Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-6103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Molecular-level nucleation mechanism of iodic acid and methanesulfonic acid
Key Laboratory of Cluster Science, Ministry of Education of China,
School of Chemistry and Chemical Engineering, Beijing Institute of
Technology, Beijing 100081, China
Key Laboratory of Cluster Science, Ministry of Education of China,
School of Chemistry and Chemical Engineering, Beijing Institute of
Technology, Beijing 100081, China
Lin Ji
Department of Chemistry, Capital Normal University, Beijing 100048,
China
Key Laboratory of Cluster Science, Ministry of Education of China,
School of Chemistry and Chemical Engineering, Beijing Institute of
Technology, Beijing 100081, China
Related authors
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194, https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Jiaqi Jin, Runlong Cai, Yiliang Liu, Gan Yang, Yueyang Li, Chuang Li, Lei Yao, Jingkun Jiang, Xiuhui Zhang, and Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2787, https://doi.org/10.5194/egusphere-2025-2787, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Based on observed atmospheric new particle formation events at multiple sites in eastern China, we find that the dominant nucleation mechanism in this region is sulfuric acid-dimethylamine and the differences in the nucleation intensity among campaigns can be largely attributed to temperature and precursor concentrations. Our results also show that oxygenated organic molecules can make a great contribution to the initial growth of freshly nucleated particles in the real atmosphere.
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194, https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Narcisse Tsona Tchinda, Lin Du, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, https://doi.org/10.5194/acp-22-1951-2022, 2022
Short summary
Short summary
This study explores the effect of pyruvic acid (PA) both in the SO3 hydrolysis and in sulfuric-acid-based aerosol formation. Results show that in dry and polluted areas, PA-catalyzed SO3 hydrolysis is about 2 orders of magnitude more efficient at forming sulfuric acid than the water-catalyzed reaction. Moreover, PA can effectively enhance the ternary SA-PA-NH3 particle formation rate by up to 4.7×102 relative to the binary SA-NH3 particle formation rate at cold temperatures.
Ling Liu, Fangqun Yu, Kaipeng Tu, Zhi Yang, and Xiuhui Zhang
Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, https://doi.org/10.5194/acp-21-6221-2021, 2021
Short summary
Short summary
Trifluoroacetic acid (TFA) was previously proved to participate in sulfuric acid (SA)–dimethylamine (DMA) nucleation in Shanghai, China. However, complex atmospheric environments can influence the nucleation of aerosol significantly. We show the influence of different atmospheric conditions on the SA-DMA-TFA nucleation and find the enhancement by TFA can be significant in cold and polluted areas, which provides the perspective of the realistic role of TFA in different atmospheric environments.
Cited articles
Ahlrichs, R., Bär, M., Häser, M., Horn, H., and Kölmel, C.:
Electronic-Structure Calculations on Workstation Computers: The program
system turbomole, Chem. Phys. Lett., 162, 165–169,
https://doi.org/10.1016/0009-2614(89)85118-8, 1989.
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013.
Arquero, K. D., Xu, J., Gerber, R. B., and Finlayson-Pitts, B. J.: Particle
formation and growth from oxalic acid, methanesulfonic acid, trimethylamine
and water: a combined experimental and theoretical study, Phys. Chem. Chem.
Phys., 19, 28286–28301, https://doi.org/10.1039/C7CP04468B, 2017.
Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J.,
Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M.,
Baltensperger, U., Zieger, P., and Schmale, J.: Frequent new particle
formation over the high Arctic pack ice by enhanced iodine emissions, Nat.
Commun., 11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sourees, J. Atmos. Chem.,
14, 315–337, https://doi.org/10.1007/BF00115242,1992.
Beck, L. J., Sarnela, N., Junninen, H., Hoppe, C. J. M., Garmash, O.,
Bianchi, F., Riva, M., Rose, C., Peräkylä, O., Wimmer, D., Kausiala,
O., Jokinen, T., Ahonen, L., Mikkilä, J., Hakala, J., He, X., Kontkanen,
J., Wolf, K. K. E., Cappelletti, D., Mazzola, M., Traversi, R., Petroselli,
C., Viola, A. P., Vitale, V., Lange, R., Massling, A., Nøjgaard, J. K.,
Krejci, R., Karlsson, L., Zieger, P., Jang, S., Lee, K., Vakkari, V.,
Lampilahti, J., Thakur, R. C., Leino, K., Kangasluoma, J., Duplissy, E.,
Siivola, E., Marbouti, M., Tham, Y. J., Saiz-Lopez, A., Petäjä, T.,
Ehn, M., Worsnop, D. R., Skov, H., Kulmala, M., Kerminen, V., and
Sipilä, M.: Differing Mechanisms of New Particle Formation at Two Arctic
Sites, Geophys. Res. Lett., 48, e2020GL091334, https://doi.org/10.1029/2020GL091334, 2021.
Becke, A.: The quantum theory of atoms in molecules: from solid state to DNA and drug design, John Wiley & Sons, https://doi.org/10.1002/9783527610709, 2007.
Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H. C.,
Rosman, K., Dal Maso, M., Makela, J. M., Kulmala, M., and O'Dowd, C. D.:
Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in
the coastal marine boundary layer at Mace Head, Ireland, J. Geophys. Res.-Atmos., 107, PAR 5-1–PAR 5-12 https://doi.org/10.1029/2000jd000229, 2002.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
Phytoplankton, Atmospheric Sulfur, Cloud Albedo and Climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, 2018.
Dal Maso, M., Kulmala, M., Lehtinen, K. E. J., Makela, J. M., Aalto, P., and
O'Dowd, C. D.: Condensation and coagulation sinks and formation of
nucleation mode particles in coastal and boreal forest boundary layers, J.
Geophys. Res.-Atmos., 107, PAR 2-1–PAR 2-10, https://doi.org/10.1029/2001jd001053, 2002.
Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F.,
Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic
marine boundary layer: Comparison of model simulations and field
observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and
MSA(p), J. Geophys. Res.-Atmos., 103, 1657–1678,
https://doi.org/10.1029/97jd03452, 1998.
Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and
Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from
methanesulfonic acid, amines, and water via experiments and ab initio
calculations, P. Natl. Acad. Sci. USA, 109, 18719–18724,
https://doi.org/10.1073/pnas.1211878109, 2012.
Dunning, T. H., Peterson, K. A., and Wilson, A. K.: Gaussian basis sets for
use in correlated molecular calculations. X. The atoms aluminum through
argon revisited, J. Chem. Phys., 114, 9244–9253,
https://doi.org/10.1063/1.1367373, 2001.
Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration
of H2SO4 and methane sulfonic acid and estimates of
H2SO4 production and loss in the atmosphere, J. Geophys. Res.-Atmos., 98, 9001–9010, https://doi.org/10.1029/93JD00031, 1993.
Elm, J. and Kristensen, K.: Basis set convergence of the binding energies of
strongly hydrogen-bonded atmospheric clusters, Phys. Chem. Chem. Phys., 19,
1122–1133, https://doi.org/10.1039/C6CP06851K, 2017.
Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S.,
DeFrees, D. J., and Pople, J. A.: Self-consistent molecular orbital methods.
XXIII. A polarization-type basis set for second-row elements, J. Chem.
Phys., 77, 3654–3665, https://doi.org/10.1063/1.444267, 1982.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Men nucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X.,Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Son nenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J.,Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M.,Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi,R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochter ski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J.: Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, https://gaussian.com/g09citation/ (last access: 7 May 2022), 2009.
Grabowski, S. J.: Hydrogen bonding strength – measures based on geometric
and topological parameters, J. Phys. Org. Chem., 17, 18–31,
https://doi.org/10.1002/poc.685, 2004.
Hatakeyama, S., Okuda, M., and Akimoto, H.: Formation of sulfur dioxide and
methanesulfonic acid in the photooxidation of dimethyl sulfide in the air,
Geophys. Res. Lett., 9, 583–586, https://doi.org/10.1029/GL009i005p00583,
1982.
Hattig, C. and Weigend, F.: CC2 excitation energy calculations on large
molecules using the resolution of the identity approximation, J. Chem.
Phys., 113, 5154–5161, https://doi.org/10.1063/1.1290013, 2000.
Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., Jimenez, J. L., and Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, 2019.
Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics,
J. Mol. Graphics, 14, 33–38, https://doi.org/10.1016/0263-7855(96)00018-5,
1996.
IPCC: Long-term climate change: projections, commitments and
irreversibility, in: Climate Change 2013 – The Physical Science Basis:
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
1029–1136, 2013.
Karl, M., Gross, A., Leck, C., and Pirjola, L.: Intercomparison of
dimethylsulfide oxidation mechanisms for the marine boundary layer: Gaseous
and particulate sulfur constituents, J. Geophys. Res.-Atmos., 112, D15304,
https://doi.org/10.1029/2006jd007914, 2007.
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and
Bianchi, F.: Atmospheric new particle formation and growth: review of field
observations, Environ. Res. Lett., 13, 103003,
https://doi.org/10.1088/1748-9326/aadf3c, 2018.
Khanniche, S., Louis, F., Cantrel, L., and Černušák, I.: A
theoretical study of the microhydration of iodic acid (HOIO2), Comput.
Theor. Chem., 1094, 98–107, https://doi.org/10.1016/j.comptc.2016.09.010,
2016.
Koch, U. and Popelier, P. L. A.: Characterization of CHO hydrogen bonds on
the basis of the charge density, J. Phys. Chem., 99, 9747–9754,
https://doi.org/10.1021/j100024a016, 1995.
Kulmala, M.: How particles nucleate and grow, Science, 302, 1000–1001,
https://doi.org/10.1126/science.1090848, 2003.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E.,
Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S.,
Rantala, P., Franchin, A., Jokinen, T., Järvinen, E.,
Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen,
P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U.,
Ruuskanen, T., Mauldin, R. L., III, Duplissy, J., Vehkamäki, H.,
Bäck, J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M.
V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A.,
Kerminen, V.-M., and Worsnop, D. R.: Direct Observations of Atmospheric
Aerosol Nucleation, Science, 339, 943–946,
https://doi.org/10.1126/science.1227385, 2013.
Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, 2018.
Lane, J. R., Contreras-García, J., Piquemal, J.-P., Miller, B. J., and
Kjaergaard, H. G.: Are bond critical points really critical for hydrogen
bonding?, J. Chem. Theory Comput., 9, 3263–3266,
https://doi.org/10.1021/ct400420r, 2013.
Li, H., Ning, A., Zhong, J., Zhang, H., Liu, L., Zhang, Y., Zhang, X., Zeng,
X. C., and He, H.: Influence of atmospheric conditions on sulfuric
acid-dimethylamine-ammonia-based new particle formation, Chemosphere, 245,
125554, https://doi.org/10.1016/j.chemosphere.2019.125554, 2020.
Lu, T. and Chen, F. W.: Multiwfn: A multifunctional wavefunction analyzer,
J. Comput. Chem., 33, 580–592, https://doi.org/10.1002/jcc.22885, 2012.
Lu, T. and Chen, Q.: Shermo: A general code for calculating molecular
thermochemistry properties, Comput. Theor. Chem., 1200, 113249,
https://doi.org/10.1016/j.comptc.2021.113249, 2021.
Lu, Y., Liu, L., Ning, A., Yang, G., Liu, Y., Kurtén, T., Vehkamäki,
H., Zhang, X., and Wang, L.: Atmospheric sulfuric acid-dimethylamine
nucleation enhanced by trifluoroacetic acid, Geophys. Res. Lett., 47,
e2019GL085627, https://doi.org/10.1029/2019GL085627, 2020.
Martín, J. C. G., Lewis, T. R., Blitz, M. A., Plane, J. M., Kumar, M.,
Francisco, J. S., and Saiz-Lopez, A.: A gas-to-particle conversion mechanism
helps to explain atmospheric particle formation through clustering of iodine
oxides, Nat. Commun., 11, 4521, https://doi.org/10.1038/s41467-020-18252-8,
2020.
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012.
Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009.
O'Dowd, C. D. and de Leeuw, G.: Marine aerosol production: a review of the
current knowledge, Philos. T. R. Soc. A, 365, 1753–1774,
https://doi.org/10.1098/rsta.2007.2043, 2007.
O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H.,
Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.:
Marine aerosol formation from biogenic iodine emissions, Nature, 417,
632–636, https://doi.org/10.1038/nature00775, 2002.
Perraud, V., Horne, J. R., Martinez, A. S., Kalinowski, J., Meinardi, S.,
Dawson, M. L., Wingen, L. M., Dabdub, D., Blake, D. R., Gerber, R. B., and
Finlayson-Pitts, B. J.: The future of airborne sulfur-containing particles
in the absence of fossil fuel sulfur dioxide emissions, P. Natl. Acad.
Sci. USA, 112, 13514–13519, https://doi.org/10.1073/pnas.1510743112,
2015.
Peterson, K. A., Figgen, D., Goll, E., Stoll, H., and Dolg, M.:
Systematically convergent basis sets with relativistic pseudopotentials. II.
Small-core pseudopotentials and correlation consistent basis sets for the
post-d group 16–18 elements, J. Chem. Phys., 119, 11113–11123,
https://doi.org/10.1063/1.1622924, 2003.
Reed, A. E., Curtiss, L. A., and Weinhold, F.: Intermolecular interactions
from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88,
899–926, https://doi.org/10.1021/cr00088a005, 1988.
Rong, H., Liu, J., Zhang, Y., Du, L., Zhang, X., and Li, Z.: Nucleation
mechanisms of iodic acid in clean and polluted coastal regions, Chemosphere,
253, 126743, https://doi.org/10.1016/j.chemosphere.2020.126743, 2020.
Rozas, I., Alkorta, I., and Elguero, J.: Behavior of ylides containing N, O,
and C atoms as hydrogen bond acceptors, J. Am. Chem. Soc., 122, 11154–11161,
https://doi.org/10.1021/ja0017864, 2000.
Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A., and
Skiff, W. M.: UFF, a full periodic table force field for molecular mechanics
and molecular dynamics simulations, J. Am. Chem. Soc., 114, 10024–10035,
https://doi.org/10.1021/ja00051a040, 1992.
Schmitz, G. and Elm, J.: Assessment of the DLPNO Binding Energies of
Strongly Noncovalent Bonded Atmospheric Molecular Clusters, ACS omega, 5,
7601–7612, https://doi.org/10.1021/acsomega.0c00436, 2020.
Shaw, G. E.: Bio-Controlled Thermostasis Involving the Sulfur Cycle, Climatic
Change, 5, 297–303, https://doi.org/10.1007/Bf02423524, 1983.
Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H.,
Kontkanen, J., Richters, S., Kangasluoma, J., Franchin, A.,
Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H., Kurten,
T., Berndt, T., Petäjä, T., Worsnop, D., Ceburnis, D., Kerminen,
V.-M., Kulmala, M., and O'Dowd, C.: Molecular-scale evidence of aerosol
particle formation via sequential addition of HIO3, Nature, 537, 532–534,
https://doi.org/10.1038/nature19314, 2016.
Stewart, J. J. P.: Optimization of parameters for semiempirical methods VI:
more modifications to the NDDO approximations and re-optimization of
parameters, J. Mol. Model., 19, 1–32,
https://doi.org/10.1007/s00894-012-1667-x, 2013.
Stewart, J. J. P.: MOPAC2016, Colorado Springs, CO (USA),
http://openmopac.net/MOPAC2016.html (last access: 7 May 2022), 2016.
Takegawa, N., Seto, T., Moteki, N., Koike, M., Oshima, N., Adachi, K., Kita,
K., Takami, A., and Kondo, Y.: Enhanced new particle formation above the
marine boundary layer over the Yellow Sea: Potential impacts on cloud
condensation nuclei, J. Geophys. Res.-Atmos., 125, e2019JD031448,
https://doi.org/10.1029/2019JD031448, 2020.
Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T.,
Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J.
L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A.,
Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C.
A.: A large source of cloud condensation nuclei from new particle formation
in the tropics, Nature, 574, 399–403,
https://doi.org/10.1038/s41586-019-1638-9, 2019.
Xia, D., Chen, J., Yu, H., Xie, H., Wang, Y., Wang, Z., Xu, T., and Allen,
D. T.: Formation Mechanisms of Iodine–Ammonia Clusters in Polluted Coastal
Areas Unveiled by Thermodynamics and Kinetic Simulations, Environ. Sci.
Technol., 54, 9235–9242, https://doi.org/10.1021/acs.est.9b07476, 2020.
Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations, Atmos. Chem. Phys., 9, 7691–7710, https://doi.org/10.5194/acp-9-7691-2009, 2009.
Yu, H., Ren, L., Huang, X., Xie, M., He, J., and Xiao, H.: Iodine speciation and size distribution in ambient aerosols at a coastal new particle formation hotspot in China, Atmos. Chem. Phys., 19, 4025–4039, https://doi.org/10.5194/acp-19-4025-2019, 2019.
Zhang, J. and Dolg, M.: ABCluster: the artificial bee colony algorithm for
cluster global optimization, Phys. Chem. Chem. Phys., 17, 24173–24181,
https://doi.org/10.1039/c5cp04060d, 2015.
Zhang, R.: Atmospheric science. Getting to the critical nucleus of aerosol
formation, Science, 328, 1366–1367, https://doi.org/10.1126/science.1189732,
2010.
Zheng, G., Wang, Y., Wood, R., Jensen, M. P., Kuang, C., McCoy, I. L.,
Matthews, A., Mei, F., Tomlinson, J. M., Shilling, J. E., Zawadowicz, M. A.,
Crosbie, E., Moore, R., Ziemba, L., Andreae, M. O., and Wang, J.: New
particle formation in the remote marine boundary layer, Nat. Commun., 12,
1–10, https://doi.org/10.1038/s41467-020-20773-1, 2021.
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant...
Altmetrics
Final-revised paper
Preprint