Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China
Zhongjing Jiang
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Related authors
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Yueming Dong, Jing Li, Zhenyu Zhang, Chongzhao Zhang, and Qiurui Li
Earth Syst. Sci. Data, 17, 3873–3892, https://doi.org/10.5194/essd-17-3873-2025, https://doi.org/10.5194/essd-17-3873-2025, 2025
Short summary
Short summary
This study develops two merged global land aerosol single-scattering albedo (SSA) datasets by combining AERONET ground observations and two satellite datasets using an ensemble Kalman filter data synergy method. The merged datasets exhibit significantly improved accuracy compared to the original satellite data. These results can provide more reliable estimates of aerosol scattering and absorption properties, essential for improving climate modeling and assessing aerosol climate effects.
Chong Li, Oleg Dubovik, Jing Li, David Fuertes, Anton Lopatin, Pavel Litvinov, Tatsiana Lapyonok, Lukas Bindreiter, Christian Matar, Yiqi Chu, and Wangshu Tan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2694, https://doi.org/10.5194/egusphere-2025-2694, 2025
Short summary
Short summary
Using observational data from Japan’s geostationary satellite – Himawari-8 , this study improved how we track air pollution (aerosols) across East Asia and the Western Pacific. By applying an advanced aerosol retrieval algorithm called GRASP, we were able to more accurately observe both atmospheric and ground conditions and their dynamics over time. The results closely matched ground-based measurements and showed potential for even better monitoring when combined with ground-based lidar data.
Guanyu Liu, Jing Li, Sheng Yue, Lulu Zhang, and Chongzhao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1871, https://doi.org/10.5194/egusphere-2025-1871, 2025
Short summary
Short summary
This study introduces a novel method to retrieve aerosol optical depth (AOD) at night using ground-based microwave radiometers, overcoming the limitation of traditional shortwave-based techniques that cannot operate in darkness. This result enables continuous aerosol monitoring and highlighting microwave radiometry's underutilized potential in atmospheric research.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024, https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Short summary
In this study, daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method at more than 5000 terrestrial sites in the Northern Hemisphere based on hourly atmospheric visibility data, which are extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR).
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Liang Chang, Jing Li, Jingjing Ren, Changrui Xiong, and Lu Zhang
Atmos. Meas. Tech., 17, 2637–2648, https://doi.org/10.5194/amt-17-2637-2024, https://doi.org/10.5194/amt-17-2637-2024, 2024
Short summary
Short summary
We described a modified lidar inversion algorithm to retrieve aerosol extinction and size distribution simultaneously from two-wavelength elastic lidar measurements. Its major advantage is that the lidar ratio of each layer is determined iteratively by a lidar ratio–Ångström exponent lookup table. The algorithm was applied to the Raman lidar and CALIOP measurements. The retrieved results by our method are in good agreement with those achieved by Raman method.
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Cited articles
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño
Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112,
1–27, https://doi.org/10.1029/2006JC003798, 2007.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Bjerknes, J.: Atmospheric Teleconnections From the Equatorial Pacific, Mon. Weather Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969.
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification, GMAO Office Note No. 9 (Version 1.1), 73 pp., http://gmao.gsfc.nasa.gov/pubs/office_notes (last access: 8 November 2021), 2016 (data available at: http://ftp.as.harvard.edu/gcgrid/data/GEOS_2x2.5/MERRA2/, last access: 8 November 2021).
Boynard, A., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Turquety, S., George, M., Hadji-Lazaro, J., Keim, C., and Meyer-Arnek, J.: Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations, Atmos. Chem. Phys., 9, 6255–6271, https://doi.org/10.5194/acp-9-6255-2009, 2009.
Boynard, A., Hurtmans, D., Koukouli, M. E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Wespes, C., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S. N., Loyola, D., Valks, P., Van Roozendael, M., Coheur, P.-F., and Clerbaux, C.: Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements, Atmos. Meas. Tech., 9, 4327–4353, https://doi.org/10.5194/amt-9-4327-2016, 2016.
Cao, Q., Hao, Z., Yuan, F., Su, Z., Berndtsson, R., Hao, J., and Nyima, T.: Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China, Hydrol. Earth Syst. Sci., 21, 5415–5426, https://doi.org/10.5194/hess-21-5415-2017, 2017.
Chandra, S., Ziemke, J. R., Min, W., and Read, W. G.: Effects of 1997–1998 El
Niño on tropospheric ozone and water vapor, Geophys. Res. Lett., 25,
3867–3870, https://doi.org/10.1029/98GL02695, 1998.
Chen, M., Yu, J. Y., Wang, X., and Jiang, W.: The Changing Impact Mechanisms
of a Diverse El Niño on the Western Pacific Subtropical High, Geophys.
Res. Lett., 46, 953–962, https://doi.org/10.1029/2018GL081131, 2019.
Chen, W., Park, J. K., Dong, B., Lu, R., and Jung, W. S.: The relationship
between El Niño and the western North Pacific summer climate in a
coupled GCM: Role of the transition of El Niño decaying phases, J.
Geophys. Res.-Atmos., 117, D12111, https://doi.org/10.1029/2011JD017385, 2012.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M.,
Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F.,
Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M.,
Thouret, V., Wang, Y., and Zbinden, R. M.: Global distribution and trends of
tropospheric ozone: An observation-based review, Elementa, 2, 000029, https://doi.org/10.12952/journal.elementa.000029, 2014.
Copernicus (Europe's eyes on Earth): Ozone monthly gridded data from 1970 to present derived from satellite observations, climate data store CDS at ECMWF [data set] https://doi.org/10.24381/cds.4ebfe4eb, 2020.
Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and
meteorological influences on summertime surface ozone in China over
2012–2017, Sci. Total Environ., 754, 142394, https://doi.org/10.1016/j.scitotenv.2020.142394,
2021.
Ding, A. and Wang, T.: Influence of stratopshere-to-troposhere exchange on
the seasonal cycle of surface ozone at Mount Waliguan in western China,
Geophys. Res. Lett., 33, 4–7, https://doi.org/10.1029/2005GL024760, 2006.
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R. H.: Development and
evaluation of the unified tropospheric-stratospheric chemistry extension
(UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ.,
89, 52–63, https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014.
Fang, K., Yao, Q., Guo, Z., Zheng, B., Du, J., Qi, F., Yan, P., Li, J., Ou,
T., Liu, J., He, M., and Trouet, V.: ENSO modulates wildfire activity in
China, Nat. Commun., 12, 1–8, https://doi.org/10.1038/s41467-021-21988-6, 2021.
Feng, J., Chen, W., Tam, C. Y., and Zhou, W.: Different impacts of El
Niño and El Niño Modoki on China rainfall in the decaying phases,
Int. J. Climatol., 31, 2091–2101, https://doi.org/10.1002/joc.2217, 2011.
Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S.,
Cooper, O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M.
G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.:
Tropospheric Ozone Assessment Report: Present-day ozone distribution and
trends relevant to human health, Elementa, 6, 12, https://doi.org/10.1525/elementa.273,
2018.
Gao, T., Luo, M., Lau, N. C., and Chan, T. O.: Spatially Distinct Effects of
Two El Niño Types on Summer Heat Extremes in China, Geophys. Res. Lett.,
47, 1–9, https://doi.org/10.1029/2020GL086982, 2020.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hu, D., Guo, Y., Wang, F., Xu, Q., Li, Y., Sang, W., Wang, X., and Liu, M.:
Brewer-Dobson Circulation: Recent-Past and Near-Future Trends Simulated by
Chemistry-Climate Models, Adv. Meteorol., 2017, 18–20,
https://doi.org/10.1155/2017/2913895, 2017.
Jeong, J. I., Park, R. J., and Yeh, S. W.: Dissimilar effects of two El
Niño types on PM2.5 concentrations in East Asia, Environ. Pollut., 242,
1395–1403, https://doi.org/10.1016/j.envpol.2018.08.031, 2018.
Jiang, Z., Li, J., Lu, X., Gong, C., Zhang, L., and Liao, H.: Impact of western Pacific subtropical high on ozone pollution over eastern China, Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, 2021.
Johnson, G. C. and Birnbaum, A. N.: As El Niño builds, Pacific Warm Pool
expands, ocean gains more heat, Geophys. Res. Lett., 44, 438–445,
https://doi.org/10.1002/2016GL071767, 2017.
Koumoutsaris, S., Bey, I., Generoso, S., and Thouret, V.: Influence of El
Niño-Southern Oscillation on the interannual variability of tropospheric
ozone in the northern midlatitudes, J. Geophys. Res.-Atmos., 113, 1–21,
https://doi.org/10.1029/2007JD009753, 2008.
Kug, J. S., Jin, F. F., and An, S.: Two types of El Niño events: Cold
tongue El Niño and warm pool El Niño, J. Clim., 22, 1499–1515,
https://doi.org/10.1175/2008JCLI2624.1, 2009.
Langford, A. O.: Stratosphere-troposphere exchange at the subtropical jet:
Contribution to the tropospheric ozone budget at midlatitudes, Geophys. Res.
Lett., 26, 2449–2452, https://doi.org/10.1029/1999GL900556, 1999.
Li, H., Fan, K., He, S., Liu, Y., Yuan, X., and Wang, H.: Intensified impacts
of central pacific ENSO on the reversal of December and January surface air
temperature anomaly over China since 1997, J. Clim., 34, 1601–1618,
https://doi.org/10.1175/JCLI-D-20-0048.1, 2021.
Li, J., Huang, D., Li, F., and Wen, Z.: Circulation characteristics of EP and
CP ENSO and their impacts on precipitation in South China, J. Atmos.
Solar-Terrestrial Phys., 179, 405–415,
https://doi.org/10.1016/j.jastp.2018.09.006, 2018.
Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J.,
Tarasick, D., and Rieder, H. E.: Climate variability modulates western US
ozone air quality in spring via deep stratospheric intrusions, Nat. Commun.,
6, 1–11, https://doi.org/10.1038/ncomms8105, 2015.
Li, T., Wang, B., Wu, B., Zhou, T., Chang, C. P., and Zhang, R.: Theories on
formation of an anomalous anticyclone in western North Pacific during El
Niño: A review, J. Meteorol. Res., 31, 987–1006,
https://doi.org/10.1007/s13351-017-7147-6, 2017.
Li, X., Zhou, W., Chen, D., Li, C., and Song, J.: Water vapor transport and
moisture budget over eastern China: Remote forcing from the two types of El
Niño, J. Clim., 27, 8778–8792, https://doi.org/10.1175/JCLI-D-14-00049.1, 2014.
Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-M., and Zhang, Q.: Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences, Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, 2019.
Maji, K. J., Ye, W. F., Arora, M., and Nagendra, S. M. S.: Ozone pollution in
Chinese cities: Assessment of seasonal variation, health effects and
economic burden, Environ. Pollut., 247, 792–801,
https://doi.org/10.1016/j.envpol.2019.01.049, 2019.
Marlier, M. E., Defries, R. S., Voulgarakis, A., Kinney, P. L., Randerson,
J. T., Shindell, D. T., Chen, Y., and Faluvegi, G.: El Niño and health
risks from landscape fire emissions in southeast Asia, Nat. Clim. Chang.,
3, 131–136, https://doi.org/10.1038/nclimate1658, 2013.
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and 35 trends relevant to vegetation, Elementa, 6, 47, https://doi.org/10.1525/elementa.302, 2018
Neu, J. L., Flury, T., Manney, G. L., Santee, M. L., Livesey, N. J., and
Worden, J.: Tropospheric ozone variations governed by changes in
stratospheric circulation, Nat. Geosci., 7, 340–344,
https://doi.org/10.1038/ngeo2138, 2014.
Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime ozone over China, Atmos. Chem. Phys., 18, 11447–11469, https://doi.org/10.5194/acp-18-11447-2018, 2018.
Olsen, M. A., Wargan, K., and Pawson, S.: Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data, Atmos. Chem. Phys., 16, 7091–7103, https://doi.org/10.5194/acp-16-7091-2016, 2016.
Oman, L. D., Ziemke, J. R., Douglass, A. R., Waugh, D. W., Lang, C.,
Rodriguez, J. M., and Nielsen, J. E.: The response of tropical tropospheric
ozone to ENSO, Geophys. Res. Lett., 38, 2–7, https://doi.org/10.1029/2011GL047865,
2011.
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W.,
and Nielsen, J. E.: The ozone response to enso in aura satellite
measurements and a chemistry-climate simulation, J. Geophys. Res.-Atmos.,
118, 965–976, https://doi.org/10.1029/2012JD018546, 2013.
Ren, H. L., Lu, B., Wan, J., Tian, B., and Zhang, P.: Identification Standard
for ENSO Events and Its Application to Climate Monitoring and Prediction in
China, J. Meteorol. Res., 32, 923–936, https://doi.org/10.1007/s13351-018-8078-6,
2018.
Shi, J. and Qian, W.: Asymmetry of two types of ENSO in the transition
between the East Asian winter monsoon and the ensuing summer monsoon, Clim.
Dyn., 51, 3907–3926, https://doi.org/10.1007/s00382-018-4119-1, 2018.
Singh, R. P., Sarkar, S., and Singh, A.: Effect of El Niño on
inter-annual variability of ozone during the period 1978-2000 over the
Indian subcontinent and China, Int. J. Remote Sens., 23, 2449–2456,
https://doi.org/10.1080/01431160110075893, 2002.
Sudo, K. and Takahashi, M.: Simulation of tropospheric ozone changes during
1997-1998 El Niño: Meteorological impact on tropospheric photochemistry,
Geophys. Res. Lett., 28, 4091–4094, https://doi.org/10.1029/2001GL013335, 2001.
Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.: Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015, Atmos. Chem. Phys., 19, 1455–1469, https://doi.org/10.5194/acp-19-1455-2019, 2019.
Wang, B., Wu, R., and Fu, X.: Pacific-East Asian teleconnection: How does
ENSO affect East Asian climate?, J. Clim., 13, 1517–1536,
https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2,
2000.
Wang, B., Luo, X., and Liu, J.: How robust is the asian precipitation-ENSO
relationship during the industrial warming period (1901–2017)?, J. Clim.,
33, 2779–2792, https://doi.org/10.1175/JCLI-D-19-0630.1, 2020.
Wang, C. and Wang, X.: Classifying el niño modoki I and II by different
impacts on rainfall in southern China and typhoon tracks, J. Clim., 26,
1322–1338, https://doi.org/10.1175/JCLI-D-12-00107.1, 2013.
Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T., Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B. H., and Thornton, J. A.: Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, 2021.
Wie, J., Moon, B., Yeh, S., Park, R. J., and Kim, B.: La Niña-related tropospheric column ozone enhancement over East Asia, Atmos. Environ., 261, 118575, https://doi.org/10.1016/j.atmosenv.2021.118575, 2021.
Wu, B., Zhou, T., and Li, T.: Atmospheric dynamic and thermodynamic processes
driving the western North Pacific anomalous anticyclone during El Niño.
Part I: Maintenance mechanisms, J. Clim., 30, 9621–9635,
https://doi.org/10.1175/JCLI-D-16-0489.1, 2017a.
Wu, B., Zhou, T., and Li, T.: Atmospheric dynamic and thermodynamic processes
driving the western north Pacific anomalous anticyclone during El Niño.
Part II: Formation processes, J. Clim., 30, 9637–9650,
https://doi.org/10.1175/JCLI-D-16-0495.1, 2017b.
Xie, S. P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., and Sampe,
T.: Indian Ocean capacitor effect on Indo-Western pacific climate during the
summer following El Niño, J. Clim., 22, 730–747,
https://doi.org/10.1175/2008JCLI2544.1, 2009.
Xue, L., Ding, A., Cooper, O., Huang, X., Wang, W., Zhou, D., Wu, Z.,
McClure-Begley, A., Petropavlovskikh, I., Andreae, M. O., and Fu, C.: ENSO
and Southeast Asian biomass burning modulate subtropical trans-Pacific ozone
transport, Natl. Sci. Rev., 8, nwaa132, https://doi.org/10.1093/nsr/nwaa132, 2021.
Xu, K., Huang, Q.-L., Tam, C.-Y., Wang, W., Chen, S., and Zhu, C.: Roles of tropical SST patterns during two types of ENSO in 5 modulating wintertime rainfall over southern China, Clim. Dyn., 52, 523–538, https://doi.org/10.1007/s00382-018-4170-y,
2018.
Xu, L., Yu, J. Y., Schnell, J. L., and Prather, M. J.: The seasonality and
geographic dependence of ENSO impacts on U.S. surface ozone variability,
Geophys. Res. Lett., 44, 3420–3428, https://doi.org/10.1002/2017GL073044, 2017.
Yang, J., Liu, Q., Xie, S. P., Liu, Z., and Wu, L.: Impact of the Indian
Ocean SST basin mode on the Asian summer monsoon, Geophys. Res. Lett.,
34, 1–5, https://doi.org/10.1029/2006GL028571, 2007.
Yantosca, B.: geoschem/geos-chem: GEOS-Chem 12.3.2 (12.3.2), Zenodo [code], https://doi.org/10.5281/zenodo.2658178, 2019.
Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., and Jin, F.
F.: El Niño in a changing climate, Nature, 461, 511–514,
https://doi.org/10.1038/nature08316, 2009.
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu,
J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O.,
Zhang, L., Ziemke, J., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C.,
Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer,
D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and
Zeng, G.: Tropospheric ozone assessment report: Assessment of global-scale
model performance for global and regional ozone distributions, variability,
and trends, Elementa, 6, 10, https://doi.org/10.1525/elementa.265, 2018.
Yu, J. Y., Kao, H. Y., and Lee, T.: Subtropics-related interannual sea
surface temperature variability in the central equatorial pacific, J. Clim.,
23, 2869–2884, https://doi.org/10.1175/2010JCLI3171.1, 2010.
Yu, J. Y., Zou, Y., Kim, S. T., and Lee, T.: The changing impact of El
Niño on US winter temperatures, Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483, 2012.
Yu, S. and Sun, J.: Revisiting the relationship between El Niño-Southern
Oscillation and the East Asian winter monsoon, Int. J. Climatol., 38,
4846–4859, https://doi.org/10.1002/joc.5702, 2018.
Yu, X., Wang, Z., Zhang, H., and Zhao, S.: Impacts of different types and
intensities of El Niño events on winter aerosols over China, Sci. Total
Environ., 655, 766–780, https://doi.org/10.1016/j.scitotenv.2018.11.090, 2019.
Yu, X., Wang, Z., Zhang, H., He, J., and Li, Y.: Contrasting impacts of two types of El Niño events on winter haze days in China's Jing-Jin-Ji region, Atmos. Chem. Phys., 20, 10279–10293, https://doi.org/10.5194/acp-20-10279-2020, 2020.
Zhang, W., Jin, F. F., Li, J., and Ren, H. L.: Contrasting impacts of
two-type El Niño over the western North Pacific during boreal autumn, J.
Meteorol. Soc. Japan, 89, 563–569, https://doi.org/10.2151/jmsj.2011-510, 2011.
Ziemke, J. R. and Chandra, S.: La Niña and El Niño – Induced variabilities
of ozone in the tropical lower atmosphere during 1970–2001, Geophys. Res.
Lett., 30, 30–33, https://doi.org/10.1029/2002GL016387, 2003.
Ziemke, J. R., Chandra, S., Oman, L. D., and Bhartia, P. K.: A new ENSO index derived from satellite measurements of column ozone, Atmos. Chem. Phys., 10, 3711–3721, https://doi.org/10.5194/acp-10-3711-2010, 2010.
Zou, H., Ji, C., Zhou, L., Wang, W., and Jian, Y.: ENSO Signal in Total Ozone over Tibet, Adv. Atmos. Sci., 18, 231–238, 2001.
Short summary
This study investigates the changes of tropospheric ozone in China associated with EP and CP El Niño, using satellite observations and the GEOS-Chem model. We found that El Niño generally leads to lower tropospheric ozone (LTO) decrease over most parts of China; La Niña acts the opposite. The difference between LTO changes during EP and CP El Niño primarily lies in southern China. Regional transport and chemical processes play the leading and secondary roles in driving the LTO changes.
This study investigates the changes of tropospheric ozone in China associated with EP and CP El...
Altmetrics
Final-revised paper
Preprint