Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6507-2022
https://doi.org/10.5194/acp-22-6507-2022
Research article
 | 
19 May 2022
Research article |  | 19 May 2022

Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter

Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng

Related authors

Nonlinear effects of the stratospheric Quasi‐Biennial Oscillation on ENSO modulating PM2.5 over the North China Plain in early winter
Xiadong An, Wen Chen, Tianjiao Ma, and Lifang Sheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-285,https://doi.org/10.5194/egusphere-2025-285, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022,https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015
Xiadong An, Lifang Sheng, Qian Liu, Chun Li, Yang Gao, and Jianping Li
Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020,https://doi.org/10.5194/acp-20-4667-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
How to trace the origins of short-lived atmospheric species: an Arctic example
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025,https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Dust-producing weather patterns of the North American Great Plains
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025,https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025,https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Construction and application of a pollen emissions model based on phenology and random forests
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025,https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary

Cited articles

An, X., Sheng, L., Liu, Q., Li, C., Gao, Y., and Li, J.: The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015, Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020, 2020. 
An, X., Sheng, L., Li, C., Chen, W., Tang, Y., and Huangfu, J.: Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain, Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, 2022. 
Atlas, E. and Giam, C. S.: Ambient Concentration and Precipitation Scavenging of Atmospheric 461 Organic Pollutants, Water Air Soil Poll., 38, 19–36, 1988. 
Baldwin, M. P., Stephenson, D. B., and Jolliffe, I. T.: Spatial weighting and iterative projection methods for EOFs, J. Climate, 22, 234–243, https://doi.org/10.1175/2008JCLI2147.1, 2009. 
Cai, W., Li, K., Liao, H., Wang, H. J., and Wu, L. X.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017. 
Download
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Share
Altmetrics
Final-revised paper
Preprint