Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-7843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-7843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, Texas, USA
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, Texas, USA
Related authors
Yong-Cheol Jeong, Yuxuan Wang, Wei Li, Hyeonmin Kim, Rokjin J. Park, and Mahmoudreza Momeni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3616, https://doi.org/10.5194/egusphere-2024-3616, 2025
Short summary
Short summary
Isoprene, which is emitted from the vegetation, is important to regional air quality. Drought is one of the most important meteorological events that can modulate isoprene emissions by high temperature and low soil moisture. The drought stress impact on isoprene emissions is still uncertain, and we aimed to constrain it in South Korea using observation and model simulation. The results presented in this study may give useful information for future studies on drought stress on isoprene emissions.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Yong-Cheol Jeong, Yuxuan Wang, Wei Li, Hyeonmin Kim, Rokjin J. Park, and Mahmoudreza Momeni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3616, https://doi.org/10.5194/egusphere-2024-3616, 2025
Short summary
Short summary
Isoprene, which is emitted from the vegetation, is important to regional air quality. Drought is one of the most important meteorological events that can modulate isoprene emissions by high temperature and low soil moisture. The drought stress impact on isoprene emissions is still uncertain, and we aimed to constrain it in South Korea using observation and model simulation. The results presented in this study may give useful information for future studies on drought stress on isoprene emissions.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Claudia Bernier, Yuxuan Wang, Guillaume Gronoff, Timothy Berkoff, K. Emma Knowland, John T. Sullivan, Ruben Delgado, Vanessa Caicedo, and Brian Carroll
Atmos. Chem. Phys., 22, 15313–15331, https://doi.org/10.5194/acp-22-15313-2022, https://doi.org/10.5194/acp-22-15313-2022, 2022
Short summary
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Cited articles
Aarons, S. M., Arvin, L. J., Aciego, S. M., Riebe, C. S., Johnson, K. R.,
Blakowski, M. A., Koornneef, J. M., Hart, S. C., Barnes, M. E., Dove, N.,
Botthoff, J. K., Maltz, M., and Aronson, E. L.: Competing droughts affect
dust delivery to Sierra Nevada, Aeolian Res., 41, 100545,
https://doi.org/10.1016/j.aeolia.2019.100545, 2019.
Achakulwisut, P., Shen, L., and Mickley, L. J.: What Controls Springtime
Fine Dust Variability in the Western United States? Investigating the
2002–2015 Increase in Fine Dust in the U.S. Southwest, J. Geophys. Res.-Atmos., 122, 12449–12467, https://doi.org/10.1002/2017JD027208, 2017.
Achakulwisut, P., Mickley, L. J., and Anenberg, S. C.: Drought-sensitivity
of fine dust in the US Southwest: Implications for air quality and public
health under future climate change, Environ. Res. Lett., 13, 054025,
https://doi.org/10.1088/1748-9326/aabf20, 2018.
Achakulwisut, P., Anenberg, S. C., Neumann, J. E., Penn, S. L., Weiss, N.,
Crimmins, A., Fann, N., Martinich, J., Roman, H., and Mickley, L. J.:
Effects of Increasing Aridity on Ambient Dust and Public Health in the U.S.
Southwest Under Climate Change, GeoHealth, 3, 127–144,
https://doi.org/10.1029/2019GH000187, 2019.
Alamirew, N. K., Todd, M. C., Ryder, C. L., Marsham, J. H., and Wang, Y.: The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol, Atmos. Chem. Phys., 18, 1241–1262, https://doi.org/10.5194/acp-18-1241-2018, 2018.
Aldhaif, A. M., Lopez, D. H., Dadashazar, H., and Sorooshian, A.: Sources,
frequency, and chemical nature of dust events impacting the United States
East Coast, Atmos. Environ., 231, 117456,
https://doi.org/10.1016/j.atmosenv.2020.117456, 2020.
Arcusa, S. H., McKay, N. P., Routson, C. C., and Munoz, S. E.: Dust-drought
interactions over the last 15,000 years: A network of lake sediment records
from the San Juan Mountains, Colorado, The Holocene, 30, 559–574,
https://doi.org/10.1177/0959683619875192, 2020.
Aryal, Y. N. and Evans, S.: Global Dust Variability Explained by Drought
Sensitivity in CMIP6 Models, J. Geophys. Res.-Earth Surf., 126,
e2021JF006073, https://doi.org/10.1029/2021JF006073, 2021.
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and
Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather
Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Borlina, C. S. and Rennó, N. O.: The Impact of a Severe Drought on Dust
Lifting in California's Owens Lake Area, Sci. Rep., 7, 1784,
https://doi.org/10.1038/s41598-017-01829-7, 2017.
Bou Karam, D., Flamant, C., Knippertz, P., Reitebuch, O., Pelon, J., Chong,
M., and Dabas, A.: Dust emissions over the Sahel associated with the West
African monsoon intertropical discontinuity region: A representative
case-study, Q. J. Roy. Meteorol. Soc., 134, 621–634,
https://doi.org/10.1002/qj.244, 2008.
Brey, S., Pierce, J., Barnes, E., and Fischer, E.: Estimating the Spread in
Future Fine Dust Concentrations in the Southwest United States, J. Geophys.
Res.-Atmos., 125, e2019JD031735, https://doi.org/10.1029/2019JD031735, 2020.
Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., and Kulmala, M.: A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys., 10, 1701–1737, https://doi.org/10.5194/acp-10-1701-2010, 2010.
Chen, L. G., Gottschalck, J., Hartman, A., Miskus, D., Tinker, R., and
Artusa, A.: Flash Drought Characteristics Based on U.S. Drought Monitor,
Atmosphere, 10, 498, https://doi.org/10.3390/atmos10090498, 2019.
Chen, S.-P., Lu, C.-H., McQueen, J., and Lee, P.: Application of satellite
observations in conjunction with aerosol reanalysis to characterize
long-range transport of African and Asian dust on air quality in the
contiguous U.S., Atmos. Environ., 187, 174–195,
https://doi.org/10.1016/j.atmosenv.2018.05.038, 2018.
Chiapello, I., Moulin, C., and Prospero, J. M.: Understanding the long-term
variability of African dust transport across the Atlantic as recorded in
both Barbados surface concentrations and large-scale Total Ozone Mapping
Spectrometer (TOMS) optical thickness, J. Geophys. Res.-Atmos., 110, D18S10,
https://doi.org/10.1029/2004JD005132, 2005.
Cook, B. I., Ault, T. R., and Smerdon, J. E.: Unprecedented 21st century
drought risk in the American Southwest and Central Plains, Sci. Adv., 1, e1400082,
https://doi.org/10.1126/sciadv.1400082, 2015.
Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W.: North American
drought: Reconstructions, causes, and consequences, Earth-Sci. Rev., 81,
93–134, https://doi.org/10.1016/j.earscirev.2006.12.002, 2007.
Cook, K. H.: Generation of the African Easterly Jet and Its Role in
Determining West African Precipitation, J. Clim., 12, 1165–1184,
https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2, 1999.
Crooks, J. L., Cascio, W. E., Percy, M. S., Reyes, J., Neas, L. M., and
Hilborn, E. D.: The Association between Dust Storms and Daily Non-Accidental
Mortality in the United States, 1993–2005, Environ. Health Perspect., 124,
1735–1743, https://doi.org/10.1289/EHP216, 2016.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S.,
van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C.,
Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J.,
Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E.,
Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System
Model Version 2 (CESM2), J. Adv. Model. Earth Syst., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020.
Doherty, O. M., Riemer, N., and Hameed, S.: Saharan mineral dust transport
into the Caribbean: Observed atmospheric controls and trends, J. Geophys.
Res.-Atmos., 113, D07211, https://doi.org/10.1029/2007JD009171, 2008.
Duniway, M. C., Pfennigwerth, A. A., Fick, S. E., Nauman, T. W., Belnap, J.,
and Barger, N. N.: Wind erosion and dust from US drylands: a review of
causes, consequences, and solutions in a changing world, Ecosphere, 10,
e02650, https://doi.org/10.1002/ecs2.2650, 2019.
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M.,
John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F.,
Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K.
A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S.
M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C.,
Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J.,
Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D.
M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg,
A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth System Model
Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation
Characteristics, J. Adv. Model. Earth Syst., 12, e2019MS002015,
https://doi.org/10.1029/2019MS002015, 2020.
Evan, A. T., Flamant, C., Gaetani, M., and Guichard, F.: The past, present
and future of African dust, Nature, 531, 493–495,
https://doi.org/10.1038/nature17149, 2016.
Flamant, C., Chaboureau, J.-P., Parker, D. J., Taylor, C. M., Cammas, J.-P.,
Bock, O., Timouk, F., and Pelon, J.: Airborne observations of the impact of
a convective system on the planetary boundary layer thermodynamics and
aerosol distribution in the inter-tropical discontinuity region of the West
African Monsoon, Q. J. Roy. Meteorol. Soc., 133, 1175–1189,
https://doi.org/10.1002/qj.97, 2007.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and
Hurrell, J. W.: The Summer North Atlantic Oscillation: Past, Present, and
Future, J. Clim., 22, 1082–1103, https://doi.org/10.1175/2008JCLI2459.1,
2009.
Francis, D., Fonseca, R., Nelli, N., Cuesta, J., Weston, M., Evan, A., and
Temimi, M.: The Atmospheric Drivers of the Major Saharan Dust Storm in June
2020, Geophys. Res. Lett., 47, e2020GL090102,
https://doi.org/10.1029/2020GL090102, 2020.
Gonzalez, M. E., Garfield, J. G., Corral, A. F., Edwards, E.-L., Zeider, K.,
and Sorooshian, A.: Extreme Aerosol Events at Mesa Verde, Colorado:
Implications for Air Quality Management, Atmosphere, 12, 1140,
https://doi.org/10.3390/atmos12091140, 2021.
Gorham, K. A., Raffuse, S. M., Hyslop, N. P., and White, W. H.: Comparison
of recent speciated PM2.5 data from collocated CSN and IMPROVE measurements,
Atmos. Environ., 244, 117977,
https://doi.org/10.1016/j.atmosenv.2020.117977, 2021.
Hand, J. L., Schichtel, B. A., Pitchford, M., Malm, W. C., and Frank, N. H.:
Seasonal composition of remote and urban fine particulate matter in the
United States, J. Geophys. Res.-Atmos., 117, D05209,
https://doi.org/10.1029/2011JD017122, 2012.
Hand, J. L., Gill, T. E., and Schichtel, B. A.: Spatial and seasonal
variability in fine mineral dust and coarse aerosol mass at remote sites
across the United States, J. Geophys. Res.-Atmos., 122, 3080–3097,
https://doi.org/10.1002/2016JD026290, 2017.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional
Temperatures and Precipitation, Science, 269, 676–679, 1995.
Jones, C., Mahowald, N., and Luo, C.: The Role of Easterly Waves on African
Desert Dust Transport, J. Clim., 16, 3617–3628,
https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2, 2003.
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
oscillation using early instrumental pressure observations from Gibraltar
and south-west Iceland, Int. J. Climatol., 17, 1433–1450,
https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P, 1997.
Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F., and Querol,
X.: Health effects from Sahara dust episodes in Europe: Literature review
and research gaps, Environ. Int., 47, 107–114,
https://doi.org/10.1016/j.envint.2012.06.012, 2012.
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R.,
Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto,
V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del
Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis,
A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews,
E. E., McDermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V.,
Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D.,
Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K.,
Tselioudis, G., Weng, E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations
and Climatology, J. Adv. Model. Earth Syst., 12, e2019MS002025,
https://doi.org/10.1029/2019MS002025, 2020.
Kelly, P. and Mapes, B.: Zonal mean wind, the Indian monsoon, and July
drying in the western Atlantic subtropics, J. Geophys. Res.-Atmos.,
116, D00Q07, https://doi.org/10.1029/2010JD015405, 2011.
Kim, D., Chin, M., Cruz, C. A., Tong, D., and Yu, H.: Spring Dust in Western
North America and Its Interannual Variability – Understanding the Role of
Local and Transported Dust, J. Geophys. Res.-Atmos., 126,
e2021JD035383, https://doi.org/10.1029/2021JD035383, 2021.
Knippertz, P. and Todd, M. C.: The central west Saharan dust hot spot and
its relation to African easterly waves and extratropical disturbances, J.
Geophys. Res.-Atmos., 115, D12117, https://doi.org/10.1029/2009JD012819, 2010.
Li, W.: Observed and simulated dust data, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/XCLAOT, 2022.
Li, W., Li, L., Fu, R., Deng, Y., and Wang, H.: Changes to the North
Atlantic Subtropical High and Its Role in the Intensification of Summer
Rainfall Variability in the Southeastern United States, J. Clim., 24,
1499–1506, https://doi.org/10.1175/2010JCLI3829.1, 2011.
Li, W., Wang, Y., Flynn, J., Griffin, R. J., Guo, F., and Schnell, J. L.:
Spatial Variation of Surface O3 Responses to Drought Over the Contiguous
United States During Summertime: Role of Precursor Emissions and Ozone
Chemistry, J. Geophys. Res.-Atmos., 127, e2021JD035607,
https://doi.org/10.1029/2021JD035607, 2022.
Linderholm, H. W., Folland, C. K., and Walther, A.: A multicentury
perspective on the summer North Atlantic Oscillation (SNAO) and drought in
the eastern Atlantic Region, J. Quat. Sci., 24, 415–425,
https://doi.org/10.1002/jqs.1261, 2009.
Liu, C., Liao, X., Qiu, J., Yang, Y., Feng, X., Allan, R. P., Cao, N., Long,
J., and Xu, J.: Observed variability of intertropical convergence zone over
1998–2018, Environ. Res. Lett., 15, 104011,
https://doi.org/10.1088/1748-9326/aba033, 2020.
Middleton, N. J.: Desert dust hazards: A global review, Aeolian Res., 24,
53–63, https://doi.org/10.1016/j.aeolia.2016.12.001, 2017.
Moulin, C. and Chiapello, I.: Evidence of the control of summer atmospheric
transport of African dust over the Atlantic by Sahel sources from TOMS
satellites (1979–2000), Geophys. Res. Lett., 31, L02107,
https://doi.org/10.1029/2003GL018931, 2004.
NASA: CALIPSO Lidar Level 3 Tropospheric Aerosol Profiles, Cloud Free Data, Standard V4-20, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L3_Tropospheric_APro_CloudFree-Standard-V4-20, 2019.
Payra, S., Gupta, P., Bhatla, R., El Amraoui, L., and Verma, S.: Temporal
and spatial variability in aerosol optical depth (550 nm) over four major
cities of India using data from MODIS onboard the Terra and Aqua satellites,
Arab. J. Geosci., 14, 1256, https://doi.org/10.1007/s12517-021-07455-y,
2021.
Perry, K. D., Cahill, T. A., Eldred, R. A., Dutcher, D. D., and Gill, T. E.:
Long-range transport of North African dust to the eastern United States, J.
Geophys. Res.-Atmos., 102, 11225–11238,
https://doi.org/10.1029/97JD00260, 1997.
Piechota, T. C. and Dracup, J. A.: Drought and Regional Hydrologic Variation
in the United States: Associations with the El Niño-Southern
Oscillation, Water Resour. Res., 32, 1359–1373,
https://doi.org/10.1029/96WR00353, 1996.
Prospero, J. M. and Mayol-Bracero, O. L.: Understanding the Transport and
Impact of African Dust on the Caribbean Basin, Bull. Am. Meteorol. Soc., 94,
1329–1337, https://doi.org/10.1175/BAMS-D-12-00142.1, 2013.
Prospero, J. M. and Nees, R. T.: Impact of the North African drought and El
Niño on mineral dust in the Barbados trade winds, Nature, 320, 735–738,
https://doi.org/10.1038/320735a0, 1986.
Prospero, J. M., Landing, W. M., and Schulz, M.: African dust deposition to
Florida: Temporal and spatial variability and comparisons to models, J.
Geophys. Res.-Atmos., 115, D13304, https://doi.org/10.1029/2009JD012773, 2010.
Pu, B. and Ginoux, P.: Climatic factors contributing to long-term variations in surface fine dust concentration in the United States, Atmos. Chem. Phys., 18, 4201–4215, https://doi.org/10.5194/acp-18-4201-2018, 2018.
Pu, B. and Jin, Q.: A Record-Breaking Trans-Atlantic African Dust Plume
Associated with Atmospheric Circulation Extremes in June 2020, Bull. Am.
Meteorol. Soc., 102, E1340–E1356, https://doi.org/10.1175/BAMS-D-21-0014.1,
2021.
Pu, B., Fu, R., Dickinson, R. E., and Fernando, D. N.: Why do summer
droughts in the Southern Great Plains occur in some La Niña years but
not others?, J. Geophys. Res. Atmos., 121, 1120–1137,
https://doi.org/10.1002/2015JD023508, 2016.
Ridley, D. A., Heald, C. L., and Ford, B.: North African dust export and
deposition: A satellite and model perspective, J. Geophys. Res.-Atmos.,
117, D02202, https://doi.org/10.1029/2011JD016794, 2012.
Sassen, K.: Indirect climate forcing over the western US from Asian dust
storms, Geophys. Res. Lett., 29, 103-1–103–4,
https://doi.org/10.1029/2001GL014051, 2002.
Schnell, J. L., Holmes, C. D., Jangam, A., and Prather, M. J.: Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721–7739, https://doi.org/10.5194/acp-14-7721-2014, 2014.
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A.,
Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M.,
Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E.,
Geoffroy, O., Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A.,
Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L.,
Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé,
C., and Madec, G.: Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role
of Earth System Processes in Present-Day and Future Climate, J. Adv. Model.
Earth Syst., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Senior, C. A., Jones, C. G., Wood, R. A., Sellar, A., Belcher, S.,
Klein-Tank, A., Sutton, R., Walton, J., Lawrence, B., Andrews, T., and
Mulcahy, J. P.: U.K. Community Earth System Modeling for CMIP6, J. Adv.
Model. Earth Syst., 12, e2019MS002004, https://doi.org/10.1029/2019MS002004,
2020.
Sheen, K. L., Smith, D. M., Dunstone, N. J., Eade, R., Rowell, D. P., and
Vellinga, M.: Skilful prediction of Sahel summer rainfall on inter-annual
and multi-year timescales, Nat. Commun., 8, 14966,
https://doi.org/10.1038/ncomms14966, 2017.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J.,
Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and
Stephens, S.: The drought monitor, Bull. Am. Meteorol. Soc., 83, 1181–1190,
https://doi.org/10.1175/1520-0477-83.8.1181, 2002.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Tegen, I., Lacis, A. A., and Fung, I.: The influence on climate forcing of
mineral aerosols from disturbed soils, Nature, 380, 419–422,
https://doi.org/10.1038/380419a0, 1996.
Tong, D. Q., Wang, J. X. L., Gill, T. E., Lei, H., and Wang, B.: Intensified
dust storm activity and Valley fever infection in the southwestern United
States, Geophys. Res. Lett., 44, 4304–4312,
https://doi.org/10.1002/2017GL073524, 2017.
VanCuren, R. A. and Cahill, T. A.: Asian aerosols in North America:
Frequency and concentration of fine dust, J. Geophys. Res.-Atmos., 107,
AAC 19-1–AAC 19-16, https://doi.org/10.1029/2002JD002204, 2002.
van Noije, T., Bergman, T., Le Sager, P., O'Donnell, D., Makkonen, R., Gonçalves-Ageitos, M., Döscher, R., Fladrich, U., von Hardenberg, J., Keskinen, J.-P., Korhonen, H., Laakso, A., Myriokefalitakis, S., Ollinaho, P., Pérez García-Pando, C., Reerink, T., Schrödner, R., Wyser, K., and Yang, S.: EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6, Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, 2021.
Visbeck, M. H., Hurrell, J. W., Polvani, L., and Cullen, H. M.: The North
Atlantic Oscillation: Past, present, and future, P. Natl. Acad. Sci., 98,
12876–12877, https://doi.org/10.1073/pnas.231391598, 2001.
Wang, C.: Variability of the Caribbean Low-Level Jet and its relations to
climate, Clim. Dyn., 29, 411–422,
https://doi.org/10.1007/s00382-007-0243-z, 2007.
Wang, Y., Xie, Y., Dong, W., Ming, Y., Wang, J., and Shen, L.: Adverse effects of increasing drought on air quality via natural processes, Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, 2017.
Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu, X., Tan, H., Zhang, L., Wang, J., and Hu, A.: Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations, Geosci. Model Dev., 13, 977–1005, https://doi.org/10.5194/gmd-13-977-2020, 2020.
Yu, H., Tan, Q., Zhou, L., Zhou, Y., Bian, H., Chin, M., Ryder, C. L., Levy, R. C., Pradhan, Y., Shi, Y., Song, Q., Zhang, Z., Colarco, P. R., Kim, D., Remer, L. A., Yuan, T., Mayol-Bracero, O., and Holben, B. N.: Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, 2021.
Yuan, T., Yu, H., Chin, M., and Remer, L.: Future Decline of African Dust:
Insights from the Recent Past and Paleo-records, ArXiv [preprint], arXiv:1804.07188, 2018.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0,
MRI-ESM2.0: Description and Basic Evaluation of the Physical Component, J.
Meteorol. Soc. Jpn. Ser II, 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019.
Zuidema, P., Alvarez, C., Kramer, S. J., Custals, L., Izaguirre, M., Sealy,
P., Prospero, J. M., and Blades, E.: Is Summer African Dust Arriving Earlier
to Barbados? The Updated Long-Term In Situ Dust Mass Concentration Time
Series from Ragged Point, Barbados, and Miami, Florida, Bull. Am. Meteorol.
Soc., 100, 1981–1986, https://doi.org/10.1175/BAMS-D-18-0083.1, 2019.
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In...
Altmetrics
Final-revised paper
Preprint