuscript not accepted
Short summary
Short summary
Based on the MicroWave Radiation Imager aboard FY-3 series satellites, we developed a global terrestrial precipitable water vapor dataset from 2012 to 2020. This dataset overcomes the limitations of infrared observations and provides accurate, all-weather PWV data ,spanning all types of land surface. Researchers are expected to leverage it to explore the role of water vapor in weather patterns, refine precipitation forecasting, and validate climate simulations.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Mengyu Sun, Dongxia Liu, Xiushu Qie, Edward R. Mansell, Yoav Yair, Alexandre O. Fierro, Shanfeng Yuan, Zhixiong Chen, and Dongfang Wang
Atmos. Chem. Phys., 21, 14141–14158, https://doi.org/10.5194/acp-21-14141-2021, https://doi.org/10.5194/acp-21-14141-2021, 2021
Short summary
Short summary
By acting as cloud condensation nuclei (CCN), increasing aerosol loading tends to enhance lightning activity through microphysical processes. We investigated the aerosol effects on the development of a thunderstorm. A two-moment bulk microphysics scheme and bulk lightning model were coupled in the WRF Model to simulate a multicell thunderstorm. Sensitivity experiments show that the enhancement of lightning activity under polluted conditions results from an increasing ice crystal number.
Da Gao, Min Xie, Jane Liu, Tijian Wang, Chaoqun Ma, Haokun Bai, Xing Chen, Mengmeng Li, Bingliang Zhuang, and Shu Li
Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, https://doi.org/10.5194/acp-21-5847-2021, 2021
Short summary
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020, https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary
Short summary
Combining simulations from a global chemical transport model and a trajectory model, we find that black carbon aerosols from South Asia and East Asia contribute 77 % of the surface black carbon in the Tibetan Plateau. The Asian monsoon largely modulates inter-annual transport of black carbon from non-local regions to the Tibetan Plateau surface in most seasons, while inter-annual fire activities in South Asia influence black carbon concentration over the Tibetan Plateau surface mainly in spring.
Cited articles
Akritidis, D., Pozzer, A., and Zanis, P.: On the impact of future climate change on tropopause folds and tropospheric ozone, Atmos. Chem. Phys., 19, 14387–14401, https://doi.org/10.5194/acp-19-14387-2019, 2019.
Aliaga, D., Sinclair, V. A., Andrade, M., Artaxo, P., Carbone, S., Kadantsev, E., Laj, P., Wiedensohler, A., Krejci, R., and Bianchi, F.: Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis, Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, 2021.
Baray, J. L., Ancellet, G., Randriambelo, T., and Baldy, S.: Tropical
cyclone Marlene and stratosphere–troposphere exchange, J. Geophys.
Res., 104, 13953–13970, https://doi.org/10.1029/1999JD900028, 1999.
Betts, A. K., Gatti, L. V., Cordova, A. M., Dias, M. A. S., and Fuentes, J. D.: Transport of ozone to the surface by convective downdrafts at night, J. Geophys. Res.-Atmos., 107, LBA 13-1–LBA 13-6, https://doi.org/10.1029/2000JD000158, 2002.
Brioude, J., Cooper, O. R., Trainer, M., Ryerson, T. B., Holloway, J. S., Baynard, T., Peischl, J., Warneke, C., Neuman, J. A., De Gouw, J., Stohl, A., Eckhardt, S., Frost, G. J., McKeen, S. A., Hsie, E.-Y., Fehsenfeld, F. C., and Nédélec, P.: Mixing between a stratospheric intrusion and a biomass burning plume, Atmos. Chem. Phys., 7, 4229–4235, https://doi.org/10.5194/acp-7-4229-2007, 2007.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013 (data available at: https://www.flexpart.eu/wiki/FpLimitedareaWrf, last access: 20 June 2022).
Chan, C. Y., Chan, L. Y., Harris, J. M., Oltmans, S. J., Blake, D. R., Qin,
Y., Zheng, Y. G., and Zheng, X. D.: Characteristic of biomass burning
emission sources, transport, and chemical speciation in enhanced springtime
tropospheric ozone profile over Hong Kong, J. Geophys. Res., 108, 4015,
https://doi.org/10.1029/2001JD001555, 2003.
Chen, F. and Dudhia J.: Coupling an advanced land surface – hydrology model
with the Penn State – NCAR MM5 modeling system, Part I: Model implementation
and sensitivity, Mon. Wea. Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, L., Zhang, Y., Lu, W., Zheng, D., Zhang, Y., Chen, S., and Huang, Z.:
Performance evaluation for a lightning location system based on observations
of artificially triggered lightning and natural lightning flashes, J. Atmos.
Ocean. Tech., 29, 1835–1844, https://doi.org/10.1175/JTECH-D-12-00028.1,
2012.
Chen, Z., Liu, J., Cheng, X., Yang, M., and Wang, H.: Positive and negative influences of typhoons on tropospheric ozone over southern China, Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, 2021.
Cooper, O. R., Trainer, M., Thompson, A. M., Witte, J. C., Oltmans, S. J.,
Morris, G., Pickering, K. E., Crawford, J. H., Chen, G., Cohen, R. C.,
Bertram, T. H., Wooldridge, P., Perring, A., Brune, W. H., Merrill, J.,
Moody, J. L., Tarasick, D., Nédélec, P., Forbes, G., Newchurch, M.
J., Schmidlin, F. J., Johnson, B. J., Turquety, S., Baughcum, S. L., Ren,
X., Fehsenfeld, F. C., Meagher, J. F., Spichtinger, N., Brown, C. C.,
McKeen, S. A., McDermid, I. S., and Leblanc, T.: Large upper tropospheric
ozone enhancements above midlatitude North America during summer: In situ
evidence from the IONS and MOZAIC ozone measurement network, J. Geophys.
Res.-Atmos., 111, D24S05, https://doi.org/10.1029/2006JD007306, 2006.
Davies, T. and Schuepbach, E.: Episodes of high ozone concentrations at the
earth's surface resulting from transport down from the upper
troposphere/lower stratosphere: a review and case studies, Atmos. Environ.,
28, 53–68, 1994.
Del Genio, A. D., Yao, M. S., and Jonas, J.: Will moist convection be
stronger in a warmer climate?, Geophys. Res. Lett., 34, L16703,
https://doi.org/10.1029/2007GL030525, 2007.
Dickerson, R. R., Huffman, G. L., Luke, W. T., Nunnermacker, L. J.,
Pickering, K. E., Leslie, A. C., Lindsey, C. G., Slinn, W. G. N., Kelly, T.
J., Daum, P. H., Delany, A. C., Greenberg, J. P., Zimmerman, P. R., Boatman,
J. F., Ray, J. D., and Stedman, D. H.: Thunderstorms-An important mechanism
in the transport of air pollutants, Science, 235, 460–464,
https://doi.org/10.1126/science.235.4787.460, 1987.
Dreessen, J.: A sea level stratospheric ozone intrusion event induced
within a thunderstorm gust front, B. Am. Meteorol. Soc., 100,
1259–1275, https://doi.org/10.1175/BAMS-D-18-0113.1, 2019.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Elbern, H., Kowol, J., Sladkovic, R., and Ebel A.: Deep stratospheric
intrusions: A statistical assessment with model guided analyses, Atmos.
Environ., 31, 3207–3226, https://doi.org/10.1016/S1352-2310(97)00063-0,
1997.
French, A. J. and Parker, M. D.: Numerical simulations of bow echo
formation following a squall line-supercell merger, Mon. Wea. Rev., 142,
4791–4822, https://doi.org/10.1175/MWR-D-13-00356.1, 2014.
Fu, D., Kulawik, S. S., Miyazaki, K., Bowman, K. W., Worden, J. R., Eldering, A., Livesey, N. J., Teixeira, J., Irion, F. W., Herman, R. L., Osterman, G. B., Liu, X., Levelt, P. F., Thompson, A. M., and Luo, M.: Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018, 2018 (data available at: https://tes.jpl.nasa.gov/tropess/products/o3/, last access: 20 June 2022).
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017 (data available at: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2, last access: 20 June 2022).
Gerken, T., Wei, D., Chase, R., Fuentes, J., Schumacher, C., Machado, L.,
Andreoli, R., Chamecki, M., Ferreira de Souza, R., Freire, L., Jardine, A.,
Manzi, A., Nascimento dos Santos, R., von Randow, C., dos Santos Costa, P.,
Stoy, P., Tóta, J., and Trowbridge, A.: Downward transport of ozone rich
air and implications for atmospheric chemistry in the Amazon rainforest,
Atmos. Environ., 124, 64–76, https://doi.org/10.1016/j.atmosenv.2015.11.014,
2016.
Grant, D. D., Fuentes, J. D., DeLonge, M. S., Chan, S.,Joseph, E., Kucera,
P., Ndiaye, S. A., and Gaye, A. T.: Ozone transport by mesoscale convective
storms in western Senegal, Atmos. Environ., 42, 7104–7114,
https://doi.org/10.1016/j.atmosenv.2008.05.044, 2008.
Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China, Atmos. Chem. Phys., 20, 203–222, https://doi.org/10.5194/acp-20-203-2020, 2020.
Hartmann, D. L., Moy, L. A., and Fu, Q.: Tropical convection and the energy
balance at the top of the atmosphere, J. Climate, 14, 4495–4511,
https://doi.org/10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2, 2001.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403–439, https://doi.org/10.1029/95RG02097, 1995.
Hong, S., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Wea. Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hu, X. M., Fuentes, J. D., and Zhang, F. Q.: Downward transport and
modification of tropospheric ozone through moist convection, J. Atmos.
Chem., 65, 13–35, https://doi.org/10.1007/s10874-010-9179-5, 2010.
Jiang, R., Qie, X., Wang, C., and Yang, J.: Propagating features of upward
positive leaders in the initial stage of rocket-triggered lightning, Atmos.
Res., 129, 90–96, https://doi.org/10.1016/j.atmosres.2012.09.005, 2013.
Jiang, Y. C., Zhao, T. L., Liu, J., Xu, X. D., Tan, C. H., Cheng, X. H., Bi, X. Y., Gan, J. B., You, J. F., and Zhao, S. Z.: Why does surface ozone peak before a typhoon landing in southeast China?, Atmos. Chem. Phys., 15, 13331–13338, https://doi.org/10.5194/acp-15-13331-2015, 2015.
Kain, J. and Fritsch, J.: Convective parameterization for mesoscale models:
The Kain-Fritsch scheme, in: The Representation of Cumulus Covection in
Numerical Models, 46 edn., edited by: Emanuel, K. A. and Raymond, D. J., Meteorological Monographs, American Meteorological Society, Boston, MA, 165–170, https://doi.org/10.1007/978-1-935704-13-3_16, 1993.
Keene, K. M. and Schumacher, R. S.: The bow and arrow mesoscale convective
structure, Mon. Wea. Rev., 141, 1648–1672,
https://doi.org/10.1175/MWR-D-12-00172.1, 2013.
Knowland, E., Ott, E., Duncan, N., and Wargan, K.: Stratospheric
intrusion-influenced ozone air quality exceedances investigated in the NASA
MERRA-2 reanalysis, Geophys. Res. Lett., 44, 10691–10701,
https://doi.org/10.1002/2017GL074532, 2017.
Lelieveld, J. and Crutzen, P. J.: Role of deep cloud convection in the
ozone budget of the troposphere, Science, 264, 1759–1761,
https://doi.org/10.1126/science.264.5166.1759, 1994.
Li, D. and Bian, J. C.: Observation of a summer tropopause fold by
ozonesonde at Changchun, China: Comparison with reanalysis and model
simulation, Adv. Atmos. Sci., 32, 1354–1364,
https://doi.org/10.1007/s00376-015-5022-x, 2015a.
Li, D., Bian, J. C., and Fan, Q. J.: A deep stratospheric intrusion
associated with an intense cut-off low event over East Asia, Science China:
Earth Sciences, 58, 116–128, https://doi.org/10.1007/s11430-014-4977-2,
2015b.
Li, D., Vogel, B., Müller, R., Bian, J., Günther, G., Ploeger, F., Li, Q., Zhang, J., Bai, Z., Vömel, H., and Riese, M.: Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data, Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, 2020.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422, https://doi.org/10.1073/pnas.1812168116,
2019.
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
Lin, Y.-C., Hsu, S.-C., Lin, C.-Y., Lin, S.-H., Huang, Y.-T., Chang, Y., and Zhang, Y.-L.: Enhancements of airborne particulate arsenic over the subtropical free troposphere: impact of southern Asian biomass burning, Atmos. Chem. Phys., 18, 13865–13879, https://doi.org/10.5194/acp-18-13865-2018, 2018.
Li, Y., Pickering, K. E., Allen, D. J., Barth, M. C., Bela, M. M., Cummings,
K. A., Carey, L. D., Mecikalski, R. M., Fierro, A. O., Campos, T. L.,
Weinheimer, A. J., Diskin, G. S., and Biggerstaff, M. I.: Evaluation of deep
convective transport in storms from different convective regimes during the
DC3 field campaign using WRF-Chem with lightning data assimilation, J.
Geophys. Res.-Atmos., 122, 7140–7163, https://doi.org/10.1002/2017JD026461,
2017.
Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang,
T., Gao, M., Zhao, Y., and Zhang, Y.: Severe surface ozone pollution in
China: A global perspective, Environ. Sci. Technol. Lett., 5, 487–494,
https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Melo, A. M., Dias-Junior, C. Q., Cohen, J. C., Sá, L. D., Cattanio, J.
H., and Kuhn, P. A.: Ozone transport and thermodynamics during the passage
of squall line in Central Amazon, Atmos. Environ., 206, 132–143,
https://doi.org/10.1016/j.atmosenv.2019.02.018, 2019.
Meng, K., Zhao, T., Xu, X., Hu, Y., Zhao, Y., Zhang, L., Pang, Y., Ma, X.,
Bai, Y., Zhao, Y., and Zhen, S.: Anomalous surface O3 changes in North
China Plain during the northwestward movement of a landing typhoon, Sci.
Total Environ., 820, 153196,
https://doi.org/10.1016/j.scitotenv.2022.153196, 2022.
Meul, S., Langematz, U., Kröger, P., Oberländer-Hayn, S., and Jöckel, P.: Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery, Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, 2018.
Mlawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative
transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model
for the long-wave. J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated
squall line: Comparison of one- and two-moment schemes, Mon. Wea. Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
Nathan, B., Kremser, S., Mikaloff-Fletcher, S., Bodeker, G., Bird, L., Dale, E., Lin, D., Olivares, G., and Somervell, E.: The MAPM (Mapping Air Pollution eMissions) method for inferring particulate matter emissions maps at city scale from in situ concentration measurements: description and demonstration of capability, Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, 2021.
Pan, L. L., Homeyer, C. R., Honomochi, S., Ridley, B. A., Weisman, M., Barth, M. C., Hair, J. W., Fenn, M. A., Butler, C., Diskin, G. S., Crawford, J. H., Ryerson, T. B., Pollack, I., Peischl, J., and Huntrieser, H.: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air, Geophys. Res. Lett., 41, 7785–7790, https://doi.org/10.1002/2014GL061921, 2014a.
Pan, L. L., Paulik, L. C., Honomichl, S. B., Munchak, L. A., Bian, J.,
Selkirk, H. B., and Vömel, H.: Identification of the tropical tropopause
transition layer using the ozone-water vapour relationship, J. Geophys.
Res.-Atmos., 119, 3586–3599, https://doi.org/10.1002/2013JD020558, 2014b.
Pan, L. L., Honomichl, S. B., Bui, T. V., Thornberry, T., Rollins, A.,
Hintsa, E., and Jensen, E. J.: Lapse rate or cold point: the tropical
tropopause identified by in situ trace gas measurements, Geophys. Res.
Lett., 45, 10756–10763, https://doi.org/10.1029/2018GL079573, 2018.
Phoenix, D. and Homeyer, C.: Simulated impacts of tropopause-overshooting
convection on the chemical composition of the Upper troposphere and lower
stratosphere, J. Geophys. Res., 126, 21,
https://doi.org/10.1029/2021JD034568, 2021.
Phoenix, D. B., Homeyer, C. R., Barth, M. C., and Trier, S. B.: Mechanisms Responsible for Stratosphere-to-Troposphere Transport Around a Mesoscale Convective System Anvil, J. Geophys. Res.-Atmos., 125, e2019JD032016, https://doi.org/10.1029/2019JD032016, 2020.
Pickering, J. E., Thompson, A. M., Scala, J. R., Tao, W.-K., Simpson, J.,
and Garstang, M.: Photochemical ozone production in tropical squall line
convection during NASA/GTE/ABLE 2A, J.Geophys. Res., 96, 3099–3114,
https://doi.org/10.1029/90JD02284, 1991.
Pickering, K. E., Thompson, A. M., Scala, J. R. Tao, W.-K., and Simpson, J.:
Ozone production potential following convective redistribution of biomass
burning emissions, J. Atmos. Chem., 14, 297–313,
https://doi.org/10.1007/BF00115241, 1992.
Pochanart, P., Akimoto, H., Kajii, Y., and Sukasem, P.: Carbon monoxide,
regional-scale, and biomass burning in tropical continental Southeast Asia:
Observations in rural Thailand, J. Geophys. Res.-Atmos., 108, 4552,
https://doi.org/10.1029/2002JD003360, 2003.
Poulida, O., Dickerson, R. R., and Heymsfield, A.: Stratosphere troposphere
exchange in a midlatitude mesoscale convective complex, J. Geophys. Res.,
101, 6823–6836, https://doi.org/10.1029/95JD03523, 1996.
Preston, A., Fuelberg, H., and Barth., M.: Simulation of chemical transport
by Typhoon Mireille (1991), J. Geophys. Res.-Atmos., 124, 11614–11639,
https://doi.org/10.1029/2019JD030446, 2019.
Qie, K., Qie, X., and Tian, W.: Increasing trend of lightning activity in
the South Asia region, Sci. Bull., 66, 78–84,
https://doi.org/10.1016/j.scib.2020.08.033, 2021.
Qie, X., Zhao, Y., Zhang, Q., Yang, J., Feng, G., Kong X., Zhou, Y., Zhang,
T., Zhang, G., Zhang T., Wang, D., Cui H., Zhao Z., and Wu, S.:
Characteristics of triggered lightning during Shandong artificial triggering
lightning experiment (SHATLE), Atmos. Res., 91, 310–315,
https://doi.org/10.1016/j.atmosres.2008.08.007, 2009.
Raupach, T. H., Martius, O., Allen, J. T., Kunz, M., Trapp, S., Mohr, S.,
Rasmussen, K., Trapp, R., and Zhang, Q. H.: The effects of climate change on
hailstorms, Nat. Rev. Earth. Environ., 2, 213–226,
https://doi.org/10.1038/s43017-020-00133-9, 2021.
Reichler, T., Damerisand, M., and Sausen, R.: Determining the tropopause
height from gridded data, Geophys. Res. Lett., 30, 2042,
https://doi.org/10.1029/2003GL018240, 2003.
Roebber, P. J.: Visualizing multiple measures of forecast quality, Wea.
Forecasting, 24, 601–608, https://doi.org/10.1175/2008WAF2222159.1, 2009.
Sahu, L. K. and Lal, S.: Changes in surface ozone levels due to convective
downdrafts over the Bay of Bengal, Geophys. Res. Lett., 33, L10807,
https://doi.org/10.1029/2006gl025994, 2006.
Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, https://doi.org/10.5194/acp-7-3823-2007, 2007.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, G. M., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the advanced
research WRF version 3, NCAR, Tech. Note, NCAR/TN-475þSTR, p. 113,
https://doi.org/10.5065/D68S4MVH, 2008 (data available at: https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 20 June 2022).
Stenchikov, G., Dickerson, R., Pickering, K., Ellis, W., Doddridge, B.,
Kondragunta, S., Poulida, O., Scala, L., and Tao, W. K.:
Stratosphere-troposphere exchange in a midlatitude mesoscale convective
complex: 2. Numerical simulations, J. Geophys. Res., 101, 6837–6851,
https://doi.org/10.1029/95JD02468, 1996.
Stohl, A., Spichtinger-Rakowsky, N., Bonasoni, P., Feldmann, H.,
Memmesheimer, M., Scheel, H., Trickl, T., Hübener, S., Ringer, W., and
Mandl, M.: The influence of stratospheric intrusions on alpine ozone
concentrations, Atmos. Environ., 34, 1323–1354,
https://doi.org/10.1016/S1352-2310(99)00320-9, 2000.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gaggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Kruger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheell, H., E. Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere
exchange: A review, and what we have learned from STACCATO, J. Geophys.
Res.-Atmos., 108, 8516, https://doi.org/10.1029/2002JD002490, 2003.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Tarasick, D. W., Carey-Smith, T. K., Hocking, W. K., Moeini, O., He, H.,
Liu, J., Osman, M. K., Thompson, A. M., Johnson, B. J., Oltmans, S. J., and
Merrill, J. T.: Quantifying stratosphere-troposphere transport of ozone
using balloon-borne ozonesondes, radar windprofilers and trajectory models,
Atmos. Environ., 198, 496–509,
https://doi.org/10.1016/j.atmosenv.2018.10.040, 2019.
Verstraeten, W. W., Boersma, K. F., Zörner, J., Allaart, M. A. F., Bowman, K. W., and Worden, J. R.: Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias, Atmos. Meas. Tech., 6, 1413–1423, https://doi.org/10.5194/amt-6-1413-2013, 2013 (data available at: https://tes.jpl.nasa.gov/tropess/products/o3/, last access: 20 June 2022).
Wang, X. L.: Historical air quality data in China, Hourly surface concentrations of ozone and CO in China [data set], https://quotsoft.net/air, last access: 21 January 2022.
Wirth, V.: Diabatic heating in an axisymmetric cut-off cyclone and related
stratosphere-troposphere exchange, Q. J. Roy. Meteor. Soc., 121, 127–147,
https://doi.org/10.1002/qj.49712152107, 1995.
Wirth, V.: Static stability in the extratropical tropopause region, J.
Atmos. Sci., 60, 1395–1409,
https://doi.org/10.1175/1520-0469(2003)060<1395:SSITET>2.0.CO;2, 2003.
Zanis, P., Trickl, T., Stohl, A., Wernli, H., Cooper, O., Zerefos, C., Gaeggeler, H., Schnabel, C., Tobler, L., Kubik, P. W., Priller, A., Scheel, H. E., Kanter, H. J., Cristofanelli, P., Forster, C., James, P., Gerasopoulos, E., Delcloo, A., Papayannis, A., and Claude, H.: Forecast, observation and modelling of a deep stratospheric intrusion event over Europe, Atmos. Chem. Phys., 3, 763–777, https://doi.org/10.5194/acp-3-763-2003, 2003.
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain...
Altmetrics
Final-revised paper
Preprint