Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7331-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7331-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impacts of marine-emitted halogens on OH radicals in East Asia during summer
Shidong Fan
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
Center for the Oceanic and Atmospheric Science at SUSTech (COAST),
Southern University of Science and Technology, Shenzhen 518055, China
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
Center for the Oceanic and Atmospheric Science at SUSTech (COAST),
Southern University of Science and Technology, Shenzhen 518055, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
Guangzhou 511458, China
Related authors
No articles found.
Yike Wang, Yueming Cheng, Boru Mai, Tie Dai, Xuejiao Deng, Tao Deng, Xiaoli Zhao, Yiwei Diao, Feng Xia, Miao Liang, Ying Li, and Yixiao Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-6272, https://doi.org/10.5194/egusphere-2025-6272, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We developed a carbon assimilation system to construct a near-real-time 4-km anthropogenic inventory in the Pearl River Delta. We analyze spatiotemporal emission distributions, compare the inversion inventories against statistical emissions, and elucidate their relationship with ambient CO2 concentrations. The results of this study provide a robust scientific basis for advancing the dynamic updating and quantitative evaluation of anthropogenic emissions across meso- to microscale domains.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Ying Li, Xiangjun Zhao, Xuejiao Deng, and Jinhui Gao
Atmos. Chem. Phys., 22, 3861–3873, https://doi.org/10.5194/acp-22-3861-2022, https://doi.org/10.5194/acp-22-3861-2022, 2022
Short summary
Short summary
This study finds a new phenomenon of weak wind deepening (WWD) associated with the peripheral circulation of typhoon and gives the influence mechanism of WWD on its contribution to daily variation during sustained ozone episodes. The WWD provides the premise for pollution accumulation in the whole PBL and continued enhancement of ground-level ozone via vertical mixing processes. These findings could benefit the daily daytime ozone forecast in the PRD region and other areas.
Cited articles
ACRI-ST: GlobColour Project, https://globcolour.info/, last access: 5 May 2022.
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C.,
Hogrefe, C., Hutzell, W. T., Kang, D. W., Mathur, R., Murphy, B. N.,
Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T.,
Ran, L. M., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero,
T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model
versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model
Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.
Barthel, S., Tegen, I., and Wolke, R.: Do new sea spray aerosol source
functions improve the results of a regional aerosol model?, Atmos.
Environ., 198, 265–278, https://doi.org/10.1016/j.atmosenv.2018.10.016, 2019.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W.,
Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels
influenced by sea surface emissions of inorganic iodine, Nat. Geosci.,
6, 108–111, https://doi.org/10.1038/ngeo1687, 2013.
Carpenter, L. J., Chance, R. J., Sherwen, T., Adams, T. J., Ball, S. M.,
Evans, M. J., Hepach, H., Hollis, L. D. J., Hughes, C., Jickells, T. D.,
Mahajan, A., Stevens, D. P., Tinel, L., and Wadley, M. R.: Marine iodine
emissions in a changing world, Proc. R. Soc.
A, 477, 20200824, https://doi.org/10.1098/rspa.2020.0824, 2021.
Chance, R., Baker, A. R., Carpenter, L., and Jickells, T. D.: The
distribution of iodide at the sea surface, Environ. Sci.-Proc. Imp., 16, 1841–1859, https://doi.org/10.1039/c4em00139g, 2014.
Chang, W. N., Heikes, B. G., and Lee, M. H.: Ozone deposition to the sea
surface: chemical enhancement and wind speed dependence, Atmos.
Environ., 38, 1053–1059, https://doi.org/10.1016/j.atmosenv.2003.10.050, 2004.
Chen, Q., Schmidt, J. A., Shah, V., Jaegle, L., Sherwen, T., and Alexander,
B.: Sulfate production by reactive bromine: Implications for the global
sulfur and reactive bromine budgets, Geophys. Res. Lett., 44,
7069–7078, https://doi.org/10.1002/2017gl073812, 2017.
China National Environmental Monitoring Center: China National Urban air quality real-time publishing platform, https://air.cnemc.cn:18007/, last access: 5 May 2022.
Dai, J. N., Liu, Y. M., Wang, P., Fu, X., Xia, M., and Wang, T.: The impact
of sea-salt chloride on ozone through heterogeneous reaction with
N2O5 in a coastal region of south China, Atmos. Environ.,
236, 117604, https://doi.org/10.1016/j.atmosenv.2020.117604, 2020.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manag. Assoc., 67,
582–598, https://doi.org/10.1080/10962247.2016.1265027, 2017.
Engel, A., Rigby, M., Burkholder, J., Fernandez, R., Froidevaux, L., Hall,
B., Hossaini, R., Saito, T., Vollmer, M., and Yao, B. J. S. A. O. O. D.:
Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to
the Montreal Protocol, in: Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, World Meteorological Organization, Geneva, Switzerland,
1–87, ISBN 978-1-7329317-1-8, 2019.
Fairall, C. W., Helmig, D., Ganzeveld, L., and Hare, J.: Water-side
turbulence enhancement of ozone deposition to the ocean, Atmos. Chem. Phys., 7, 443–451, https://doi.org/10.5194/acp-7-443-2007, 2007.
Fan, S., Li, Y., and Liu, C.: Are Environmentally Friendly Fireworks Really
”Green” for Air Quality? A Study from the 2019 National Day Fireworks
Display in Shenzhen, Environ. Sci. Technol., 55, 3520–3529, https://doi.org/10.1021/acs.est.0c03521, 2021.
Fittschen, C., Al Ajami, M., Batut, S., Ferracci, V., Archer-Nicholls, S.,
Archibald, A. T., and Schoemaecker, C.: ROOOH: a missing piece of the puzzle
for OH measurements in low-NO environments?, Atmos. Chem.
Phys., 19, 349–362, https://doi.org/10.5194/acp-19-349-2019, 2019.
Fuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H. P.,
Haseler, R., Holland, F., Kaminski, M., Li, X., Lu, K., Nehr, S., Tillmann,
R., Wegener, R., and Wahner, A.: Experimental evidence for efficient
hydroxyl radical regeneration in isoprene oxidation, Nat. Geosci., 6,
1023–1026, https://doi.org/10.1038/ngeo1964, 2013.
Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray aerosol
emissions in the Community Multiscale Air Quality (CMAQ) model version
5.0.2, Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015.
Gao, J., Li, Y., Zhu, B., Hu, B., Wang, L., and Bao, F.: What have we missed
when studying the impact of aerosols on surface ozone via changing
photolysis rates?, Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020, 2020.
Gao, J., Li, Y., Xie, Z., Hu, B., Wang, L., Bao, F., and Fan, S.: The impact
of the aerosol reduction on the worsening ozone pollution over the
Beijing-Tianjin-Hebei region via influencing photolysis rates, Sci.
Total Environ., 821, 153197, https://doi.org/10.1016/j.scitotenv.2022.153197, 2022.
Gao, M., Gao, J. H., Zhu, B., Kumar, R., Lu, X., Song, S. J., Zhang, Y. Z.,
Jia, B. X., Wang, P., Beig, G. R., Hu, J. L., Ying, Q., Zhang, H. L.,
Sherman, P., and McElroy, M. B.: Ozone pollution over China and India:
seasonality and sources, Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, 2020.
Gong, S. L.: A parameterization of sea-salt aerosol source function for sub-
and super-micron particles, Global Biogeochem. Cy., 17, 1097, https://doi.org/10.1029/2003gb002079, 2003.
Großmann, K., Friess, U., Peters, E., Wittrock, F., Lampel, J., Yilmaz,
S., Tschritter, J., Sommariva, R., von Glasow, R., Quack, B., Kruger, K.,
Pfeilsticker, K., and Platt, U.: Iodine monoxide in the Western Pacific
marine boundary layer, Atmos. Chem. Phys., 13, 3363–3378, https://doi.org/10.5194/acp-13-3363-2013, 2013.
Grythe, H., Strom, J., Krejci, R., Quinn, P., and Stohl, A.: A review of
sea-spray aerosol source functions using a large global set of sea salt
aerosol concentration measurements, Atmos. Chem. Phys., 14,
1277–1297, https://doi.org/10.5194/acp-14-1277-2014, 2014.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M.,
Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal in
the Troposphere, Science, 324, 1702–1704, https://doi.org/10.1126/science.1164566, 2009.
Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., Sulprizio,
M. P., and Yantosca, R. M.: Global budget of tropospheric ozone: Evaluating
recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde
observations, Atmos. Environ., 167, 323–334, https://doi.org/10.1016/j.atmosenv.2017.08.036, 2017.
Huang, Y., Lu, X., Fung, J. C. H., Sarwar, G., Li, Z., Li, Q., Saiz-Lopez,
A., and Lau, A. K. H.: Effect of bromine and iodine chemistry on
tropospheric ozone over Asia-Pacific using the CMAQ model, Chemosphere, 262,
127595–127595, https://doi.org/10.1016/j.chemosphere.2020.127595, 2020.
Inamdar, S., Tinel, L., Chance, R., Carpenter, L. J., Sabu, P., Chacko, R.,
Tripathy, S. C., Kerkar, A. U., Sinha, A. K., Bhaskar, P. V., Sarkar, A.,
Roy, R., Sherwen, T., Cuevas, C., Saiz-Lopez, A., Ram, K., and Mahajan, A.
S.: Estimation of reactive inorganic iodine fluxes in the Indian and
Southern Ocean marine boundary layer, Atmos. Chem. Phys., 20,
12093–12114, https://doi.org/10.5194/acp-20-12093-2020, 2020.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T.:
Global distribution of sea salt aerosols: new constraints from in situ and
remote sensing observations, Atmos. Chem. Phys., 11,
3137–3157, https://doi.org/10.5194/acp-11-3137-2011, 2011.
Kanaya, Y., Yokouchi, Y., Matsumoto, J., Nakamura, K., Kato, S., Tanimoto,
H., Furutani, H., Toyota, K., and Akimoto, H.: Implications of iodine
chemistry for daytime HO2 levels at Rishiri Island, Geophys. Res.
Lett., 29, 1212, https://doi.org/10.1029/2001gl014061, 2002.
Kelly, J. T., Bhave, P. V., Nolte, C. G., Shankar, U., and Foley, K. M.:
Simulating emission and chemical evolution of coarse sea-salt particles in
the Community Multiscale Air Quality (CMAQ) model, Geosci. Model Dev., 3, 257–273, https://doi.org/10.5194/gmd-3-257-2010, 2010.
Koenig, T. K., Volkamer, R., Baidar, S., Dix, B., Wang, S. Y., Anderson, D.
C., Salawitch, R. J., Wales, P. A., Cuevas, C. A., Fernandez, R. P.,
Saiz-Lopez, A., Evans, M. J., Sherwen, T., Jacob, D. J., Schmidt, J.,
Kinnison, D., Lamarque, J. F., Apel, E. C., Bresch, J. C., Campos, T.,
Flocke, F. M., Hall, S. R., Honomichl, S. B., Hornbrook, R., Jensen, J. B.,
Lueb, R., Montzka, D. D., Pan, L. L., Reeves, J. M., Schauffler, S. M.,
Ullmann, K., Weinheimer, A. J., Atlas, E. L., Donets, V., Navarro, M. A.,
Riemer, D., Blake, N. J., Chen, D. X., Huey, L. G., Tanner, D. J., Hanisco,
T. F., and Wolfe, G. M.: BrO and inferred Br-y profiles over the western
Pacific: relevance of inorganic bromine sources and a Br-y minimum in the
aged tropical tropopause layer, Atmos. Chem. Phys., 17,
15245–15270, https://doi.org/10.5194/acp-17-15245-2017, 2017.
Le Breton, M., Bannan, T. J., Shallcross, D. E., Khan, M. A., Evans, M. J.,
Lee, J., Lidster, R., Andrews, S., Carpenter, L. J., Schmidt, J., Jacob, D.,
Harris, N. R. P., Bauguitte, S., Gallagher, M., Bacak, A., Leather, K. E.,
and Percival, C. J.: Enhanced ozone loss by active inorganic bromine
chemistry in the tropical troposphere, Atmos. Environ., 155, 21–28, https://doi.org/10.1016/j.atmosenv.2017.02.003, 2017.
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H.,
Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D.,
and Williams, J.: Atmospheric oxidation capacity sustained by a tropical
forest, Nature, 452, 737–740, https://doi.org/10.1038/nature06870, 2008.
Lennartz, S. T., Krysztofiak, G., Marandino, C. A., Sinnhuber, B. M.,
Tegtmeier, S., Ziska, F., Hossaini, R., Kruger, K., Montzka, S. A., Atlas,
E., Oram, D. E., Keber, T., Bonisch, H., and Quack, B.: Modelling marine
emissions and atmospheric distributions of halocarbons and dimethyl sulfide:
the influence of prescribed water concentration vs. prescribed emissions,
Atmos. Chem. Phys., 15, 11753–11772, https://doi.org/10.5194/acp-15-11753-2015, 2015.
Li, Q. Y., Borge, R., Sarwar, G., de la Paz, D., Gantt, B., Domingo, J.,
Cuevas, C. A., and Saiz-Lopez, A.: Impact of halogen chemistry on summertime
air quality in coastal and continental Europe: application of the CMAQ model
and implications for regulation, Atmos. Chem. Phys., 19,
15321–15337, https://doi.org/10.5194/acp-19-15321-2019, 2019.
Li, Q. Y., Badia, A., Wang, T., Sarwar, G., Fu, X., Zhang, L., Zhang, Q.,
Fung, J., Cuevas, C. A., Wang, S. S., Zhou, B., and Saiz-Lopez, A.:
Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in
China, J. Geophys. Res.-Atmos., 125, e2019JD032058, https://doi.org/10.1029/2019jd032058, 2020.
Li, Y., Zhao, X., Deng, X., and Gao, J.: The impact of peripheral
circulation characteristics of typhoon on sustained ozone episodes over the
Pearl River Delta region, China, Atmos. Chem. Phys., 22,
3861–3873, https://doi.org/10.5194/acp-22-3861-2022, 2022.
Liu, S., Liu, C.-C., Froyd, K. D., Schill, G. P., Murphy, D. M., Bui, T. P.,
Dean-Day, J. M., Weinzierl, B., Dollner, M., Diskin, G. S., Chen, G., and
Gao, R.-S.: Sea spray aerosol concentration modulated by sea surface
temperature, P. Natl. Acad. Sci. USA, 118,
e2020583118, https://doi.org/10.1073/pnas.2020583118, 2021.
Liu, Y. L., Nie, W., Xu, Z., Wang, T. Y., Wang, R. X., Li, Y. Y., Wang, L.,
Chi, X. G., and Ding, A. J.: Semi-quantitative understanding of source
contribution to nitrous acid (HONO) based on 1 year of continuous
observation at the SORPES station in eastern China, Atmos. Chem. Phys., 19, 13289–13308, https://doi.org/10.5194/acp-19-13289-2019, 2019.
Loades, D. C., Yang, M. X., Belli, T. G., Vaughan, A. R., Pound, R. J.,
Metzger, S., Lee, J. D., and Carpenter, L. J.: Ozone deposition to a coastal
sea: comparison of eddy covariance observations with reactive air-sea
exchange models, Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, 2020.
Lu, K. D., Guo, S., Tan, Z. F., Wang, H. C., Shang, D. J., Liu, Y. H., Li,
X., Wu, Z. J., Hu, M., and Zhang, Y. H.: Exploring atmospheric free-radical
chemistry in China: the self-cleansing capacity and the formation of
secondary air pollution, Nat. Sci. Rev., 6, 579–594, https://doi.org/10.1093/nsr/nwy073, 2019a.
Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J.,
Fu, T. M., and Zhang, Q.: Exploring 2016–2017 surface ozone pollution over
China: source contributions and meteorological influences, Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, 2019b.
Luhar, A. K., Galbally, I. E., Woodhouse, M. T., and Thatcher, M.: An
improved parameterisation of ozone dry deposition to the ocean and its
impact in a global climate-chemistry model, Atmos. Chem. Phys., 17, 3749–3767, https://doi.org/10.5194/acp-17-3749-2017, 2017.
Luhar, A. K., Woodhouse, M. T., and Galbally, I. E.: A revised global ozone
dry deposition estimate based on a new two-layer parameterisation for
air-sea exchange and the multi-year MACC composition reanalysis, Atmos. Chem. Phys., 18, 4329–4348, https://doi.org/10.5194/acp-18-4329-2018, 2018.
MacDonald, S. M., Martin, J. C. G., Chance, R., Warriner, S., Saiz-Lopez,
A., Carpenter, L. J., and Plane, J. M. C.: A laboratory characterisation of
inorganic iodine emissions from the sea surface: dependence on oceanic
variables and parameterisation for global modelling, Atmos. Chem. Phys., 14, 5841–5852, https://doi.org/10.5194/acp-14-5841-2014, 2014.
Mahajan, A. S., Li, Q., Inamdar, S., Ram, K., Badia, A., and Saiz-Lopez, A.:
Modelling the impacts of iodine chemistry on the northern Indian Ocean
marine boundary layer, Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, 2021.
Monahan, E., Spiel, D., and Davidson, K.: A model of marine aerosol
generation via whitecaps and wave disruption, in: Oceanic whitecaps, edited by: Monahan, E. and Niocaill, G. M.,
Springer, 167–174, https://doi.org/10.1007/978-94-009-4668-2, 1986.
Murphy, B. N., Nolte, C. G., Sidi, F., Bash, J. O., Appel, K. W., Jang, C.,
Kang, D. W., Kelly, J., Mathur, R., Napelenok, S., Pouliot, G., and Pye, H.
O. T.: The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID)
module in the Community Multiscale Air Quality (CMAQ) modeling system
version 5.3.2, Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021, 2021.
NCAR (National Center for Atmospheric Research): Research Data Archive, https://rda.ucar.edu/, last access: 5 May 2022.
Ordóñez, C., Lamarque, J. F., Tilmes, S., Kinnison, D. E., Atlas, E.
L., Blake, D. R., Santos, G. S., Brasseur, G., and Saiz-Lopez, A.: Bromine
and iodine chemistry in a global chemistry-climate model: description and
evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423–1447, https://doi.org/10.5194/acp-12-1423-2012, 2012.
Ovadnevaite, J., Manders, A., de Leeuw, G., Ceburnis, D., Monahan, C.,
Partanen, A. I., Korhonen, H., and O'Dowd, C. D.: A sea spray aerosol flux
parameterization encapsulating wave state, Atmos. Chem. Phys., 14, 1837–1852, https://doi.org/10.5194/acp-14-1837-2014, 2014.
Pound, R. J., Sherwen, T., Helmig, D., Carpenter, L. J., and Evans, M. J.:
Influences of oceanic ozone deposition on tropospheric photochemistry,
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020,
2020.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V.
E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C.,
Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and
Plane, J. M. C.: Extensive halogen-mediated ozone destruction over the
tropical Atlantic Ocean, Nature, 453, 1232–1235, https://doi.org/10.1038/nature07035, 2008.
Rohrer, F., Lu, K. D., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C. C.,
Fuchs, H., Haseler, R., Holland, F., Hu, M., Kita, K., Kondo, Y., Li, X.,
Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Zhu, T., Zhang, Y. H., and
Wahner, A.: Maximum efficiency in the hydroxyl-radical-based self-cleansing
of the troposphere, Nat. Geosci., 7, 559–563, https://doi.org/10.1038/ngeo2199, 2014.
Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in the
troposphere, Chem. Soc. Rev., 41, 6448–6472, https://doi.org/10.1039/c2cs35208g,
2012.
Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of
heterogeneous nitryl chloride production on air quality across the United
States, Atmos. Chem. Phys., 12, 6455–6473, https://doi.org/10.5194/acp-12-6455-2012, 2012.
Sarwar, G., Simon, H., Xing, J., and Mathur, R.: Importance of tropospheric
ClNO2 chemistry across the Northern Hemisphere, Geophys. Res.
Lett., 41, 4050–4058, https://doi.org/10.1002/2014gl059962, 2014.
Sarwar, G., Gantt, B., Schwede, D., Foley, K., Mathur, R., and Saiz-Lopez,
A.: Impact of Enhanced Ozone Deposition and Halogen Chemistry on
Tropospheric Ozone over the Northern Hemisphere, Environ. Sci. Technol., 49, 9203–9211, https://doi.org/10.1021/acs.est.5b01657, 2015.
Sarwar, G., Gantt, B., Foley, K., Fahey, K., Spero, T. L., Kang, D. W.,
Mathur, R., Foroutan, H., Xing, J., Sherwen, T., and Saiz-Lopez, A.:
Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and
background ozone: CMAQ simulations over the Northern Hemisphere, Atmos. Environ., 213, 395–404, https://doi.org/10.1016/j.atmosenv.2019.06.020, 2019.
Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans,
M. J., Liang, Q., Suleiman, R. M., Oram, D. E., Le Breton, M., Percival, C.
J., Wang, S., Dix, B., and Volkamer, R.: Modeling the observed tropospheric
BrO background: Importance of multiphase chemistry and implications for
ozone, OH, and mercury, J. Geophys. Res.- Atmos., 121,
11819–11835, https://doi.org/10.1002/2015jd024229, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, 3rd Edn., John Wiley & Sons, ISBN 9781119221166, 2016.
Sekiya, T., Kanaya, Y., Sudo, K., Taketani, F., Iwamoto, Y., Aita, M. N.,
Yamamoto, A., and Kawamoto, K.: Global Bromine- and Iodine-Mediated
Tropospheric Ozone Loss Estimated Using the CHASER Chemical Transport Model,
Sola, 16, 220–227, https://doi.org/10.2151/sola.2020-037, 2020.
Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Grossmann, K.,
Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega,
I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and
Ordonez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants
and composition in GEOS-Chem, Atmos. Chem. Phys., 16,
12239–12271, https://doi.org/10.5194/acp-16-12239-2016, 2016.
Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., and
Carpenter, L. J.: A machine-learning-based global sea-surface iodide
distribution, Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, 2019.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von
Glasow, R.: Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO2
radicals: field measurements and model comparisons, Chem. Soc.
Rev., 41, 6348–6404, https://doi.org/10.1039/c2cs35140d, 2012.
Stone, D., Sherwen, T., Evans, M. J., Vaughan, S., Ingham, T., Whalley, L.
K., Edwards, P. M., Read, K. A., Lee, J. D., Moller, S. J., Carpenter, L.
J., Lewis, A. C., and Heard, D. E.: Impacts of bromine and iodine chemistry
on tropospheric OH and HO2: comparing observations with box and global
model perspectives, Atmos. Chem. Phys., 18, 3541–3561, https://doi.org/10.5194/acp-18-3541-2018, 2018.
Tan, Z. F., Lu, K. D., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F.,
Liu, Y. H., Rohrer, F., Shao, M., Sun, K., Wu, Y. S., Zeng, L. M., Zhang, Y.
S., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y. H.: Experimental
budgets of OH, HO2, and RO2 radicals and implications for ozone formation in
the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19,
7129–7150, https://doi.org/10.5194/acp-19-7129-2019, 2019.
Tham, Y. J., He, X.-C., Li, Q., Cuevas, C. A., Shen, J., Kalliokoski, J.,
Yan, C., Iyer, S., Lehmusjärvi, T., Jang, S., Thakur, R. C., Beck, L.,
Kemppainen, D., Olin, M., Sarnela, N., Mikkilä, J., Hakala, J.,
Marbouti, M., Yao, L., Li, H., Huang, W., Wang, Y., Wimmer, D., Zha, Q.,
Virkanen, J., Spain, T. G., O'Doherty, S., Jokinen, T., Bianchi, F.,
Petäjä, T., Worsnop, D. R., Mauldin, R. L., Ovadnevaite, J.,
Ceburnis, D., Maier, N. M., Kulmala, M., O'Dowd, C., Dal Maso, M.,
Saiz-Lopez, A., and Sipilä, M.: Direct field evidence of autocatalytic
iodine release from atmospheric aerosol, P. Natl. Acad.
Sci. USA, 118, e2009951118, https://doi.org/10.1073/pnas.2009951118, 2021.
Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke,
A. G., Myhre, C. L., Solberg, S., and Yttri, K. E.: Introduction to the
European Monitoring and Evaluation Programme (EMEP) and observed atmospheric
composition change during 1972–2009, Atmos. Chem. Phys., 12,
5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q.
J., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D.,
Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role
of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019.
Wang, X., Jacob, D. J., Fu, X., Wang, T., Le Breton, M., Hallquist, M., Liu,
Z. R., McDuffie, E. E., and Liao, H.: Effects of Anthropogenic Chlorine on
PM2.5 and Ozone Air Quality in China, Environ. Sci. Technol., 54, 9908–9916, https://doi.org/10.1021/acs.est.0c02296, 2020.
Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C.
D., Sherwen, T., Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A.,
Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J.,
Percival, C. J., Lee, B. H., and Thornton, J. A.: Global tropospheric
halogen (Cl, Br, I) chemistry and its impact on oxidants, Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, 2021.
Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A.,
Oetjen, H., Read, K. A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane,
J. M. C., Saltzman, E. S., Wiedensohler, A., and Heard, D. E.: The chemistry
of OH and HO2 radicals in the boundary layer over the tropical Atlantic
Ocean, Atmos. Chem. Phys., 10, 1555–1576, https://doi.org/10.5194/acp-10-1555-2010, 2010.
Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D.,
Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F.,
Lewis, A. C., Mehra, A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H.,
Percival, C. J., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J.,
Bloss, W. J., Vu, T., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S.,
Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.:
Evaluating the sensitivity of radical chemistry and ozone formation to
ambient VOCs and NOx in Beijing, Atmos. Chem. Phys., 21,
2125–2147, https://doi.org/10.5194/acp-21-2125-2021, 2021.
Yao, T., Li, Y., Gao, J., Fung, J. C. H., Wang, S., Li, Y., Chan, C. K., and
Lau, A. K. H.: Source apportionment of secondary organic aerosols in the
Pearl River Delta region: Contribution from the oxidation of semi-volatile
and intermediate volatility primary organic aerosols, Atmos. Environ., 222, 117111, https://doi.org/10.1016/j.atmosenv.2019.117111, 2020.
Yin, S. S., Zheng, J. Y., Lu, Q., Yuan, Z. B., Huang, Z. J., Zhong, L. J.,
and Lin, H.: A refined 2010-based VOC emission inventory and its improvement
on modeling regional ozone in the Pearl River Delta Region, China, Sci. Total Environ., 514, 426–438, https://doi.org/10.1016/j.scitotenv.2015.01.088,
2015.
Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng,
P., Li, H., Shan, Y., Wang, X., Xue, L., Zhou, Y., Yue, D., Ou, Y., Gao, J.,
Lu, K., Brown, S. S., Zhang, Y., and Wang, T.: Heterogeneous N2O5
reactions on atmospheric aerosols at four Chinese sites: improving model
representation of uptake parameters, Atmos. Chem. Phys., 20,
4367–4378, https://doi.org/10.5194/acp-20-4367-2020, 2020.
Yu, Z. and Li, Y.: Marine volatile organic compounds and their impacts on
marine aerosol-A review, Sci. Total Environ., 768, 145054, https://doi.org/10.1016/j.scitotenv.2021.145054, 2021.
Zheng, J. Y., Zhang, L. J., Che, W. W., Zheng, Z. Y., and Yin, S. S.: A
highly resolved temporal and spatial air pollutant emission inventory for
the Pearl River Delta region, China and its uncertainty assessment,
Atmos. Environ., 43, 5112–5122, https://doi.org/10.1016/j.atmosenv.2009.04.060,
2009.
Zhu, L., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Wang, X., Sherwen,
T., Evans, M. J., Chen, Q. J., Alexander, B., Koenig, T. K., Volkamer, R.,
Huey, L. G., Le Breton, M., Bannan, T. J., and Percival, C. J.: Effect of
sea salt aerosol on tropospheric bromine chemistry, Atmos. Chem. Phys., 19, 6497–6507, https://doi.org/10.5194/acp-19-6497-2019, 2019.
Ziska, F., Quack, B., Abrahamsson, K., Archer, S. D., Atlas, E., Bell, T.,
Butler, J. H., Carpenter, L. J., Jones, C. E., Harris, N. R. P., Hepach, H.,
Heumann, K. G., Hughes, C., Kuss, J., Kruger, K., Liss, P., Moore, R. M.,
Orlikowska, A., Raimund, S., Reeves, C. E., Reifenhauser, W., Robinson, A.
D., Schall, C., Tanhua, T., Tegtmeier, S., Turner, S., Wang, L., Wallace,
D., Williams, J., Yamamoto, H., Yvon-Lewis, S., and Yokouchi, Y.: Global
sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide,
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013,
2013.
Short summary
We investigated the mechanisms by which marine-emitted halogens influence the OH radical, which is not considered in air quality forecasting model systems. The atmospheric OH radical has a complicated response to halogen emissions by species through both physical and chemical processes. Over ocean, inorganic iodine is the controlling species and chemistry is more important. Over land, the physics of sea salt aerosols are more important. The mechanism is applicable to other circumstances.
We investigated the mechanisms by which marine-emitted halogens influence the OH radical, which...
Altmetrics
Final-revised paper
Preprint