Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric gas-phase composition over the Indian Ocean
Susann Tegtmeier
CORRESPONDING AUTHOR
Institute of Space and Atmospheric Studies, University of
Saskatchewan, Saskatoon, Canada
Christa Marandino
Biogeochemistry Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Institute of Space and Atmospheric Studies, University of
Saskatchewan, Saskatoon, Canada
now at: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Birgit Quack
Biogeochemistry Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Anoop S. Mahajan
Center for Climate Change Research, Indian Institute of Tropical
Meteorology, Pune, 411016, India
Related authors
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
Atmos. Chem. Phys., 25, 3821–3839, https://doi.org/10.5194/acp-25-3821-2025, https://doi.org/10.5194/acp-25-3821-2025, 2025
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than is commonly reported.
This article is included in the Encyclopedia of Geosciences
Shenglong Zhang, Jiao Chen, Jonathon S. Wright, Sean M. Davis, Jie Gao, Paul Konopka, Ninghui Li, Mengqian Lu, Susann Tegtmeier, Xiaolu Yan, Guang J. Zhang, and Nuanliang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-543, https://doi.org/10.5194/egusphere-2025-543, 2025
Short summary
Short summary
This study examines water vapor changes in the upper atmosphere above the Asian summer monsoon using satellite data and climate models. Three key patterns of variability were identified: year-to-year changes, and two shifting distributions driven by weather and monsoon dynamics. Despite uncertainties, modern models are improving in capturing these processes. This enhances understanding of water vapor’s role in the upper atmosphere.
This article is included in the Encyclopedia of Geosciences
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-82, https://doi.org/10.5194/egusphere-2025-82, 2025
Short summary
Short summary
The tropical tropopause layer (TTL) is a crucial region where the troposphere transitions into the stratosphere, influencing air mass transport. This study examines temperature trends in the TTL and lower stratosphere using data from weather balloons, satellites, and reanalysis datasets. We found cooling trends in the TTL from 1980–2001, followed by warming from 2002–2023. These shifts are linked to changes in atmospheric circulation and impact water vapor transport into the stratosphere.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
Atmos. Chem. Phys., 25, 1433–1447, https://doi.org/10.5194/acp-25-1433-2025, https://doi.org/10.5194/acp-25-1433-2025, 2025
Short summary
Short summary
The transport rate of air in the stratosphere has changed in response to human emissions of greenhouse gases and ozone-depleting substances. This transport rate can be approximated using measurements of long-lived trace gases. We use observations and model results to derive anomalies and trends in the mean rate of stratospheric air transport. We find that air in the Northern Hemisphere aged by up to 0.3 years per decade relative to air in the Southern Hemisphere over 2004–2017.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
This article is included in the Encyclopedia of Geosciences
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, and Robin Pilch Kedzierski
Atmos. Chem. Phys., 24, 7405–7419, https://doi.org/10.5194/acp-24-7405-2024, https://doi.org/10.5194/acp-24-7405-2024, 2024
Short summary
Short summary
Satellite data challenge the idea of an overall cooling trend in the tropical tropopause layer. From 2002 to 2022, a warming trend was observed, diverging from earlier findings. Tropopause height changes indicate dynamic processes alongside radiative effects. Upper-tropospheric warming contrasts with lower-stratosphere temperatures. The study highlights the complex interplay of factors shaping temperature trends.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
This article is included in the Encyclopedia of Geosciences
Kristof Bognar, Susann Tegtmeier, Adam Bourassa, Chris Roth, Taran Warnock, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 22, 9553–9569, https://doi.org/10.5194/acp-22-9553-2022, https://doi.org/10.5194/acp-22-9553-2022, 2022
Short summary
Short summary
We quantify recent changes in stratospheric ozone (outside the polar regions) using a combination of three satellite datasets. We find that upper stratospheric ozone have increased significantly since 2000, although the recovery shows an unexpected pause in the Northern Hemisphere. Combined with the likely decrease in ozone in the lower stratosphere, this presents an interesting challenge for predicting the future of the ozone layer.
This article is included in the Encyclopedia of Geosciences
Yue Jia, Birgit Quack, Robert D. Kinley, Ignacio Pisso, and Susann Tegtmeier
Atmos. Chem. Phys., 22, 7631–7646, https://doi.org/10.5194/acp-22-7631-2022, https://doi.org/10.5194/acp-22-7631-2022, 2022
Short summary
Short summary
In this study, we assessed the potential risks of bromoform released from Asparagopsis farming near Australia for the stratospheric ozone layer by analyzing different cultivation scenarios. We conclude that the intended operation of Asparagopsis seaweed cultivation farms with an annual yield to meet the needs of 50 % of feedlots and cattle in either open-ocean or terrestrial cultures in Australia will not impact the ozone layer under normal operating conditions.
This article is included in the Encyclopedia of Geosciences
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
This article is included in the Encyclopedia of Geosciences
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
This article is included in the Encyclopedia of Geosciences
Nigel A. D. Richards, Natalya A. Kramarova, Stacey M. Frith, Sean M. Davis, and Yue Jia
EGUsphere, https://doi.org/10.5194/egusphere-2025-4117, https://doi.org/10.5194/egusphere-2025-4117, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Montreal Protocol has led to a slow recovery in the Earth's ozone layer. To detect such changes, and to monitor the health of the ozone layer, long term global observations are needed. The OMPS Limb Profiler (LP) series of satellite sensors are designed to meet this need. We validate the latest version OMPS LP ozone profiles against other satellite and ground based measurements. We find that OMPS LP ozone is consistent with other data sources and is suitable for use in ozone trend studies.
This article is included in the Encyclopedia of Geosciences
Miming Zhang, Haipeng Gao, Shanshan Wang, Yue Jia, Shibo Yan, Rong Tian, Jinpei Yan, and Yanfang Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1622, https://doi.org/10.5194/egusphere-2025-1622, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Under cold and clean conditions in the free troposphere, oceanic dimethyl sulfide (DMS) can form new particles. Using data from the field observation and Lana climatology with the FLEXPART model, we evaluated DMS contribution from surface ocean to the free troposphere. We found that cyclone enhances the contribution of oceanic dimethyl sulfide to the free troposphere over the Southern Ocean, suggesting significant DMS-derived new particles likely occurred at high altitudes in the Southern Ocean.
This article is included in the Encyclopedia of Geosciences
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
Atmos. Chem. Phys., 25, 3821–3839, https://doi.org/10.5194/acp-25-3821-2025, https://doi.org/10.5194/acp-25-3821-2025, 2025
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than is commonly reported.
This article is included in the Encyclopedia of Geosciences
Shenglong Zhang, Jiao Chen, Jonathon S. Wright, Sean M. Davis, Jie Gao, Paul Konopka, Ninghui Li, Mengqian Lu, Susann Tegtmeier, Xiaolu Yan, Guang J. Zhang, and Nuanliang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-543, https://doi.org/10.5194/egusphere-2025-543, 2025
Short summary
Short summary
This study examines water vapor changes in the upper atmosphere above the Asian summer monsoon using satellite data and climate models. Three key patterns of variability were identified: year-to-year changes, and two shifting distributions driven by weather and monsoon dynamics. Despite uncertainties, modern models are improving in capturing these processes. This enhances understanding of water vapor’s role in the upper atmosphere.
This article is included in the Encyclopedia of Geosciences
Zirui Zhang, Kaiming Huang, Fan Yi, Wei Cheng, Fuchao Liu, Jian Zhang, and Yue Jia
Atmos. Chem. Phys., 25, 3347–3361, https://doi.org/10.5194/acp-25-3347-2025, https://doi.org/10.5194/acp-25-3347-2025, 2025
Short summary
Short summary
The height of the convective boundary layer (CBLH) is related to our health due to its crucial role in pollutant dispersion. The variance of vertical velocity from millimeter wave cloud radar (MMCR) can accurately capture the diurnal evolution of the CBLH, due to a small blind range and less impact by the residual layer. The CBLH is affected by radiation, humidity, cloud, and precipitation; thus, the MMCR is suitable for monitoring the CBLH, owing to its observation capability in various weather conditions.
This article is included in the Encyclopedia of Geosciences
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
This article is included in the Encyclopedia of Geosciences
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-82, https://doi.org/10.5194/egusphere-2025-82, 2025
Short summary
Short summary
The tropical tropopause layer (TTL) is a crucial region where the troposphere transitions into the stratosphere, influencing air mass transport. This study examines temperature trends in the TTL and lower stratosphere using data from weather balloons, satellites, and reanalysis datasets. We found cooling trends in the TTL from 1980–2001, followed by warming from 2002–2023. These shifts are linked to changes in atmospheric circulation and impact water vapor transport into the stratosphere.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
Atmos. Chem. Phys., 25, 1433–1447, https://doi.org/10.5194/acp-25-1433-2025, https://doi.org/10.5194/acp-25-1433-2025, 2025
Short summary
Short summary
The transport rate of air in the stratosphere has changed in response to human emissions of greenhouse gases and ozone-depleting substances. This transport rate can be approximated using measurements of long-lived trace gases. We use observations and model results to derive anomalies and trends in the mean rate of stratospheric air transport. We find that air in the Northern Hemisphere aged by up to 0.3 years per decade relative to air in the Southern Hemisphere over 2004–2017.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
This article is included in the Encyclopedia of Geosciences
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
This article is included in the Encyclopedia of Geosciences
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
This article is included in the Encyclopedia of Geosciences
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, and Robin Pilch Kedzierski
Atmos. Chem. Phys., 24, 7405–7419, https://doi.org/10.5194/acp-24-7405-2024, https://doi.org/10.5194/acp-24-7405-2024, 2024
Short summary
Short summary
Satellite data challenge the idea of an overall cooling trend in the tropical tropopause layer. From 2002 to 2022, a warming trend was observed, diverging from earlier findings. Tropopause height changes indicate dynamic processes alongside radiative effects. Upper-tropospheric warming contrasts with lower-stratosphere temperatures. The study highlights the complex interplay of factors shaping temperature trends.
This article is included in the Encyclopedia of Geosciences
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024, https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Short summary
Oceanic bromoform, produced by algae, is an important precursor of atmospheric bromine, highlighting the importance of implementing these emissions in climate models. The simulated mean oceanic concentrations align well with observations, while the mean atmospheric values are lower than the observed ones. Modelled annual mean emissions mostly occur from the sea to the air and are driven by oceanic concentrations, sea surface temperature, and wind speed, which depend on season and location.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
This article is included in the Encyclopedia of Geosciences
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
This article is included in the Encyclopedia of Geosciences
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
This article is included in the Encyclopedia of Geosciences
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
This article is included in the Encyclopedia of Geosciences
Kristof Bognar, Susann Tegtmeier, Adam Bourassa, Chris Roth, Taran Warnock, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 22, 9553–9569, https://doi.org/10.5194/acp-22-9553-2022, https://doi.org/10.5194/acp-22-9553-2022, 2022
Short summary
Short summary
We quantify recent changes in stratospheric ozone (outside the polar regions) using a combination of three satellite datasets. We find that upper stratospheric ozone have increased significantly since 2000, although the recovery shows an unexpected pause in the Northern Hemisphere. Combined with the likely decrease in ozone in the lower stratosphere, this presents an interesting challenge for predicting the future of the ozone layer.
This article is included in the Encyclopedia of Geosciences
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
This article is included in the Encyclopedia of Geosciences
Yue Jia, Birgit Quack, Robert D. Kinley, Ignacio Pisso, and Susann Tegtmeier
Atmos. Chem. Phys., 22, 7631–7646, https://doi.org/10.5194/acp-22-7631-2022, https://doi.org/10.5194/acp-22-7631-2022, 2022
Short summary
Short summary
In this study, we assessed the potential risks of bromoform released from Asparagopsis farming near Australia for the stratospheric ozone layer by analyzing different cultivation scenarios. We conclude that the intended operation of Asparagopsis seaweed cultivation farms with an annual yield to meet the needs of 50 % of feedlots and cattle in either open-ocean or terrestrial cultures in Australia will not impact the ozone layer under normal operating conditions.
This article is included in the Encyclopedia of Geosciences
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
This article is included in the Encyclopedia of Geosciences
Anoop S. Mahajan, Mriganka S. Biswas, Steffen Beirle, Thomas Wagner, Anja Schönhardt, Nuria Benavent, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 11829–11842, https://doi.org/10.5194/acp-21-11829-2021, https://doi.org/10.5194/acp-21-11829-2021, 2021
Short summary
Short summary
Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone. We present IO observations over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all campaigns with mixing ratios below 2 pptv, which is lower than the peak levels observed in West Antarctica, showing the differences in regional chemistry and emissions.
This article is included in the Encyclopedia of Geosciences
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
This article is included in the Encyclopedia of Geosciences
Sinikka T. Lennartz, Michael Gauss, Marc von Hobe, and Christa A. Marandino
Earth Syst. Sci. Data, 13, 2095–2110, https://doi.org/10.5194/essd-13-2095-2021, https://doi.org/10.5194/essd-13-2095-2021, 2021
Short summary
Short summary
This study provides a marine emission inventory for the sulphur gases carbonyl sulphide (OCS) and carbon disulphide (CS2), derived from a numerical model of the surface ocean at monthly resolution for the period 2000–2019. Comparison with a database of seaborne observations reveals very good agreement for OCS. Interannual variability in both gases seems to be mainly driven by the amount of chromophoric dissolved organic matter present in surface water.
This article is included in the Encyclopedia of Geosciences
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
This article is included in the Encyclopedia of Geosciences
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
This article is included in the Encyclopedia of Geosciences
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
This article is included in the Encyclopedia of Geosciences
Cited articles
Adcock, K. E., Fraser, P. J., Hall, B. D., Langenfelds, R. L., Lee, G.,
Montzka, S. A., Oram, D. E., Röckmann, T., Stroh, F., Sturges, W. T.,
Vogel, B., and Laube, J. C.: Aircraft-Based Observations of Ozone-Depleting
Substances in the Upper Troposphere and Lower Stratosphere in and Above the
Asian Summer Monsoon, J. Geophys. Res.-Atmos., 126, e2020JD033137,
https://doi.org/10.1029/2020JD033137, 2021.
Ajayakumar, R. S., Nair, P. R., Girach, I. A., Sunilkumar, S. V., Muhsin,
M., and Chandran, P. R. S.: Dynamical nature of tropospheric ozone over a
tropical location in Peninsular India: Role of transport and water vapor,
Atmos. Environ., 218, 117018, https://doi.org/10.1016/j.atmosenv.2019.117018, 2019.
Ali, K., Beig, G., Chate, D. M., Momin, G. A., Sahu, S. K., and Safai, P.
D.: Sink mechanism for significantly low level of ozone over the Arabian Sea
during monsoon, J. Geophys. Res., 114, D17306, https://doi.org/10.1029/2008JD011256,
2009.
Aneesh, V. R., Mohankumar, G., and Sampath, S.: Spatial distribution of
atmospheric carbon monoxide over Bay of Bengal and Arabian Sea: Measurements
during pre-monsoon period of 2006, J. Earth Syst. Sci., 117, 449–455,
https://doi.org/10.1007/s12040-008-0044-8, 2008.
Angot, H., Barret, M., Magand, O., Ramonet, M., and Dommergue, A.: A 2-year record of atmospheric mercury species at a background Southern Hemisphere station on Amsterdam Island, Atmos. Chem. Phys., 14, 11461–11473, https://doi.org/10.5194/acp-14-11461-2014, 2014.
Annamalai, H., Taguchi, B., McCreary, J. P., Nagura, M., and Miyama, T.:
Systematic errors in south Asian monsoon simulation: importance of
Equatorial Indian Ocean processes, J. Climate, 30, 8159–8178, 2017.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, https://doi.org/10.5194/acp-9-1253-2009, 2009.
Aryasree, S., Nair, P. R., Girach, I. A., and Jacob, S.: Winter time chemical
characteristics of aerosols over the Bay of Bengal: continental
influence, Environ. Sci. Pollut. Res., 22, 14901–14918,
https://doi.org/10.1007/s11356-015-4700-7, 2015.
Asatar, G. I. and Nair, P. R.: Spatial distribution of near-surface CO over
Bay of Bengal during winter: role of transport, J. Atmos. Sol.-Terr. Phy.,
72, 1241–1250, https://doi.org/10.1016/j.jastp.2010.07.025, 2010.
ASDC: MOPITT CO gridded daily means (Near and Thermal Infrared Radiances) V008, ASDC [data set], https://www2.acom.ucar.edu/mopitt (last access: 15 June 2020), 2019.
Astrahan P., Herut B., Paytan A., and Rahav E.: The Impact of Dry
Atmospheric Deposition on the Sea-Surface Microlayer in the SE Mediterranean
Sea: An Experimental Approach, Frontiers in Marine Science, 3, 222,
https://doi.org/10.3389/fmars.2016.00222, 2016.
Aswini, A. R., Hegde, P., Aryasree, S., Girach, I. A., and Nair, P. R.:
Continental outflow of anthropogenic aerosols over Arabian Sea and Indian
Ocean during wintertime: ICARB-2018 campaign, Sci. Total Environ., 712,
135214, https://doi.org/10.1016/j.scitotenv.2019.135214, 2020.
Ayers, G. P. and Gras, J. L.: Ammonia gas concentration over the Southern
Ocean, Nature, 284, 539–540, 1980.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bange, H. W.: New Directions: The importance of the oceanic nitrous oxide
emissions, Atmos. Environ., 40, 198–199, 2006.
Barnes, E. A., Fiore, A. M., and Horowitz, L. W.: Detection of trends in
surface ozone in the presence of climate variability, J. Geophys. Res., 121,
6112–6129, https://doi.org/10.1002/2015JD024397, 2016.
Bates, N. R., Pequignet, A. C., and Sabine, C.: Ocean carboncycling in the Indian Ocean: 1. Spatio-temporal variability of inorganic carbon and air-sea CO2 gas exchange, Global Biogeochem. Cy., 20, GB3020, https://doi.org/10.1029/2005GB002491, 2006.
Bauer, S. E., Tsigaridis, K., and Miller, R.: Significant atmospheric
aerosol pollution caused by world food cultivation, Geophys. Res. Lett., 43,
5394–5400, https://doi.org/10.1002/2016GL068354, 2016.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary
ocean productivity, Nature, 444, 752–755, 2006.
Belikov, D. A., Saitoh, N., Patra, P. K., and Chandra, N.: GOSAT CH4 Vertical Profiles over the Indian Subcontinent: Effect of a Priori and Averaging Kernels for Climate Applications, Remote Sens., 13, 1677,
https://doi.org/10.3390/rs13091677, 2021.
Bengtsson, L.: The global atmospheric water cycle, Environ. Res. Lett., 5,
025002, https://doi.org/10.1088/1748-9326/5/2/025002, 2010.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the
first decade of the 21st century: Inverse modeling analysis using SCIAMACHY
satellite retrievals and NOAA surface measurements, J. Geophys. Res., 118,
7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.
Bhattacharya, S. K., Borole, D. V., Francy, R. J., Allison, C. E., Steele,
L. P., Krummel, P., Langenfelds, R., Masarie, K. A., Tiwari, Y. K., and
Patra, P. K.: Trace gases and CO2 isotope records from Cabo de Rama, India, Curr. Sci. India, 97, 1336–1344, http://www.jstor.org/stable/24109728 (last access: 1 July 2021), 2009.
Biswas, H., Chatterjee, A., Mukhopadhya, S. K., De, T. K., Sen, S., and
Jana, T. K.: Estimation of ammonia exchange at the land-ocean boundary
condition of Sundarban mangrove northeast coast of Bay of Bengal, India,
Atmos. Environ., 39, 4489–4499, 2005.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, 2000.
Blunden, J. and Boyer, T. (Eds.): State of the Climate in 2020, B. Am. Meteorol. Soc., 102, Si–S475, https://doi.org/10.1175/2021BAMSStateoftheClimate.1, 2020.
Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic Aerosols and the
Weakening of the South Asian Summer Monsoon, Science, 334, 502–505,
2011.
Booge, D., Marandino, C. A., Schlundt, C., Palmer, P. I., Schlundt, M., Atlas, E. L., Bracher, A., Saltzman, E. S., and Wallace, D. W. R.: Can simple models predict large-scale surface ocean isoprene concentrations?, Atmos. Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, 2016.
Booge, D., Schlundt, C., Bracher, A., Endres, S., Zäncker, B., and Marandino, C. A.: Marine isoprene production and consumption in the mixed layer of the surface ocean – a field study over two oceanic regions, Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, 2018.
Bourtsoukidis, E., Ernle, L., Crowley, J. N., Lelieveld, J., Paris, J.-D., Pozzer, A., Walter, D., and Williams, J.: Non-methane hydrocarbon (C2–C8) sources and sinks around the Arabian Peninsula, Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019, 2019.
Bourtsoukidis, E., Pozzer, A., Sattler, T. Matthaios, V.N., Ernle, L.
Edtbauer, A., Fischer, H., Könemann, T., Osipov, S., Paris, J.-D.,
Pfannerstill, E. Y., Stönner, C., Tadic, I., Walter, D., Wang, N.,
Lelieveld, J., and Williams, J.: The Red Sea Deep Water is a potent source of
atmospheric ethane and propane, Nat. Commun., 11, 447,
https://doi.org/10.1038/s41467-020-14375-0, 2020.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:Smoamm>2.0.Co;2, 1999.
Brooks, S. D., Jickells, T. D., Liss, P. S., Thornton, D. C. O., and Zhang, R.: Biogeochemical Coupling between Ocean and Atmosphere – A Tribute to the
Lifetime Contribution of Robert A. Duce, J. Atmos. Sci., 76, 3289–3298,
https://doi.org/10.1175/JAS-D-18-0305.1, 2019.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012, 2012.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R.,
Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global
Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific
Results, J. Atmos. Sci., 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:Tgomeg>2.0.Co;2, 1999.
Butler, A. H., Daniel, J. S., Portmann, R. W., Ravishankara, A. R., Young, P. J., Fahey, D. W., and Rosenlof, K. H.: Diverse policy implications for future ozone and surface UV in a changing climate, Environ. Res. Lett., 11, 064017, https://doi.org/10.1088/1748-9326/11/6/064017, 2016.
Cai, W., Sullivan, A., and Cowan, T.: Climate change contributes to more
frequent consecutive positive Indian Ocean Dipole events, Geophys. Res.
Lett., 36, L19783, https://doi.org/10.1029/2009GL040163, 2009.
Campbell, J. E., Whelan, M. E., Seibt, U., Smith, S. J., Berry, J. A., and
Hilton, T. W.: Atmospheric carbonyl sulfide sources from anthropogenic
activity: Implications for carbon cycle constraints, Geophys. Res. Lett.,
42, 3004–3010, https://doi.org/10.1002/2015gl063445, 2015.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Carmichael, G. R., Ferm, M., Thongboonchoo, N., Woo, J. H., Chan, L. Y.,
Murano, K., Viet, P. H., Mossberg, C., Bala, R., Boonjawat, J., Upatum, P.,
Mohan, M., Adhikary, S. P., Shrestha, A. B., Pinaar, J. J., Brunke, E. B.,
Chen, T., Jie, T., Guoan, D., Peng, L. C., Dhiharto, S., Harjanto, H., Jose,
A. M., Kimani, W., Kirouane, A., Lacaus, J.-P., Richard, S., Barturen, O.,
Cerda, J. C., Athayde, A., Tavares, T., Cotrina, J. S., and Bilici, E.:
Measurements of sulfur dioxide, ozone and ammonia concentration in Asia,
Africa and South America using passive samplers, Atmos. Environ., 37,
1293–1308, 2003.
Carpenter, L. J. and Liss, P. S.: On temperate sources of bromoform and
other reactive organic bromine gases, J. Geophys. Res., 105, 20539–20547, https://doi.org/10.1029/2000JD900242, 2000.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W.,
Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels
influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111, https://doi.org/10.1038/ngeo1687, 2013.
Chakraborty, K., Valsala, V., Gupta, G. V. M., and Sarma, V. V. S. S.:
Dominant biological control over upwelling on pCO2 in sea east of Sri Lanka, J. Geophys. Res., 123, 3250–3261, https://doi.org/10.1029/2018JG004446, 2018.
Chang, J.-H.: The Indian Summer Monsoon, Geogr. Rev., 57, 373–396, 1967.
Charlson, R., Lovelock, J., Andreae, M., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and
climate, Nature, 326, 655–661, https://doi.org/10.1038/326655a0, 1987.
Chen, L., Xu, S., Gao, Z., Chen, H., Zhang, Y., Zhan, J., and Li, W.:
Estimation of monthly air-sea CO2 flux in the southern Atlantic and
Indian Ocean using in situ and remotely sensed data, Remote Sens. Environ.,
115, 1935–1941, https://doi.org/10.1016/j.rse.2011.03.016, 2011.
Chin, M. and Davis, D. D.: Global sources and sinks of OCS and CS2 and
their distributions, Global Biogeochem. Cy., 7, 321–337, 1993.
Chiu, R., Tinel, L., Gonzalez, L., Ciuraru, R., Bernard, F., George, C., and
Volkamer, R.: UV photochemistry of carboxylic acids at the air-sea boundary:
A relevant source of glyoxal and other oxygenated VOC in the marine
atmosphere, Geophys. Res. Lett., 44, 1079–1087, https://doi.org/10.1002/2016GL071240,
2017.
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.
Ciuraru, R., Fine, L., Pinxteren, M. V., D'Anna, B., Herrmann, H., and
George, C.: Unravelling New Processes at Interfaces: Photochemical Isoprene
Production at the Sea Surface, Environ. Sci. Technol., 49, 13199–13205,
https://doi.org/10.1021/acs.est.5b02388, 2015.
Codispoti, L. A.: Interesting times for marine N2O, Science, 327,
1339–1340, https://doi.org/10.1126/science.1184945, 2010.
Conte, L., Szopa, S., Séférian, R., and Bopp, L.: The oceanic cycle of carbon monoxide and its emissions to the atmosphere, Biogeosciences, 16, 881–902, https://doi.org/10.5194/bg-16-881-2019, 2019.
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo,
E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., and Vignati, E.: Fossil CO2 and GHG emissions of all world countries – 2019 Report, EUR 29849 EN, Publications Office of the European Union, Luxembourg, JRC117610, ISBN 978-92-76-11100-9, https://doi.org/10.2760/687800, 2019a.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., and Vignati, E.: EDGAR v5.0 Greenhouse Gas Emissions, European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/488dc3de-f072-4810-ab83-47185158ce2a, 2019b.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., and Oreggioni, G.: EDGAR v5.0 Global Air Pollutant Emissions, European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/377801af-b094-4943-8fdc-f79a7c0c2d19, 2019c.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Sci. Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
Cuevas, C. A., Maffezzoli, N., Corella, J. P., Spolaor, A., Vallelonga, P.,
Kjær, H. A., Simonsen, M., Winstrup, M., Vinther, B., Horvat, C.,
Fernandez, R. P., Kinnison, D., Lamarque, J.-F., Barbante, C., and
Saiz-Lopez, A.: Rapid increase in atmospheric iodine levels in the North
Atlantic since the mid-20th century, Nat. Commun., 9, 1452,
https://doi.org/10.1038/s41467-018-03756-1, 2018.
Da-Allada, C. Y., Gaillard, F., and Kolodziejczyk, N.: Mixed-layer salinity
budget in the tropical Indian Ocean: seasonal cycle based only on
observations, Ocean Dynam., 65, 845–857,
https://doi.org/10.1007/s10236-015-0837-7, 2015.
Daniel, J. S. and Solomon, S.: On the climate forcing of carbon monoxide,
J. Geophys. Res., 103, 13249–13260, https://doi.org/10.1029/98JD00822, 1998.
David, L. M. and Nair, P. R.: Diurnal and seasonal variability of surface
ozone and NOx at a tropical coastal site: Association with mesoscale
and synoptic meteorological conditions, J. Geophys. Res., 116, D10303,
https://doi.org/10.1029/2010JD015076, 2011.
David, L. M. and Nair, P. R.: Tropospheric column O3 and NO2 over
the Indian region observed by Ozone Monitoring Instrument (OMI): Seasonal
changes and long-term trends, Atmos. Environ., 65, 25–39,
https://doi.org/10.1016/j.atmosenv.2012.09.033, 2013.
David, L. M., Girach, I. A., and Nair, P. R.: Distribution of ozone and its precursors over Bay of Bengal during winter 2009: role of meteorology, Ann. Geophys., 29, 1613–1627, https://doi.org/10.5194/angeo-29-1613-2011, 2011.
Davidson, E. A.: The contribution of manure and fertilizer nitrogen to
atmospheric nitrous oxide since 1860, Nat. Geosci., 2, 659–662,
https://doi.org/10.1038/NGEO608, 2009.
Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez-Alonso, S., Worden, H. M., Ziskin, D., and Andreae, M. O.: Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580, https://doi.org/10.5194/amt-12-4561-2019, 2019.
De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Chan, K.-L., Donner, S., Eichmann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V., Lambert, J.-C., Langerock, B., Lerot, C., Liu, C., Loyola, D., Piters, A., Richter, A., Rivera Cárdenas, C., Romahn, F., Ryan, R. G., Sinha, V., Theys, N., Vlietinck, J., Wagner, T., Wang, T., Yu, H., and Van Roozendael, M.: Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements, Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021, 2021.
DeVries, T., Le Quéré, C., Andrews, O., Berthet, S., Hauck, J.,
Ilyina, T., Landschützer, P., Lenton, A., Lima, I. D., Nowicki, M.,
Schwinger, J., and Séférian, R.: Decadal trends in the ocean carbon
sink, P. Natl. Acad. Sci. USA, 116, 11646–11651, https://doi.org/10.1073/pnas.1900371116, 2019.
Dixit, A., Krishna, L., Bharti, R., and Mahanta, C.: Net Sea–Air CO2 Fluxes and Modeled Partial Pressure of CO2 in Open Ocean of Bay of Bengal, IEEE J. Sel. Top. Appl., 12, 2462–2469, https://doi.org/10.1109/JSTARS.2019.2902253, 2019.
Dong, L. and Zhou, T.: The Indian Ocean sea surface temperature warming
simulated by CMIP5 models during the twentieth century: Competing forcing
roles of GHGs and anthropogenic aerosols, J. Climate, 27, 3348–3362, 2014.
Dong, L., Zhou, T., and Wu, B.: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism, Clim. Dynam., 42, 203–217, https://doi.org/10.1007/s00382-013-1722-z, 2014.
Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song, M., Tian,
D., Liu, P., Liu, J., Xue, C., and Ye, C.: An important missing source of
atmospheric carbonyl sulfide: Domestic coal combustion, Geophys. Res. Lett.,
43, 8720–8727, https://doi.org/10.1002/2016gl070075, 2016.
Du, Y. and Xie, S. P.: Role of atmospheric adjustments in the tropical Indian
Ocean warming during the 20th century in climate models, Geophys. Res.
Lett., 35, L08712, https://doi.org/10.1029/2008GL033631, 2008.
Du, Y., Zhang, Y., Feng, M., Wang, T., Zhang, N., and Wijffels, S. E.: Decadal trends of the upper ocean salinity in the tropical Indo–Pacific since mid-1990s, Sci. Rep., 5, 16050, https://doi.org/10.1038/srep16050, 2015.
Duflot, V., Tulet, P., Flores, O., Barthe, C., Colomb, A., Deguillaume, L., Vaïtilingom, M., Perring, A., Huffman, A., Hernandez, M. T., Sellegri, K., Robinson, E., O'Connor, D. J., Gomez, O. M., Burnet, F., Bourrianne, T., Strasberg, D., Rocco, M., Bertram, A. K., Chazette, P., Totems, J., Fournel, J., Stamenoff, P., Metzger, J.-M., Chabasset, M., Rousseau, C., Bourrianne, E., Sancelme, M., Delort, A.-M., Wegener, R. E., Chou, C., and Elizondo, P.: Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forest–gas–aerosol–cloud system on the tropical island of La Réunion, Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, 2019.
Edtbauer, A., Stönner, C., Pfannerstill, E. Y., Berasategui, M., Walter, D., Crowley, J. N., Lelieveld, J., and Williams, J.: A new marine biogenic emission: methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO2) measured in air over the Arabian Sea, Atmos. Chem. Phys., 20, 6081–6094, https://doi.org/10.5194/acp-20-6081-2020, 2020.
Endresen, Ø., Sørgård, E., Sundet, J. K., Dalsøren, S. B.,
Isaksen, I. S. A., Berglen, T. F., and Gravir, G.: Emission from international sea transportation and environmental impact, J. Geophys.
Res., 108, 4560, https://doi.org/10.1029/2002JD002898, 2003.
Engel, A. and Rigby, M. (Lead Authors), Burkholder, J. B., Fernandez, R. P. Froidevaux, L., Hall, B. D., Hossaini, R., Saito, T., Vollmer, M. K., and Yao, B.: Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol, chap. 1, in: Scientific assessment of ozone depletion: 2018, Global ozone research and monitoring project, report no. 58, World Meteorological Organization, Geneva, Switzerland, ISBN 978-1-7329317-1-8, 2018.
Ethé, C., Basdevant, C., Sadourny, R., Appu, K. S., Harenduprakash, L.,
Sarode, P. R., and Viswanathan, G.: Air mass motion, temperature, and
humidity over the Arabian Sea and western Indian Ocean during the INDOEX
intensive phase, as obtained from a set of superpressure drifting balloons,
J. Geophys. Res., 107, 8023, https://doi.org/10.1029/2001JD001120, 2002.
Exton, D. A., Suggett, D. J., McGenity, T. J., and Steinke, M.:
Chlorophyll-normalized isoprene production in laboratory cultures of marine
microalgae and implications for global models, Limnol. Oceanogr., 58,
1301–1311, https://doi.org/10.4319/lo.2013.58.4.1301, 2013.
Fiehn, A., Quack, B., Hepach, H., Fuhlbrügge, S., Tegtmeier, S., Toohey, M., Atlas, E., and Krüger, K.: Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon, Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, 2017.
Fiehn, A., Quack, B., Stemmler, I., Ziska, F., and Krüger, K.: Importance of seasonally resolved oceanic emissions for bromoform delivery from the tropical Indian Ocean and west Pacific to the stratosphere, Atmos. Chem. Phys., 18, 11973–11990, https://doi.org/10.5194/acp-18-11973-2018, 2018.
Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:
Characterizing the tropospheric ozone response to methane emission controls
and the benefits to climate and air quality, J. Geophys. Res., 113,
D08307, https://doi.org/10.1029/2007JD009162, 2008.
Franke, K., Richter, A., Bovensmann, H., Eyring, V., Jöckel, P., Hoor, P., and Burrows, J. P.: Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data, Atmos. Chem. Phys., 9, 7289–7301, https://doi.org/10.5194/acp-9-7289-2009, 2009.
Fuge, R. and Johnson, C. C.: Iodine and human health, the role of
environmental geochemistry and diet, a review, Appl. Geochem., 63, 282–302,
2015.
Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales, Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, 2018.
Ganguly, N. D. and Tzanis, C.: Study of Stratosphere-troposphere exchange
events of ozone in India and Greece using ozonesonde ascents, Met. Apps, 18,
467–474, https://doi.org/10.1002/met.241, 2011.
Gantt, B., Meskhidze, N., and Kamykowski, D.: A new physically-based quantification of marine isoprene and primary organic aerosol emissions, Atmos. Chem. Phys., 9, 4915–4927, https://doi.org/10.5194/acp-9-4915-2009, 2009.
GDAS: L2 CH4 profile (TIR) v01.20, GDAS [data set], https://data2.gosat.nies.go.jp/GosatDataArchiveService/usr/download/ProductPage/view (last access: 17 August 2021), 2018.
GESAMP: The Atmospheric Input of Chemicals to the Ocean, Rep. Stud. GESAMP, 84, 69, http://www.gesamp.org/publications/the-atmospheric-input-of-chemicals-to-the-ocean (last access: 1 July 2021), 2012.
Ghude, S. D., Beig, G., Kulkarni, P. S., Kanawade, V. P., Fadnavis, S.,
Remedios, J. J., and Kulkarni, S. H.: Regional CO pollution over the
Indian-subcontinent and various transport pathways as observed by MOPITT,
Int. J. Remote Sens., 32, 6133–6148, 2011.
Ghude, S. D., Kulkarni, S. H., Jena, C., Pfister, G. G., Beig, G., Fadnavis,
S., and van der A, R. J.: Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian Subcontinent, J. Geophys. Res., 118, 1075–1089, https://doi.org/10.1029/2012JD017811,
2013.
Gibb, S. W., Mantouura, R. F. C., and Liss, P. S.: Ocean-atmosphere exchange
and speciation of ammonia and methylamines in the region of the NW Arbian
Sea, Global Biogeochem. Cy., 13, 161–178, 1999.
Girach, I. A. and Nair, P. R.: On the vertical distribution of carbon
monoxide over Bay of Bengal during winter: role of water vapour and vertical
updrafts, J. Atmos. Sol.-Terr. Phys., 117, 31–47,
https://doi.org/10.1016/j.jastp.2014.05.003, 2014a.
Girach, I. A. and Nair, P. R.: Carbon monoxide over Indian region as
observed by MOPITT, Atmos. Environ., 99, 599–609,
https://doi.org/10.1016/j.atmosenv.2014.10.019, 2014b.
Girach, I. A., Ojha, N., Nair, P. R., Pozzer, A., Tiwari, Y. K., Kumar, K. R., and Lelieveld, J.: Variations in O3, CO, and CH4 over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations, Atmos. Chem. Phys., 17, 257–275, https://doi.org/10.5194/acp-17-257-2017, 2017.
Girach, I. A., Ojha, N., Nair, P. R., Tiwari, Y. K., and Kumar, K. R.:
Variations of trace gases over the Bay of Bengal during the summer monsoon,
J. Earth Syst. Sci., 127, 15, https://doi.org/10.1007/s12040-017-0915-y, 2018.
Girach, I. A., Nair, P. R., Ojha, N., and Sahu, S. K.: Tropospheric carbon
monoxide over the northern Indian Ocean during winter: Influence of
inter-continental transport, Clim. Dynam., 54, 5049–5064,
https://doi.org/10.1007/s00382-020-05269-4, 2020a.
Girach, I. A., Tripathi, N., Nair, P. R., Sahu, L. K., and Ojha, N.: O3 and CO in the South Asian outflow over the Bay of Bengal: impact of monsoonal dynamics and chemistry, Atmos. Environ., 233, 117610, https://doi.org/10.1016/j.atmosenv.2020.117610, 2020b.
Glatthor, N., Höpfner, M., Baker, I. T., Berry, J., Campbell, J. E.,
Kawa, S. R., Krysztofiak, G., Leyser, A., Sinnhuber, B.-M., Stiller, G. P.,
Stinecipher, J., and von Clarmann, T.: Tropical sources and sinks of carbonyl
sulfide observed from space, Geophys. Res. Lett., 42, 10082–10090,
https://doi.org/10.1002/2015GL066293, 2015.
Goes, J. I., Thoppil, P. G., Gomes, H., and Fasullo, J. T.: Warming of the
Eurasian landmass is making the Arabian Sea more productive, Science, 308, 545–547, https://doi.org/10.1126/science.1106610, 2005.
Gopika, S., Izumo, T., Vialard, J., Lengaigne, M., Suresh, I., and
Kumar, M. R. R.: Aliasing of the Indian Ocean externally-forced warming spatial pattern by internal climate variability, Clim. Dynam., 54, 1093–1111, 2020.
Gopikrishnan, G. S. and Kuttippurath, J.: A decade of satellite
observations reveal significant increase in atmospheric formaldehyde from
shipping in Indian Ocean, Atmos. Envron., 246, 118095,
https://doi.org/10.1016/j.atmosenv.2020.118095, 2021.
Graedel, T. E. and Crutzen, P. J.: Atmospheric Change: an Earth System
Perspective, W. H. Freeman, New York, ISBN 9780716723325, 1992.
Gregg, W. W. and Rousseaux, C. S.: Global ocean primary production trends
in the modern ocean color satellite record (1998–2015), Environ. Res. Lett.,
14, 1–9, 2019.
Gschwend, P. M., MacFarlane, J. K., and Newman, K. A.: Volatile halogenated
organic compounds released to seawater from temperate marine macroalgae,
Science, 227, 1033–1035, 1985.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guieu, C., A., Azhar, M., Aumont, O., Mahowald, N., Levy, M., Ethé, C.,
and Lachkar, Z.: Major impact of dust deposition on the productivity of the
Arabian Sea, Geophys. Res. Lett., 46, 6736–6744,
https://doi.org/10.1029/2019GL082770, 2019.
Han, W. and McCreary, J. P.: Modelling salinity distributions in the Indian
Ocean, J. Geophys. Res., 106, 859–877, 2001.
Han, W., Vialard, J., McPhaden, M. J., Lee, T., Masumoto, Y., Feng, M., and de Ruijter, W. P.: Indian Ocean decadal variability: a review, B. Am. Meteorol. Soc., 95, 1679–1703, 2014.
Han, Z., Su, T., Zhang, Q., Wen, Q., and Feng, G.: Thermodynamic and dynamic
effects of increased moisture sources over the Tropical Indian Ocean
in recent decades, Clim. Dynam., 53, 7081–7096, 2019.
Hanumanthu, S., Vogel, B., Müller, R., Brunamonti, S., Fadnavis, S., Li, D., Ölsner, P., Naja, M., Singh, B. B., Kumar, K. R., Sonbawne, S., Jauhiainen, H., Vömel, H., Luo, B., Jorge, T., Wienhold, F. G., Dirkson, R., and Peter, T.: Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills, Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, 2020.
Hastenrath, S. and Polzin, D.: Dynamics of the surface wind field over the
equatorial Indian Ocean, Q. J. Roy. Meteor. Soc., 130, 503–517,
https://doi.org/10.1256/qj.03.79, 2004.
Hay, T., Kreher, K., and Riedel, K.: Bromine explosions and Antarctic ozone,
Water and Atmosphere, 15, 12–13, 2007.
Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from
isoprene oxidation, Geophys. Res. Lett., 33, 6–9, https://doi.org/10.1029/2006gl025976, 2006.
Herut, B., Rahav, E., Tsagaraki, T. M., Giannakourou, A., Tsiola, A., Psarra, S., Lagaria, A., Papageorgiou, N., Mihalopoulos, N., Theodosi, C. N., Violaki, K., Stathopoulou, E., Scoullos, M., Krom, M. D., Stockdale, A., Shi, Z., Berman-Frank, I., Meador, T. B., Tanaka, T., and Paraskevi, P.: The Potential Impact of
Saharan Dust and Polluted Aerosols on Microbial Populations in the East
Mediterranean Sea, an Overview of a Mesocosm Experimental Approach,
Frontiers in Marine Science, 3, 226, https://doi.org/10.3389/fmars.2016.00226, 2016.
Hönninger, G.: Halogen Oxide Studies in the Boundary Layer by Multi Axis
Differential Optical Absorption Spectroscopy and Active Longpath-DOAS,
University of Heidelberg, https://doi.org/10.11588/heidok.00001940, 2002.
Hood, R. R., Urban, E. R., McPhaden, M. J., Su, D., and Raes, E.: The 2nd
International Indian Ocean Expedition (IIOE-2): Motivating New Exploration
in a Poorly Understood Basin, Limnol. Oceanogr. Bull., 25, 117–124, https://doi.org/10.1002/lob.10149, 2016.
Hood R. R., Beckley, L. E., and Wiggert, J. D.: Biogeochemical and ecological
impacts of boundary currents in the Indian Ocean, Prog. Oceanogr., 156,
290–325, 2017.
Hossaini, R., Mantle, H., Chipperfield, M. P., Montzka, S. A., Hamer, P., Ziska, F., Quack, B., Krüger, K., Tegtmeier, S., Atlas, E., Sala, S., Engel, A., Bönisch, H., Keber, T., Oram, D., Mills, G., Ordóñez, C., Saiz-Lopez, A., Warwick, N., Liang, Q., Feng, W., Moore, F., Miller, B. R., Marécal, V., Richards, N. A. D., Dorf, M., and Pfeilsticker, K.: Evaluating global emission inventories of biogenic bromocarbons, Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013, 2013.
Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S.-C., and Holben, B. N.: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010, Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, 2012.
Hu, Q. H., Xie, Z. Q., Wang, X. M., Kang, H., He, Q. F., and Zhang, P.:
Secondary organic aerosols over oceans via oxidation of isoprene and
monoterpenes from Arctic to Antarctic, Sci. Rep., 3, 2280, https://doi.org/10.1038/srep02280, 2013.
Hu, S. and Sprintall, J.: Observed strengthening of interbasin exchange via
the Indonesian seas due to rainfall intensification, Geophys. Res. Lett., 44,
1448–1456, https://doi.org/10.1002/2016GL072494, 2017.
Inamdar, S., Tinel, L., Chance, R., Carpenter, L. J., Sabu, P., Chacko, R., Tripathy, S. C., Kerkar, A. U., Sinha, A. K., Bhaskar, P. V., Sarkar, A., Roy, R., Sherwen, T., Cuevas, C., Saiz-Lopez, A., Ram, K., and Mahajan, A. S.: Estimation of reactive inorganic iodine fluxes in the Indian and Southern Ocean marine boundary layer, Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, 2020.
Inomata, Y., Hayashi, M., Osada, K., and Iwasaka, Y.: Spatial distributions
of volatile sulfur compounds in surface seawater and overlying atmosphere in
the northwestern Pacific Ocean, Eastern Indian Ocean, and Southern Ocean,
Global Biogeochem. Cy., 20, GB2022, https://doi.org/10.1029/2005gb002518, 2006.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324 , 2013.
Ito, A., Nishina, K., Ishijima, K., Hashimoto, S., and Inatomi, M.: Emissions of nitrous oxide
(N2O) from soil surfaces and their historical changes in East Asia: a
model-based assessment, Prog. Earth Planet. Sci., 5, 55,
https://doi.org/10.1186/s40645-018-0215-4, 2018.
Iyengar, G. R., Prasad, V. S., and Ramesh, K. J.: Circulation characteristic
associated with Inter Tropical Convergence Zone during northern winter,
Curr. Sci., 76, 903–906, 1999.
Jensen, T. G.: Cross-equatorial pathways of salt and tracers from the
northern Indian Ocean: Modelling results, Deep-Sea Res. Pt. II, 50, 2111–2128, 2003.
Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D.,
Duce, R. A., Dentener, F., Fennel, K., Kanakidou, M., LaRoche, J., Lee, K., Liss, P., Middelburg, J. J., Moore, J. K., Okin, G., Oschlies, A., Sarin, M., Seitzinger, S., Sharples, J., Singh, A., Suntharalingam, P., Uematsu, M., and Zamora, L. M.: A
reevaluation of the magnitude and impacts of anthropogenic atmospheric
nitrogen inputs on the ocean, Global Biogeochem. Cy., 31, 289–305,
https://doi.org/10.1002/2016GB005586, 2017.
Jordi, A., Basterretxea, G., Tovar-Sánchez, A., Alastuey, A., and
Querol, X.: Copper aerosols inhibit phytoplankton growth, P. Natl. Acad. Sci.
USA, 109, 21246–21249, https://doi.org/10.1073/pnas.1207567110, 2012.
Kavitha, M. and Nair, P. R.: Satellite-retrieved vertical profiles of methane
over the Indian region: impact of synopticscale meteorology, Int. J. Remote
Sens., 40, 5585–5616, https://doi.org/10.1080/01431161.2019.1580791, 2019.
Khemani, L. T., Momin, G. A., and Singh, G.: Variation in trace gases
concentrations in different environments in India, PAGEOPH, 125,
167–181, 1987.
Kornmüller, A.: Review of fundamentals and specific aspects of oxidation
technologies in marine waters, Water Sci. Technol., 55, 1–6, https://doi.org/10.2166/wst.2007.379, 2007.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T.,
Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R.,
Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E.,
Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J.,
Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C.,
Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D.,
Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric
aerosol – Observations, processes, and impact on climate, Rev. Geophys., 54,
278–335, https://doi.org/10.1002/2015rg000511, 2016.
Krishnamurti, T. N., Jha, B., Rasch, P. J., and Ramanathan, V.: A high
resolution global reanalysis highlighting the winter monsoon, Part I,
Reanalysis fields, Met. Atmos. Phys., 64, 123–150, 1997a.
Krishnamurti, T. N., Jha, B., Rasch, P. J., and Ramanathan, V.: A high
resolution global reanalysis highlighting the winter monsoon, Part II,
transients and passive tracer transports, Met. Atmos. Phys., 64, 151–171,
1997b.
Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., and Chakraborty, S.: Assessment of Climate Change over the Indian Region,
Springer Singapore, https://doi.org/10.1007/978-981-15-4327-2, 2020.
Krom, M. D., Shi, Z., Stockdale, A., Berman-Frank, I., Giannakourou, A., Herut, B., Lagaria, A., Papageorgiou, N., Pitta, P., Psarra, S., Rahav, E., Scoullos, M.,
Stathopoulou, E., Tsiola, A., and Tsagaraki, T. M.: Response of the Eastern
Mediterranean Microbial Ecosystem to Dust and Dust Affected by Acid
Processing in the Atmosphere, Frontiers in Marine Science, 3, 133,
https://doi.org/10.3389/fmars.2016.00133, 2016.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Kuai, L., Worden, J. R., Campbell, J. E., Kulawik, S. S., Li, K.-F., Lee,
M., Weidner, R. J., Montzka, S. A., Moore, F. L., Berry, J. A., Baker, I.,
Denning, A. S., Bian, H., Bowman, K. W., Liu, J., and Yung, Y. L.: Estimate
of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric
Emission Spectrometer observations, J. Geophys. Res., 120, 11012–11023,
https://doi.org/10.1002/2015JD023493, 2015.
Kumar, K. R., Tiwari, Y.K., Valsala, V., and R. Murtugudde: On understanding
the land–ocean CO2 contrast over the Bay of Bengal: A case study
during 2009 summer monsoon, Environ. Sci. Pollut. Res., 21, 5066–5075,
https://doi.org/10.1007/s11356-013-2386-2, 2014.
Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A.,
Ladstaetter, A., and Burrows, J. P.: Analysis of tropospheric NOx over
Asia using the Model of Atmospheric Transport and Chemistry (MATCH-MPIC) and
GOME-satellite observations, Atmos. Environ., 38, 581–596, 2004.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013.
Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity, Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, 2018.
Ladstätter-Weißenmayer, A., Altmeyer, H., Bruns, M., Richter, A., Rozanov, A., Rozanov, V., Wittrock, F., and Burrows, J. P.: Measurements of O3, NO2 and BrO during the INDOEX campaign using ground based DOAS and GOME satellite data, Atmos. Chem. Phys., 7, 283–291, https://doi.org/10.5194/acp-7-283-2007, 2007.
Lago, V., Wijffels, S. E., Durack, P. J., Church, J. A., Bindoff, N. L., and
Marsland, S. J.: Simulating the role of surface forcing on observed
multidecadal upper-ocean salinity changes, J. Climate, 29, 5575–5588, https://doi.org/10.1175/JCLI-D-15-0519.1, 2016.
Lal, S. and Lawrence, M. G.: Elevated mixing ratios of surface ozone over
the Arabian Sea, Geophys. Res. Lett., 28, 1487–1490, 2001.
Lal, S., Chand, D., Sahu, L. K., Venkataramani, S., Brasseur, G., and
Schultz, M. G.: High levels of ozone and related gases over the Bay of
Bengal during winter and early spring of 2001, Atmos. Environ., 40,
1633–1644, 2006.
Lal, S., Sahu, L. K., and Venkataramani, S.: Impact of trans- port from the
surrounding continental regions on the distributions of ozone and related
trace gases over the Bay of Bengal during February 2003, J. Geophys. Res.,
112, D14302, https://doi.org/10.1029/2006JD008023, 2007.
Lal, S., Venkataramani, S., Srivastava, S., Gupta, S., Mallik, C., Naja, M.,
Sarangi, T., Acharya, Y. B., and Liu, X.: Transport effects on the vertical
distribution of tropospheric ozone over the tropical marine regions
surrounding India, J. Geophys. Res., 118,
1513–1524, https://doi.org/10.1002/jgrd.50180, 2013.
Lal, S., Venkataramani, S., Chandra, N., Cooper, O. R., Brioude, J., and
Naja, M.: Transport effects on the vertical distribution of tropospheric
ozone over western India, J. Geophys. Res., 119, 10012–10026, https://doi.org/10.1002/2014jd021854, 2014.
Lamb, P. J. and Hastenrath, S.: Climatic Atlas of the Indian Ocean: Surface
Climate and Atmospheric Circulation, The University of Wisconsin
Press, Madison, USA, 1979.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem.
Cy., 25, GB1004, https://doi.org/10.1029/2010gb003850, 2011.
Launois, T., Belviso, S., Bopp, L., Fichot, C. G., and Peylin, P.: A new model for the global biogeochemical cycle of carbonyl sulfide – Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model, Atmos. Chem. Phys., 15, 2295–2312, https://doi.org/10.5194/acp-15-2295-2015, 2015.
Lawrence, M. G.: Export of Air Pollution from Southern Asia and its
Large-Scale Effects, in: Air Pollution. The Handbook of
Environmental Chemistry, edited by: Stohl, A., vol. 4G. Springer, Berlin, Heidelberg, https://doi.org/10.1007/b94526, 2004.
Lawrence, M. G. and Lelieveld, J.: Atmospheric pollutant outflow from southern Asia: a review, Atmos. Chem. Phys., 10, 11017–11096, https://doi.org/10.5194/acp-10-11017-2010, 2010.
Lawrence, M. G., Rasch, P. J., von Kuhlmann, R., Williams, J., Fischer, H., de Reus, M., Lelieveld, J., Crutzen, P. J., Schultz, M., Stier, P., Huntrieser, H., Heland, J., Stohl, A., Forster, C., Elbern, H., Jakobs, H., and Dickerson, R. R.: Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX, Atmos. Chem. Phys., 3, 267–289, https://doi.org/10.5194/acp-3-267-2003, 2003.
Lee, C.-L. and Brimblecombe, P.: Anthropogenic contributions to global
carbonyl sulfide, carbon disulfide and organosulfides fluxes, Earth-Sci.
Rev., 160, 1–18, https://doi.org/10.1016/j.earscirev.2016.06.005, 2016.
Legrand, M., McConnell, J. R., Preunkert, S., Arienzo, M., Chellman, N.,
Gleason, K., Sherwen, T., Evans, M. J., and Carpenter, L. J.: Alpine ice
evidence of a three-fold increase in atmospheric iodine deposition since
1950 in Europe due to increasing oceanic emissions, P. Natl. Acad. Sci. USA,
115, 12136–12141, https://doi.org/10.1073/pnas.1809867115, 2018.
Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., Cass, G. R., Dickerson, R. R., Fischer,
H., de Gouw, J. A., Hansel, A., Jefferson, A., Kley, D., de Laat, A. T. J.,
Lal, S., Lawrence, M. G., Lobert, J. M., Mayol-Bracero, O. L., Mitra, A.
P., Novakov, T., Oltmans, S. J., Prather, K. A., Reiner, T., Rodhe, H.,
Scheeren, H. A., Sikka, D., and Williams, J.: The Indian Ocean experiment:
Widespread air pollution from South and Southeast Asia, Science, 291,
1031–1036, 2001.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H.,
Harder, H., Hofzumahaus, A., Holland, F., Marno, D., Neumaier, M.,Pozzer,
A., Schlager, H., Williams, J., Zahn, A., and Ziereis, H.: The South Asian
monsoon – Pollution pump and purifier, Science, 361, 270–273,
https://doi.org/10.1126/science.aar2501, 2018.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., and Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission removal on public health and climate, P. Natl. Acad. Sci. USA, 116,
7192–7197, https://doi.org/10.1073/pnas.1819989116, 2019.
Lennartz, S. T., Marandino, C. A., von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer, A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., and Krüger, K.: Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide, Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, 2017.
Lennartz, S. T., Marandino, C. A., von Hobe, M., Andreae, M. O., Aranami, K., Atlas, E., Berkelhammer, M., Bingemer, H., Booge, D., Cutter, G., Cortes, P., Kremser, S., Law, C. S., Marriner, A., Simó, R., Quack, B., Uher, G., Xie, H., and Xu, X.: Marine carbonyl sulfide (OCS) and carbon disulfide (CS2): a compilation of measurements in seawater and the marine boundary layer, Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, 2020.
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Huib, V.,
Johan de, V., Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE T. Geosci. Remote Sens., 44, 1093–1101,
https://doi.org/10.1109/tgrs.2006.872333, 2006.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, Z., Lau, W. K., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J.,
Qian, Y., Li, J., Zhou, T., Fan., J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhao, P., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929, 2016.
Liang, Q., Stolarski, R. S., Kawa, S. R., Nielsen, J. E., Douglass, A. R., Rodriguez, J. M., Blake, D. R., Atlas, E. L., and Ott, L. E.: Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2, Atmos. Chem. Phys., 10, 2269–2286, https://doi.org/10.5194/acp-10-2269-2010, 2010.
Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., and Huebert, B.: Tropospheric NOx and O3 budgets in the equatorial Pacific, J.
Geophys. Res., 88, 1360–1368, 1983.
Liu, X., Bhartia, P. K., Chance, K., Spurr, R. J. D., and Kurosu, T. P.: Ozone profile retrievals from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 2521–2537, https://doi.org/10.5194/acp-10-2521-2010, 2010.
Llovel, W. and Lee, T.: Importance and origin of halosteric contribution to
sea level change in the southeast Indian Ocean during 2005–2013, Geophys.
Res. Lett., 42, 1148–1157, 2015.
Löscher, C. R.: Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?, Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, 2021.
Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The
influence of chronic ozone exposure on global carbon and water cycles, J.
Climate, 28, 292–305, https://doi.org/10.1175/JCLI-D-14-00223.1, 2015.
Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H., and Parker, R. J.: An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data, Atmos. Chem. Phys., 19, 14721–14740, https://doi.org/10.5194/acp-19-14721-2019, 2019.
Luo, G. and Yu, F.: A numerical evaluation of global oceanic emissions of α-pinene and isoprene, Atmos. Chem. Phys., 10, 2007–2015, https://doi.org/10.5194/acp-10-2007-2010, 2010.
Ma, X., Bange, H. W., Eirund, G. K., and Arévalo-Martínez, D. L.:
Nitrous oxide and hydroxylamine measurements in the Southwest Indian Ocean,
J. Mar. Syst., 209, 103062, https://doi.org/10.1016/j.jmarsys.2018.03.003, 2018.
Maas, J., Tegtmeier, S., Jia, Y., Quack, B., Durgadoo, J. V., and Biastoch, A.: Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia, Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, 2021.
Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W., Saiz-Lopez, A., Jones, C. E., Carpenter, L. J., and McFiggans, G. B.: Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 4611–4624, https://doi.org/10.5194/acp-10-4611-2010, 2010.
Mahajan, A. S., De Smedt, I., Biswas, M. S., Ghude, S. D., Fadnavis, S., Roy,
C., and van Roozendael, M.: Inter-annual variations in satellite observations of nitrogen dioxide and formaldehyde over India, Atmos. Environ., 116, 194–201, https://doi.org/10.1016/j.atmosenv.2015.06.004, 2015a.
Mahajan, A. S., Fadnavis, S., Thomas, M. A., Pozzoli, L., Gupta, S., Royer, S.-J., Saiz-Lopez, A., and Simó, R.: Quantifying the impacts of an updated global dimethyl sulfide
climatology on cloud microphysics and aerosol radiative forcing, J. Geophys.
Res., 120, 1–13, https://doi.org/10.1002/2014JD022687, 2015b.
Mahajan, A. S., Tinel, L., Hulswar, S., Cuevas, C. A., Wang, S., Ghude, S., Naik, R. K., Mishra, R. K., Sabu, P., Sarkar, A., Anilkumar, N., and Saiz Lopez, A.: Observations of iodine oxide in the Indian Ocean Marine Boundary
Layer: a transect from the tropics to the high latitudes, Atmos. Environ.
X, 1, 100016, https://doi.org/10.1016/j.aeaoa.2019.100016, 2019a.
Mahajan, A. S., Tinel, L., Sarkar, A., Chance, R., Carpenter, L. J., Hulswar, S., Mali, P., Prakash, S., and Vinayachandran, P. N.: Understanding Iodine Chemistry over the Northern and
Equatorial Indian Ocean, J. Geophys. Res., 124, 8104–8118,
https://doi.org/10.1029/2018JD029063, 2019b.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K, Baker, A. R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts on
marine microorganisms, Nat. Commun., 9, 2614,
https://doi.org/10.1038/s41467-018-04970-7, 2018.
Mallik, C., Lal, S., Venkataramani, S., Naja, M., and Ojha, N.: Variability
in ozone and its precursors over the Bay of Bengal during post-monsoon:
Transport and emission effects, J. Geophys. Res., 118, 10190–10209,
https://doi.org/10.1002/jgrd.50764, 2013.
Mandal, T. K., Khan, A., Ahammed, Y. N., Tanwar, R. S., Parmar, R. S., Zalpuri, K. S., Gupta, P. K., Jain, S. L., Singh, R., Mitra, A. P., Garg, S. C., Suryanarayana, A., Murty, V. S. N., Kumar, M. D., and Shepherd, A. J.: Observations of trace gases and aerosols over the
Indian Ocean during the monsoon transition period, J. Earth Syst. Sci.,
115, 473–484, 2006.
Manö, S. and Andreae, M. O.: Emission of Methyl Bromide from Biomass
Burning, Science, 263, 1255–1257, https://doi.org/10.1126/science.263.5151.1255, 1994.
Marbach, T., Beirle, S., Platt, U., Hoor, P., Wittrock, F., Richter, A., Vrekoussis, M., Grzegorski, M., Burrows, J. P., and Wagner, T.: Satellite measurements of formaldehyde linked to shipping emissions, Atmos. Chem. Phys., 9, 8223–8234, https://doi.org/10.5194/acp-9-8223-2009, 2009.
Martino, M., Mills, G. P., Woeltjen, J., and Liss, P. S.: A new source of
volatile organoiodine compounds in surface seawater, Geophys. Res. Lett.,
36, L01609, https://doi.org/10.1029/2008GL036334, 2009.
Mason, R. P. and Sheu, G.-R.: Role of the ocean in the global mercury
cycle, Global Biogeochem. Cy., 16, 40-41–40-14, https://doi.org/10.1029/2001gb001440, 2002.
Mehlmann, M., Quack, B., Atlas, E., Hepach, H., and Tegtmeier, S.: Natural
and anthropogenic sources of bromoform and dibromomethane in the
oceanographic and biogeochemical regime of the subtropical North East
Atlantic, Environ. Sci. Process. Impacts, 22, 679–707, https://doi.org/10.1039/c9em00599d, 2020.
Metzl, N.: Decadal increase of oceanic carbon dioxide in Southern Indian
Ocean surface waters (1991–2007), Deep-Sea Res. Pt. II, 56, 607–619, https://doi.org/10.1016/j.dsr2.2008.12.007, 2009.
Mihalopoulos, N., Putaud, J. P., Nguyen, B. C., and Belviso, S.: Annual
variation of atmospheric carbonyl sulfide in the marine atmosphere in the
Southern Indian Ocean, J. Atmos. Chem., 13, 73–82,
https://doi.org/10.1007/bf00048101, 1991.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., and Gascon, C.: Global biodiversity conservation: the critical role of hotspots.
Biodiversity hotspots, Springer, Berlin, Heidelberg, 3–22,
https://doi.org/10.1007/978-3-642-20992-5, 2011.
Mohan, S. and Bhaskaran, P. K.: Evaluation of CMIP5 climate model projections
for surface wind speed over the Indian Ocean region, Clim. Dynam., 53,
5415–5435, 2019.
Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillett, R.
W., Galbally, I. E., and Meyer, C. P.: Fundamental ozone photochemistry in
the remote marine boundary layer: The SOAPEX experiment, measurement and
theory, Atmos. Environ., 32, 3647–3664, 1998.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Moorthy, K. K., Satheesh, S. K., Babu, S. S., and Dutt, C. B. S.: Integrated
Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview, J.
Earth Syst. Sci., 117, 243–262, https://doi.org/10.1007/s12040-008-0029-7, 2008.
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y.,
Thomas, J. L., Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., Willis, M. D., and Liggio, J.: OVOCs in the summertime marine Arctic atmosphere, P. Natl. Acad. Sci. USA, 114, 6203–6208, https://doi.org/10.1073/pnas.1620571114, 2017.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107057991, 2013.
Nair, P. R., David, L. M., Girach, I. A., and George, S. K.: Ozone in the
marine boundary layer of Bay of Bengal during post-winter period: Spatial
pattern and role of meteorology, Atmos. Environ., 45, 4671–4681, 2011.
Naja, M., Chand, D., Sahu, L., and Lal, S.: Trace gases over marine regions
around India, Indian J. Mar. Sci., 33, 95–106, 2004.
Nalini, K., Uma, K. N., Sijikumar, S., Tiwari, Y. K., and Ramachandran, R.:
Satellite- and ground-based measurements of CO2 over the Indian region:
its seasonal dependencies, spatial variability, and model estimates, Int. J.
Remote Sens., 39, 7881–7900, https://doi.org/10.1080/01431161.2018.1479787, 2018.
Naqvi, S. W. A., Jayakumar, D. A., Nair, M., Kumar, M. D., and George, M.
D.: Nitrous oxide in the western Bay of Bengal, Mar. Chem., 47, 269–278,
https://doi.org/10.1016/0304-4203(94)90025-6, 1994.
Naqvi, S. W. A., Bange, H. W., Gibb, S. W., Goyet, C., Hatton, A. D., and
Upstill-Goddard, R. C.: Biogeochemical ocean-atmosphere transfers in the
Arabian Sea, Prog. Oceanogr., 65, 116–144,
https://doi.org/10.1016/j.pocean.2005.03.005, 2005.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010a.
Naqvi, S. W. A., Naik, H., D'Souza, W., Narvekar, P. V., Paropkari, A. L.,
and Bange, H. W.: Carbon and nitrogen fluxes in the northern Indian Ocean, in: Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, edited by: Liu, K.-K., Atkinson, L., Quiñones, R., and Talaue-McManus, L., Springer-Verlag, New York, 180–191, https://doi.org/10.1007/978-3-540-92735-8, 2010b.
Nayak, R. K., Dadhwal, V. K., Majumdar, A., Patel, N. R., and Dutt, C. B.
S.: Variability of atmospheric CO2 over India and Surrounding Oceans
and control by Surface Fluxes, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXVIII-8/W20, 96–101, https://doi.org/10.5194/isprsarchives-XXXVIII-8-W20-96-2011, 2011.
Nieves, V., Willis, J. K., and Patzert, W. C.: Recent hiatus caused by decadal shift in Indo-Pacific heating, Science, 349, 532–535,
https://doi.org/10.1126/science.aaa4521, 2015.
Norman, M. and Leck, C.: Distribution of marine boundary layer ammonia over
the Atlantic and Indian Ocean during the Aerosols 99 cruise, J. Geophys.
Res., 110, D16302, https://doi.org/10.1029/2005JD005866, 2005.
Nowak, J. B., Parrish, D. D., Neuman, J. A., Holloway, J. S., Cooper, O. R., Ryerson, T. B., Nicks, J. K., Flocke, F., Roberts, J. M., Atlas, E., de Gouw, J. A., Donnelly, S., Dunlea, E., Hübler, G., Huey, L. G., Schauffler, S., Tanner, D. J., Warneke, C., and Fehsenfeld, F. C.: Gas-phase chemical characteristics of Asian emission
plumes observed during ITCT 2K2 over the eastern North Pacific Ocean, J.
Geophys. Res., 109, D23S19, https://doi.org/10.1029/2003JD004488, 2004.
Oetjen, H.: Measurements of halogen oxides by scattered sunlight
differential optical absorption spectroscopy, University of Bremen, urn:nbn:de:gbv:46-diss000116727, 2009.
Ojha, N., Naja, M., Singh, K. P., Sarangi, T., Kumar, R., Lal, S., Lawrence,
M. G., Butler, T. M., and Chandola, H. C.: Variabilities in ozone at a
semi-urban site in the Indo-Gangetic Plain region: Association with the
meteorology and regional process, J. Geophys. Res., 117, D20301,
https://doi.org/10.1029/2012JD017716, 2012.
Pacyna, J. M. and Pacyna, E. G.: Anthropogenic sources and global inventory of mercury emissions, in: Mercury: Sources, Measurements, Cycles, and Effects, edited by: Parsons, M. B. and Percival, J. B., Short Course Series, vol. 32, Mineralogical Association of Canada, 2005.
Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes
using MODIS chlorophyll observations, Geophys. Res. Lett., 32, L09805, https://doi.org/10.1029/2005gl022592, 2005.
Pandey, P. C., Khare, N., and Sudhakar, M.: Oceanographic research: Indian
efforts and preliminary results from the Southern Ocean, Current Sci., 90,
978–984, 2006.
Pant, V., Deshpande, C. G., and Kamra, A. K.: The concentration and number
size distribution measurements of the Marine Boundary Layer aerosols over
the Indian Ocean, Atmos. Res., 92, 381–393, 2009.
Pathak, H., Li, C., and Wassmann, R.: Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model, Biogeosciences, 2, 113–123, https://doi.org/10.5194/bg-2-113-2005, 2005.
Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., Labiosa, R., and Post, A. F.: Toxicity of atmospheric aerosols on marine
phytoplankton, P. Natl. Acad. Sci. USA, 106, 4601–4605, https://doi.org/10.1073/pnas.0811486106, 2009.
Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., and Peregon, A.: Carbon dioxide emissions
continue to grow amidst slowly emerging climate policies, Nat. Clim. Chang.,
10, 3–6, https://doi.org/10.1038/s41558-019-0659-6, 2020.
Pfannerstill, E. Y., Wang, N., Edtbauer, A., Bourtsoukidis, E., Crowley, J. N., Dienhart, D., Eger, P. G., Ernle, L., Fischer, H., Hottmann, B., Paris, J.-D., Stönner, C., Tadic, I., Walter, D., Lelieveld, J., and Williams, J.: Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry, Atmos. Chem. Phys., 19, 11501–11523, https://doi.org/10.5194/acp-19-11501-2019, 2019.
Phillips, H. E., Tandon, A., Furue, R., Hood, R., Ummenhofer, C. C., Benthuysen, J. A., Menezes, V., Hu, S., Webber, B., Sanchez-Franks, A., Cherian, D., Shroyer, E., Feng, M., Wijesekera, H., Chatterjee, A., Yu, L., Hermes, J., Murtugudde, R., Tozuka, T., Su, D., Singh, A., Centurioni, L., Prakash, S., and Wiggert, J.: Progress in understanding of Indian Ocean circulation, variability, air–sea exchange, and impacts on biogeochemistry, Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, 2021.
Pitts, B. J. F. and Pitts, J. N.: Chemistry of the Upper and Lower
Atmosphere, Academic Press, California, ISBN 978-0122570605, 2000.
Portmann, R. W., Daniel, J. S., and Ravishankara, A. R.: Stratospheric ozone
depletion due to nitrous oxide: influences of other gases, Philos.
T. Roy. Soc. Lond. B, 367, 1256–1264. https://doi.org/10.1098/rstb.2011.0377, 2012.
Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah,
N., de Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of
Bengal less productive during summer monsoon compared to the Arabian Sea?,
Geophys. Res. Lett., 29, 2235, https://doi.org/10.1029/2002GL016013, 2002.
Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D.,
Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., Søvde,
O. A., Isaksen, I. S. A., Froidevaux, L., and Funke, B.: Measuring and
modeling the lifetime of nitrous oxide including its variability, J.
Geophys. Res., 120, 5693–5705, https://doi.org/10.1002/2015JD023267, 2015.
Quack, B., Atlas, E., Petrick, G., and Wallace, D.: Bromoform and
dibromomethane above the Mauritanian upwelling: Atmospheric distributions
and oceanic emissions, J. Geophys. Res., 112, D09312,
https://doi.org/10.1029/2006JD007614, 2007.
Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M., and Bates, T.
S.: Small fraction of marine cloud condensation nuclei made up of sea spray
aerosol, Nat. Geosci., 10, 674–679, 2017.
Raes, E. J., Bodrossy, L., Van de Kamp, J., Holmes, B., Hardman-Mountford,
N., Thompson, P. A., McInnes, A. S., and Waite, A. M.: Reduction of the
Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean, PLOS
ONE, 11, e0145996, https://doi.org/10.1371/journal.pone.0145996, 2016.
Rahav, E., Belkin, N., Paytan, A., and Herut, B.: Phytoplankton and
Bacterial Response to Desert Dust Deposition in the Coastal Waters of the
Southeastern Mediterranean Sea: A Four-Year In Situ Survey, Atmosphere, 9,
305, https://doi.org/10.3390/atmos9080305, 2018.
Rajak, R. and Chattopadhyay, A.: Short and long-term exposure to ambient air
pollution and impact on health in India: a systematic review, Int. J.
Environ. Health Res., 30, 593–617, https://doi.org/10.1080/09603123.2019.1612042, 2020.
Ramanathan, V., Crutzen, P. J., Mitra, A. P., and Sikka, D.: The Indian
Ocean Experiment and the Asian Brown Cloud, Curr. Sci. India, 83, 947–955,
2002.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, P. Natl. Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102, 2005.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K.
A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the
stratosphere, Science, 328, 611–613, https://doi.org/10.1126/science.1182274, 2010.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the north Indian Ocean, J. Geophys.
Res., 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Raut, N., Sitaula, B. K., Bakken, L. R., Bajracharya, R. M., and
Dörsch, P.: Higher N2O emission by intensified crop production in
South Asia, Global Ecology and Conservation, 4, 176–184,
https://doi.org/10.1016/j.gecco.2015.06.004, 2015.
Ravishankara, A., Daniel, J. S., and Portmann, R. W.: Nitrous oxide
(N2O): The dominant ozone-depleting substance emitted in the 21st
century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Rayman, M. P.: The importance of selenium to human health, Lancet, 356,
233–241, 2000.
Read, K., Mahajan, A., Carpenter, L., Evans, M. J., Faria, B. V. E.,
Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.:
Extensive halogen-mediated ozone destruction over the tropical Atlantic
Ocean, Nature, 453, 1232–1235, https://doi.org/10.1038/nature07035, 2008.
Richter, U. and Wallace, D. W. R.: Production of methyl iodide in the
tropical Atlantic Ocean, Geophys. Res. Lett., 31, L23S03, https://doi.org/10.1029/2004GL020779, 2004.
Rixen, T., Goyet, C., and Ittekkot, V.: Diatoms and their influence on the biologically mediated uptake of atmospheric CO2 in the Arabian Sea upwelling system, Biogeosciences, 3, 1–13, https://doi.org/10.5194/bg-3-1-2006, 2006.
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020.
Roser, M., Ritchie H., and Ortiz-Ospina, E.: World Population Growth, Our World in Data, http://ourworldindata.org (last access: 1 July 2021), 2013.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The curious case of
Indian Ocean warming, J. Climate, 27, 8501–8509, 2014.
Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., Goswami, B. N.: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient, Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423, 2015.
Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., and Lévy, M.: A reduction in marine primary productivity driven
by rapid warming over the tropical Indian Ocean, Geophys. Res. Lett., 43,
826–833, https://doi.org/10.1002/2015gl066979, 2016.
Roy, R., Pratihary, A., Narvenkar, G., Mochemadkar, S., Gauns, M., and
Naqvi, S. W. A.: The relationship between volatile halocarbons and
phytoplankton pigments during a Trichodesmium bloom in the coastal eastern
Arabian Sea, Estuar. Coast. Shelf Sci., 95, 110–118,
https://doi.org/10.1016/j.ecss.2011.08.025, 2011.
S5P Data Hub: Sentinel-5P Pre-Operations Data Hub, ESA [data set], https://s5phub.copernicus.eu/, last access: 20 April 2021.
Saha, A., Ghosh, S., Sahana, A. S., and Rao, E. P.: Failure of CMIP5 climate
models in simulating post-1950 decreasing trend of Indian monsoon, Geophys.
Res. Lett., 41, 7323–7330, https://doi.org/10.1002/2014GL061573, 2014.
Sahu, L. K., Lal, S., and Venkataramani, S.: Distributions of O3, CO and
hydrocarbons over the Bay of Bengal: a study to assess the role of transport
from southern India and marine regions during September–October 2002, Atmos.
Environ., 40, 4633–4645, 2006.
Sahu, L. K., Lal, S., and Venkataramani, S.: Impact of monsoon circulations
on oceanic emissions of light alkenes over Bay of Bengal, Global Biogeochem.
Cy., 24, GB4028, https://doi.org/10.1029/2009GB003766, 2010.
Sahu, L. K., Lal, S., and Venkataramani, S.: Seasonality in the latitudinal
distributions of NMHCs over the Bay of Bengal, Atmos. Environ., 45, 2356–2366, https://doi.org/10.1016/j.atmosenv.2011.02.021, 2011.
Saiz-Lopez, A., Fernandez, R. P., Ordóñez, C., Kinnison, D. E., Gómez Martín, J. C., Lamarque, J.-F., and Tilmes, S.: Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys., 14, 13119–13143, https://doi.org/10.5194/acp-14-13119-2014, 2014.
Saiz-Lopez, A., Baidar, S., Cuevas, C. A., Koenig, T. K., Fernandez, R. P.,
Dix, B., Kinnison, D. E., Lamarque, J., Rodriguez-Lloveras, X., Campos, T.
L., and Volkamer, R.: Injection of iodine to the stratosphere, Geophys. Res.
Lett., 42, 6852–6859, https://doi.org/10.1002/2015GL064796, 2015.
Sardessai, S., Ramaiah, N., Prasanna Kumar, S., and de Sousa, S. N.:
Influence of environmental forcings on the seasonality of dissolved oxygen
and nutrients in the Bay of Bengal, J. Marine Res., 65, 301–316, 2007.
Sarma, V. V. S. S., Swathi, P. S., Kumar, M. D., Prasannakumar, S.,
Bhattathiri, P. M. A., Madhupratap, M., Ramaswamy, V., Sarin, M. M., Gauns,
M., Ramaiah, N., Sardessai, S., and de Sousa, S. N.: Carbon budget in the
Eastern and Central Arabian Sea: an Indian JGOFS synthesis, Global
Biogeochem. Cy., 17, 1102, https://doi.org/10.1029/2002GB001978, 2003.
Sarma, V. V. S. S., Kumar, N. A., Prasad, V. R., Venkataramana, V.,
Appalanaidu, S., Sridevi, B., Kumar, B. S. K., Bharati, M. D., Subbaiah, C.
V., Acharyya, T., Rao, G. D., Viswanadham, R., Gawade, L., Manjary, D. T.,
Kumar, P. P., Rajeev, K., Reddy, N. P. C., Sarma, V. V., Kumar, M. D.,
Sadhuram, Y., and Murty, T. V. R.: High CO2 emissions from the tropical
Godavari estuary (India) associated with monsoon river discharges, Geophys.
Res. Lett., 38, L08601, https://doi.org/10.1029/2011gl046928, 2011.
Sarma, V. V. S. S., Lenton, A., Law, R. M., Metzl, N., Patra, P. K., Doney, S., Lima, I. D., Dlugokencky, E., Ramonet, M., and Valsala, V.: Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009, Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, 2013.
Savoie, D. L. and Prospero, J. M.: Comparison of oceanic and continental
sources of non-sea-salt sulphate over the Pacific Ocean, Nature, 339,
685–687, 1989.
Sciare, J., Mihalopoulos, N., Dentener, F. J., and Sciare, L.: Interannual
variability of atmospheric dimethylsulfide in the southern Indian Ocean. J.
Geophys. Res., 105, 26369–26377, 2000.
Schott, F. and McCreary, J. P.: The monsoon circulation of the Indian Ocean,
Prog. Oceanogr., 51, 1–123, 2001.
Schott, F. A., Xie, S.-P., and McCreary, J. P.: Indian Ocean circulation and
climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245,
2009.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd edn., John Wiley & Sons, ISBN 0471720186, 2006.
Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S.,
Jaeglé, L., and Jaffe, D.: Chemical cycling and deposition of
atmospheric mercury: Global constraints from observations, J. Geophys. Res.,
112, D02308, https://doi.org/10.1029/2006JD007450, 2007.
Sharma, S. K., Singh, A. K., Saud, T., Mandal, T. K., Saxena, M., Singh, S., Ghosh, S. K., and Raha, S.: Measurement of ambient NH3 over Bay of Bengal during W_ICARB Campaign, Ann. Geophys., 30, 371–377, https://doi.org/10.5194/angeo-30-371-2012, 2012.
Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production by
Prochlorococcus, a marine cyanobacterium, and other phytoplankton, Mar.
Chem., 80, 227–245, https://doi.org/10.1016/S0304-4203(02)00101-9, 2003.
Shechner, M. and Tas, E.: Ozone Formation Induced by the Impact of Reactive
Bromine and Iodine Species on Photochemistry in a Polluted Marine
Environment, Environ. Sci. Technol., 51, 14030–14037,
https://doi.org/10.1021/acs.est.7b02860, 2017.
Simpson, M. D. and Raman, S.: Role of the land plume in the transport of
ozone over the ocean during INDOEX (1999), Bound.-Lay. Meteorol., 111,
133–152, 2004.
Singh, A. and Ramesh, R.: Environmental controls on new and primary
production in the northern Indian ocean, Prog. Oceanogr., 131, 138–145,
2015.
Singh, D., Ghosh, S., Roxy, M. K., and McDermid, S.: Indian summer monsoon:
extreme events, historical changes, and role of anthropogenic forcings,
Wiley Interdisc. Rev. Clim. Change, 10, 1–35, https://doi.org/10.1002/wcc.571, 2019.
Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J.: High
concentrations and photochemical fate of oxygenated hydrocarbons in the
global troposphere, Nature, 378, 50–54, 1995.
Singh, K., Panda, J., Osuri, K. K., and Vissa, N. K.: Progress in tropical
cyclone predictability and present status in the North Indian Ocean region, in: Tropical Cyclone Dynamics, Prediction, and Detection, edited by: Lupo, A. R., Intech Open, London, UK, https://doi.org/10.5772/64333, 2016.
Singh, K., Panda, J., and Kant, S.: A study on variability in rainfall over
India contributed by cyclonic disturbances in warming climate scenario, Int.
J. Climatology, 40, 3208–3221, https://doi.org/10.1002/joc.6392, 2019.
SOCAT: SOCAT Version 2019, SOCAT [data set], https://www.socat.info/index.php/data-access/ (last access: 12 May 2020), 2019.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Sreeush, M. G., Saran, R., Valsala, V., Pentakota, S., Prasad, K. V. S. R., and Murtugudde, R.: Variability, trend and controlling factors of Ocean
acidification over Western Arabian Sea upwelling region, Mar. Chem., 209, 14–24, https://doi.org/10.1016/j.marchem.2018.12.002, 2019.
Srivastava, S., Lal, S., Venkataramani, S., Gupta, S., and Acharya, Y. B.:
Vertical distribution of ozone in the lower troposphere over the Bay of
Bengal and the Arabian Sea during ICARB-2006: Effects of continental
outflow, J. Geophys. Res., 116, D13301, https://doi.org/10.1029/2010JD015298, 2011.
Srivastava, S., Lal, S., Venkataramani, S., Gupta, S., and Sheel, V.:
Surface distributions of O3, CO and hydrocarbons over the Bay of Bengal
and the Arabian Sea during pre-monsoon season, Atmos. Environ., 47,
459–467, https://doi.org/10.1016/j.atmosenv.2011.10.023, 2012a.
Srivastava, S., Lal, S., Venkataramani, S., Guha, I., and Bala Subrahamanyam,
D.: Airborne measurements of O3, CO, CH4 and NMHCs over the Bay of
Bengal during winter, Atmos. Environ., 59, 597–609,
https://doi.org/10.1016/j.atmosenv.2012.04.054, 2012b.
Stemmler, I., Hense, I., and Quack, B.: Marine sources of bromoform in the global open ocean – global patterns and emissions, Biogeosciences, 12, 1967–1981, https://doi.org/10.5194/bg-12-1967-2015, 2015.
Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., and Feng,
X.: Anthropogenic mercury emissions in China, Atmos. Environ., 39,
7789–7806, https://doi.org/10.1016/j.atmosenv.2005.08.029, 2005.
Sudheesh, V., Gupta, G. V. M., Sudharma, K. V., Naik, H., Shenoy, D. M.,
Sudhakar, M., and Naqvi, S. W. A.: Upwelling intensity modulates N2O
concentrations over the western Indian shelf, J. Geophys. Res., 121,
8551–8565, https://doi.org/10.1002/2016jc012166, 2016.
Suntharalingam, P., Kettle, A. J., Montzka, S. M., and Jacob, D. J.: Global
3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide:
Implications for terrestrial vegetation uptake, Geophys. Res. Lett., 35, L19801, https://doi.org/10.1029/2008gl034332, 2008.
Suntharalingam, P., Zamora, L. M., Bange, H. W., Bikkina, S., Buitenhuis,
E., Kanakidou, M., Lamarque, J.-F., Landolfi, A., Resplandy, L., Sarin, M.
M., Seitzinger, S., and Singh, A.: Anthropogenic nitrogen inputs and impacts
on oceanic N2O fluxes in the northern Indian Ocean: The need for an
integrated observation and modelling approach, Deep-Sea Res. Pt. II, 166, 104–113, https://doi.org/10.1016/j.dsr2.2019.03.007, 2019.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L.,
Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J.
H.: Reactive intermediates revealed in secondary organic aerosol formation
from isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, M., Parchatka, U., Paris, J.-D., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J., Tauer, S., Lelieveld, J., and Fischer, H.: Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula, Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020, 2020.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., and Sabine, C.: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II., 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Tegtmeier, S., Atlas, E., Quack, B., Ziska, F., and Krüger, K.: Variability and past long-term changes of brominated very short-lived substances at the tropical tropopause, Atmos. Chem. Phys., 20, 7103–7123, https://doi.org/10.5194/acp-20-7103-2020, 2020.
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B., Pan, S., Liu, M., Zhang, C., Bruhwiler, L., and Wofsy, S.: Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes, Ecosyst. Health, 1, 1–20, https://doi.org/10.1890/EHS14-0015.1, 2015.
Toihir, A. M., Sivakumar, V., Mbatha, N., Sangeetha, S. K., Bencherif, H., Brunke, E.-G., and Labuschagne, C.: Studies on CO variation and trends over South Africa and the Indian Ocean using TES satellite data, S. Afr. J. Sci., 111, 9–10, https://doi.org/10.17159/SAJS.2015/20140174, 2015.
Tokarczyk, R. and Moore, R. M.: Production of volatile organohalo- gens by
phytoplankton cultures, Geophys. Res. Lett., 21, 285–288,
https://doi.org/10.1029/94GL00009, 1994.
Tomsche, L., Pozzer, A., Ojha, N., Parchatka, U., Lelieveld, J., and Fischer, H.: Upper tropospheric CH4 and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission, Atmos. Chem. Phys., 19, 1915–1939, https://doi.org/10.5194/acp-19-1915-2019, 2019.
Tournadre, J.: Anthropogenic pressure on the open ocean: The growth of ship
traffic revealed by altimeter data analysis, Geophys. Res. Lett., 41,
7924–7932, https://doi.org/10.1002/2014gl061786, 2014.
Tripathi, N., Sahu, L. K., Singh, A., Yadav, R., Patel, A., Patel, K.,
Patel, A., and Patel, K.: Elevated levels of biogenic nonmethane
hydrocarbons in the marine boundary layer of the Arabian Sea during the
intermonsoon, J. Geophys. Res.-Atmos., 124, e2020JD032869, https://doi.org/10.1029/2020JD032869, 2020.
UN-Environment: Global Mercury Assessment 2018. UN-Environment
Programme, Chemicals and Health Branch, Geneva, Switzerland, 59 pp., ISBN 978-92-807-3744-8, 2019.
Valsala, V. and Maksyutov, S.: Interannual variability of the air–sea
CO2 flux in the north Indian Ocean, Ocean Dynam., 63, 165–178,
https://doi.org/10.1007/s10236-012-0588-7, 2013.
Valsala, V. and Murtugudde, R.: Mesoscale and Intraseasonal Air-Sea
CO2 C2 Exchanges in the Western Arabian Sea during Boreal Summer,
Deep-Sea Res. Pt. I, 103, 101–113, https://doi.org/10.1016/j.dsr.2015.06.001, 2015.
Valsala, V., Maksyutov, S., and Murtugudde, R. G.: A window for carbon uptake in the southern subtropical Indian Ocean, Geophys. Res. Lett., 39, L17605, https://doi.org/10.1029/2012GL052857, 2012.
Valsala, V., Sreeush, M. G., and Chakraborty, K.: IOD impacts on
Indian the Ocean Carbon Cycle, J. Geophys. Res., 125, e2020JC016485,
https://doi.org/10.1029/2020JC016485, 2020.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,
Clerbaux, C., and Coheur, P.-F.: Industrial and agricultural ammonia point
sources exposed, Nature, 564, 99–103, https://doi.org/10.1038/s41586-018-0747-1, 2018.
Verreyken, B., Amelynck, C., Schoon, N., Müller, J.-F., Brioude, J., Kumps, N., Hermans, C., Metzger, J.-M., Colomb, A., and Stavrakou, T.: Measurement report: Source apportionment of volatile organic compounds at the remote high-altitude Maïdo observatory, Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021, 2021.
Verver, G. H. L., Sikka, D. R., Lobert, J. M., Stossmeister, G., and
Zachariasse, M.: Overview of the meteorological conditions and atmospheric
transport processes during INDOEX 1999, J. Geophys. Res., 106, 28399–28413,
2001.
Wai, K. M., Wu, S., Kumar, A., and Liao, H.: Seasonal variability and long-term evolution of tropospheric composition in the tropics and Southern Hemisphere, Atmos. Chem. Phys., 14, 4859–4874, https://doi.org/10.5194/acp-14-4859-2014, 2014.
Waliser, D. E. and Gautier, C.: A Satellite-derived Climatology of the ITCZ,
J. Climate, 6, 2162–2174,
https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2, 1993.
Wang, R., Balkanski, Y., Bopp, L., Aumont, O., Boucher, O., Ciais, P.,
Gehlen, M., Peñuelas, J., Ethé, C., Hauglustaine, D., Li, B., Liu,
J., Zhou, F., and Tao, S.: Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming, Geophys. Res. Lett., 42, 10745–10754, https://doi.org/10.1002/2015GL066753, 2015.
Wang, S., Kinnison, D., Montzka, S. A., Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, D. R., Barletta, B., Meinardi, S., Sweeney, C., Moore, F., Long, M., Saiz-Lopez, A., Fernandez, R. P., Tilmes, S., Emmons, L. K., and Lamarque, J.: Ocean biogeochemistry control on the marine emissions of brominated very short-lived ozone-depleting substances: a machine-learning approach, J. Geophys. Res., 124, 12319–12339, https://doi.org/10.1029/2019JD031288, 2019.
Warneck, P.: The relative importance of various pathways for the oxidation
of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather
clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, 1999.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779, 2000.
Williams, J., Fischer, H., Wong, S., Crutzen, P. J., Scheele, M. P., and
Lelieveld, J.: Near equatorial CO and O3 profiles over the Indian Ocean
during the winter monsoon: High O3 levels in the middle troposphere and
interhemispheric exchange, J. Geophys. Res., 107, 8007,
https://doi.org/10.1029/2001JD001126, 2002.
Williams, J., Custer, T., Riede, H., Sander, R., Jöckel, P., Hoor, P.,
Pozzer, A., Wong-Zehnpfennig, S., Hosaynali-Beygi, Z., Fischer, H., Gros,
V., Colomb, A., Bonsang, B., Yassaa, N., Peeken, I., Atlas, E. L., Waluda,
C. M., van Aardenne, J. A., and Lelieveld, J.: Assessing the effect of marine
isoprene and ship emissions on ozone, using modeling and measurements from
the South Atlantic Ocean, Environ. Chem., 7, 171–182, https://doi.org/10.1071/EN09154,
2010.
Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011.
Yamamoto, H., Yokouchi, Y., Otsuki, A., and Itoh, H.: Depth profiles of
volatile halogenated hydrocarbons in seawater in the Bay of Bengal,
Chemosphere, 45, 371–377, https://doi.org/10.1016/S0045-6535(00)00541-5,
2001.
Yang, J., Zhao, W., Wei, L., Zhang, Q., Zhao, Y., Hu, W., Wu, L., Li, X., Pavuluri, C. M., Pan, X., Sun, Y., Wang, Z., Liu, C.-Q., Kawamura, K., and Fu, P.: Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean, Atmos. Chem. Phys., 20, 6841–6860, https://doi.org/10.5194/acp-20-6841-2020, 2020.
Yao, S. L., Huang, G., Wu, R.-G., Qu, X., and Chen, D.: Inhomogeneous warming of the tropical Indian Ocean in the CMIP5 model simulations during 1900–2005
and associated mechanisms, Clim. Dynam., 46, 619–636, https://doi.org/10.1007/s00382-015-2602-5, 2016.
Ye, H., Sheng, J., Tang, D., Morozov, E., Kalhoro, M. A., Wang, S., and Xu,
H.: Examining the Impact of Tropical Cyclones on Air-Sea CO2 Exchanges
in the Bay of Bengal Based on Satellite Data and In Situ Observations, J.
Geophys. Res., 124, 555–576, https://doi.org/10.1029/2018jc014533, 2019.
Yoder, J. A., McClain, C. R., Feldman, G. C., and Esaias, W. E.: Annual
cycles of phytoplankton chlorophyll concentrations in the global ocean: A
satellite view, Global Biogeochem. Cy., 7, 181–193, https://doi.org/10.1029/93gb02358, 1993.
Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., and Yokota, T.: Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717–734, https://doi.org/10.5194/amt-4-717-2011, 2011.
Zavarsky, A., Goddijn-Murphy, L., Steinhoff, T., and Marandino, C. A.:
Bubble-Mediated Gas Transfer and Gas Transfer Suppression of DMS and
CO2, J. Geophys. Res., 123, 6624–6647, https://doi.org/10.1029/2017jd028071, 2018a.
Zavarsky, A., Booge, D., Fiehn, A., Krüger, K., Atlas, E., and
Marandino, C.: The Influence of Air-Sea Fluxes on Atmospheric Aerosols
During the Summer Monsoon Over the Tropical Indian Ocean, Geophys. Res.
Lett., 45, 418–426, https://doi.org/10.1002/2017gl076410, 2018b.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhou, M., Langerock, B., Vigouroux, C., Sha, M. K., Ramonet, M., Delmotte, M., Mahieu, E., Bader, W., Hermans, C., Kumps, N., Metzger, J.-M., Duflot, V., Wang, Z., Palm, M., and De Mazière, M.: Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements, Atmos. Chem. Phys., 18, 13881–13901, https://doi.org/10.5194/acp-18-13881-2018, 2018.
Zhou, S., Gonzalez, L., Leithead, A., Finewax, Z., Thalman, R., Vlasenko, A., Vagle, S., Miller, L. A., Li, S.-M., Bureekul, S., Furutani, H., Uematsu, M., Volkamer, R., and Abbatt, J.: Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer, Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, 2014.
Ziska, F., Quack, B., Abrahamsson, K., Archer, S. D., Atlas, E., Bell, T., Butler, J. H., Carpenter, L. J., Jones, C. E., Harris, N. R. P., Hepach, H., Heumann, K. G., Hughes, C., Kuss, J., Krüger, K., Liss, P., Moore, R. M., Orlikowska, A., Raimund, S., Reeves, C. E., Reifenhäuser, W., Robinson, A. D., Schall, C., Tanhua, T., Tegtmeier, S., Turner, S., Wang, L., Wallace, D., Williams, J., Yamamoto, H., Yvon-Lewis, S., and Yokouchi, Y.: Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide, Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, 2013.
Zou, L. W. and Zhou, T. J.: Near future (2016–2040) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: comparison between RCM downscaling and the driving GCM, Adv. Atmos. Sci., 30, 806–818, 2013.
Download
- Article
(24840 KB) - Full-text XML
Short summary
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia mixes with pristine oceanic air. During the winter monsoon, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its impacts on the upper atmosphere, oceanic biogeochemistry, and marine ecosystems.
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia...
Altmetrics
Final-revised paper
Preprint