Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5459-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5459-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds
Xiaoqi Xu
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China
Key Laboratory of Transportation Meteorology, CMA, Nanjing, China
Chunsong Lu
CORRESPONDING AUTHOR
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, USA
Shi Luo
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
College of Aviation Meteorology, Civil Aviation Flight University of China, Guanghan, China
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, USA
Satoshi Endo
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, USA
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
Yuan Wang
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
Related authors
No articles found.
Zeen Zhu, Fan Yang, Steven Krueger, and Yangang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3489, https://doi.org/10.5194/egusphere-2025-3489, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
To better understand cloud behavior, we used computer simulations to study how the air mix in clouds. Our results show that the pattern of mixing seen from aircraft measurements may not reflect the true mixing process happening inside clouds. This result suggests that care is needed when using aircraft data to study the cloud mixing process and that new ways of observing clouds could offer clearer insights.
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024, https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Short summary
This study looks at the influence of aerosol and meteorology on precipitating and non-precipitating clouds over the Indo-Gangetic Plain (IGP). A major finding of this study was that the high loading of aerosols led to a high occurrence of precipitating clouds under unstable conditions in summer. The study has the potential to open a new avenue for the scientific community to further explore and understand the complications of aerosol–cloud–precipitation over the complex topography of the IGP.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Sinan Gao, Chunsong Lu, Yangang Liu, Seong Soo Yum, Jiashan Zhu, Lei Zhu, Neel Desai, Yongfeng Ma, and Shang Wu
Atmos. Chem. Phys., 21, 11225–11241, https://doi.org/10.5194/acp-21-11225-2021, https://doi.org/10.5194/acp-21-11225-2021, 2021
Short summary
Short summary
Only a few studies have been focused on the vertical variation of entrainment mixing with low resolutions which are crucial to cloud-related processes. A sawtooth pattern allows for an examination of mixing with high vertical resolution. A new measure is introduced to estimate entrainment mixing to overcome difficulties in existing measures, where vertical profile indicates that entrainment mixing becomes more homogeneous with decreasing altitudes, consistent with the dynamical measures.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Xiaoning Xie, Gunnar Myhre, Xiaodong Liu, Xinzhou Li, Zhengguo Shi, Hongli Wang, Alf Kirkevåg, Jean-Francois Lamarque, Drew Shindell, Toshihiko Takemura, and Yangang Liu
Atmos. Chem. Phys., 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020, https://doi.org/10.5194/acp-20-11823-2020, 2020
Short summary
Short summary
Black carbon (BC) and greenhouse gases (GHGs) enhance precipitation minus evaporation (P–E) of Asian summer monsoon (ASM). Further analysis reveals distinct mechanisms controlling BC- and GHG-induced ASM P–E increases. The change in ASM P–E by BC is dominated by the dynamic effect of enhanced large-scale monsoon circulation, the GHG-induced change by the thermodynamic effect of increasing atmospheric water vapor. This results from different atmospheric temperature feedbacks due to BC and GHGs.
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020, https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Short summary
Observational and modeling results both show that the surface dust concentrations over the East Asian (EA) dust source region and over the northwestern Pacific (NP) in MAM are significantly positively correlated with TPSH. These atmospheric circulation anomalies induced by the increased TPSH result in increasing westerly winds over both EA and NP, which in turn increases dust emissions over the dust source and dust transport over these two regions, as well as the regional dust cycles.
Cited articles
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.
Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P.
K.: Numerical simulation of cloud-clear air interfacial mixing: Effects on
cloud microphysics, J. Atmos. Sci., 63, 3204–3225, https://doi.org/10.1175/JAS3813.1,
2006.
Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P.
K.: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous
versus inhomogeneous mixing, J. Atmos. Sci., 66, 2493–2500,
https://doi.org/10.1175/2009JAS2956.1, 2009.
Burnet, F. and Brenguier, J. L.: Observational study of the
entrainment-mixing process in warm convective clouds, J. Atmos. Sci., 64,
1995–2011, https://doi.org/10.1175/JAS3928.1, 2007.
Chosson, F., Brenguier, J.-L., and Schüller, L.: Entrainment-mixing and
radiative transfer simulation in boundary layer clouds, J. Atmos. Sci., 64,
2670–2682, https://doi.org/10.1175/JAS3975.1, 2007.
Deardorff, J.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980.
Del Genio, A. D. and Wu, J.: The role of entrainment in the diurnal cycle of
continental convection, J. Climate, 23, 2722–2738, https://doi.org/10.1175/2009JCLI3340.1, 2010.
Endo, S., Fridlind, A. M., Lin, W., Vogelmann, A. M., Toto, T., Ackerman, A.
S., McFarquhar, G. M., Jackson, R. C., Jonsson, H. H., and Liu, Y.: RACORO
continental boundary layer cloud investigations: 2. Large-eddy simulations
of cumulus clouds and evaluation with in situ and ground-based
observations, J. Geophys. Res.-Atmos., 120, 5993–6014, 2015.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/jas-d-16-0037.1, 2016.
Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., and Artaxo, P.: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds, Atmos. Chem. Phys., 8, 1661–1675, https://doi.org/10.5194/acp-8-1661-2008, 2008.
Freud, E., Rosenfeld, D., and Kulkarni, J. R.: Resolving both entrainment-mixing and number of activated CCN in deep convective clouds, Atmos. Chem. Phys., 11, 12887–12900, https://doi.org/10.5194/acp-11-12887-2011, 2011.
Gao, S., Lu, C., Liu, Y., Mei, F., Wang, J., Zhu, L., and Yan, S.:
Contrasting Scale Dependence of Entrainment-Mixing Mechanisms in
Stratocumulus Clouds, Geophys. Res. Lett., 47, e2020GL086970, https://doi.org/10.1029/2020gl086970, 2020.
Gao, S., Lu, C., Liu, Y., Yum, S. S., Zhu, J., Zhu, L., Desai, N., Ma, Y., and Wu, S.: Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment, Atmos. Chem. Phys., 21, 11225–11241, https://doi.org/10.5194/acp-21-11225-2021, 2021.
Gao, Z., Liu, Y., Li, X., and Lu, C.: Investigation of Turbulent
Entrainment-Mixing Processes with a New Particle-Resolved Direct Numerical
Simulation Model, J. Geophys. Res., 123, 2194–2214, 2018.
Gerber, H. E., Frick, G. M., Jensen, J. B., and Hudson, J. G.: Entrainment,
mixing, and microphysics in trade-wind cumulus, J. Meteorol. Soc. Jpn.,
86A, 87–106, 2008.
Grabowski, W. W.: Indirect impact of atmospheric aerosols in idealized
simulations of convective-radiative quasi equilibrium, J. Climate, 19,
4664–4682, https://doi.org/10.1175/JCLI3857.1, 2006.
Grabowski, W. W.: Representation of turbulent mixing and buoyancy reversal
in bulk cloud models, J. Atmos. Sci., 64, 3666–3680, 2007.
Grabowski, W. W. and Morrison, H.: Indirect Impact of Atmospheric Aerosols
in Idealized Simulations of Convective–Radiative Quasi Equilibrium. Part
II: Double-Moment Microphysics, J. Climate, 24, 1897–1912, https://doi.org/10.1175/2010jcli3647.1, 2011.
Gustafson, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo,
S., Johnson, K. L., Krishna, B., Fairless, T., and Xiao, H.: The Large-Eddy
Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic
Simulation and Observation (LASSO) Activity for Continental Shallow
Convection, B. Am. Meteorol. Soc., 101, E462–E479, https://doi.org/10.1175/bams-d-19-0065.1, 2020.
Gustafson, W. I., Vogelmann, A. M., Cheng, X., Endo, S., Johnson, K. L., Krishna, B., Li, Z., Toto, T., and Xiao, H.: LASSO data bundles, Atmospheric Radiation Measurement user facility [data set], https://doi.org/10.5439/1342961, 2017.
Hacker, J. P., Jimenez, P. A., Dudhia, J., Haupt, S. E., Ruiz-Arias, J. A.,
Gueymard, C. A., Thompson, G., Eidhammer, T., and Deng, A.: WRF-Solar:
Description and Clear-Sky Assessment of an Augmented NWP Model for Solar
Power Prediction, B. Am. Meteorol. Soc., 97, 1249–1264, https://doi.org/10.1175/bams-d-14-00279.1, 2016.
Haman, K. E., Malinowski, S. P., Kurowski, M. J., Gerber, H., and Brenguier,
J.-L.: Small scale mixing processes at the top of a marine stratocumulus – a
case study, Q. J. Roy. Meteor. Soc., 133, 213–226, https://doi.org/10.1002/qj.5, 2007.
Haupt, S. E., Kosovic, B., Jensen, T., Lee, J., Jimenez, P., Lazo, J.,
Cowie, J., McCandless, T., Pearson, J., and Weiner, G.: The SunCast?
solar-power forecasting system: the results of the public-private-academic
partnership to advance solar power forecasting, National Center for
Atmospheric Research (NCAR), Research Applications Laboratory,
Weather Systems and Assessment Program (US), Boulder (CO), https://doi.org/10.5065/D6N58JR2, 2016.
Hill, A. A., Feingold, G., and Jiang, H.: The influence of entrainment and
mixing assumption on aerosol-cloud interactions in marine stratocumulus, J.
Atmos. Sci., 66, 1450–1464, 2009.
Hoffmann, F. and Feingold, G.: Entrainment and mixing in stratocumulus:
Effects of a new explicit subgrid-scale scheme for large-eddy simulations
with particle-based microphysics, J. Atmos. SCi., 76, 1955–1973, https://doi.org/10.1175/jas-d-18-0318.1, 2019.
Hoffmann, F., Yamaguchi, T., and Feingold, G.: Inhomogeneous mixing in
Lagrangian cloud models: Effects on the production of precipitation embryos,
J. Atmos. Sci., 76, 113–133, 2019.
Huang, J., Lee, X., and Patton, E. G.: A modelling study of flux imbalance
and the influence of entrainment in the convective boundary layer,
Bound.-Lay. Meteorol., 127, 273–292, 2008.
Jarecka, D., Grabowski, W. W., and Pawlowska, H.: Modeling of Subgrid-Scale
Mixing in Large-Eddy Simulation of Shallow Convection, J. Atmos. Sci., 66, 2125–2133, https://doi.org/10.1175/2009jas2929.1, 2009.
Jarecka, D., Grabowski, W. W., Morrison, H., and Pawlowska, H.: Homogeneity
of the subgrid-scale turbulent mixing in large-eddy simulation of shallow
convection, J. Atmos. Sci., 70, 2751–2767, 2013.
Jensen, J. B., Austin, P. H., Baker, M. B., and Blyth, A. M.: Turbulent
mixing, spectral evolution and dynamics in a warm cumulus cloud, J. Atmos.
Sci., 42, 173–192, https://doi.org/10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2, 1985.
Kim, B.-G., Miller, M. A., Schwartz, S. E., Liu, Y., and Min, Q.: The role
of adiabaticity in the aerosol first indirect effect, J. Geophys. Res., 113,
D05210, https://doi.org/10.1029/2007jd008961, 2008.
Kumar, B., Schumacher, J., and Shaw, R.: Cloud microphysical effects of
turbulent mixing and entrainment, Theor. Comp. Fluid Dyn., 27, 361–376,
2013.
Lasher-Trapp, S. G., Cooper, W. A., and Blyth, A. M.: Broadening of droplet
size distributions from entrainment and mixing in a cumulus cloud, Q. J.
Roy. Meteor. Soc., 131, 195–220, https://doi.org/10.1256/qj.03.199, 2005.
Lehmann, K., Siebert, H., and Shaw, R. A.: Homogeneous and inhomogeneous
mixing in cumulus clouds: dependence on local turbulence structure, J.
Atmos. Sci., 66, 3641–3659, https://doi.org/10.1175/2009JAS3012.1, 2009.
Li, Z., Li, C., Chen, H., Tsay, S. C., Holben, B., Huang, J., Li, B.,
Maring, H., Qian, Y., and Shi, G.: East Asian studies of tropospheric
aerosols and their impact on regional climate (EAST-AIRC): An overview,
J. Geophys. Res.-Atmos., 116, D00K34, https://doi.org/10.1029/2010JD015257, 2011.
Lu, C., Liu, Y., and Niu, S.: Examination of turbulent entrainment-mixing
mechanisms using a combined approach, J. Geophys. Res., 116, D20207,
https://doi.org/10.1029/2011JD015944, 2011.
Lu, C., Liu, Y., Niu, S., Krueger, S., and Wagner, T.: Exploring
parameterization for turbulent entrainment-mixing processes in clouds,
J. Geophys. Res.-Atmos., 118, 185–194, https://doi.org/10.1029/2012jd018464, 2013.
Lu, C., Liu, Y., Niu, S., and Endo, S.: Scale dependence of
entrainment-mixing mechanisms in cumulus clouds, J. Geophys. Res.-Atmos., 119, 13877–13890, 2014.
Lu, C., Liu, Y., Zhang, G. J., Wu, X., Endo, S., Cao, L., Li, Y., and Guo,
X.: Improving parameterization of entrainment rate for shallow convection
with aircraft measurements and large eddy simulation, J. Atmos. Sci., 73,
761–773, https://doi.org/10.1175/JAS-D-15-0050.1, 2016.
Luo, S., Lu, C., Liu, Y., Bian, J., Gao, W., Li, J., Xu, X., Gao, S., Yang,
S., and Guo, X.: Parameterizations of Entrainment-Mixing Mechanisms and
Their Effects on Cloud Droplet Spectral Width Based on Numerical
Simulations, J. Geophys. Res.-Atmos., 125, e2020JD032972, https://doi.org/10.1029/2020JD032972, 2020.
Morrison, H. and Grabowski, W. W.: Modeling supersaturation and
subgrid-scale mixing with two-moment bulk warm microphysics, J. Atmos. Sci.,
65, 792–812, https://doi.org/10.1175/2007JAS2374.1, 2008.
Paluch, I. R. and Baumgardner, D. G.: Entrainment and fine-scale mixing in a
continental convective cloud, J. Atmos. Sci., 46, 261–278,
https://doi.org/10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;2, 1989.
Pawlowska, H., Brenguier, J. L., and Burnet, F.: Microphysical properties of
stratocumulus clouds, Atmos. Res., 55, 15–33, 2000.
Peng, Y., Lohmann, U., Leaitch, R., Banic, C., and Couture, M.: The cloud
albedo-cloud droplet effective radius relationship for clean and polluted
clouds from RACE and FIRE.ACE, J. Geophys. Res., 107, AAC 1-1–AAC 1-6, https://doi.org/10.1029/2000JD000281, 2002.
Slawinska, J., Grabowski, W. W., Pawlowska, H., and Wyszogrodzki, A. A.:
Optical properties of shallow convective clouds diagnosed from a
bulk-microphysics large-eddy simulation, J. Climate, 21, 1639–1647, 2008.
Slawinska, J., Grabowski, W. W., Pawlowska, H., and Morrison, H.: Droplet
activation and mixing in large-eddy simulation of a shallow cumulus field,
J. Atmos. Sci., 69, 444–462, 2012.
Small, J. D., Chuang, P., and Jonsson, H.: Microphysical imprint of
entrainment in warm cumulus, Tellus B, 65, 6647–6662, 2013.
Tao, C. and Xie, S.: Constrained Variational Analysis (60VARANARUC). 2004-01-01 to 2012-04-30, Southern Great Plains (SGP) Central Facility, Lamont, OK, ARM Data Center [data set], https://doi.org/10.5439/1647300, 2004.
Tao, C. and Xie, S.: Constrained Variational Analysis (60VARANARAP). 2012-05-01 to 2019-08-31, Southern Great Plains (SGP) Central Facility, Lamont, OK, ARM Data Center [data set], https://doi.org/10.5439/1647174, 2012.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71, 3636–3658, 2014.
Wang, H. and Feingold, G.: Modeling mesoscale cellular structures and
drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation
and evolution of open cells, J. Atmos. Sci., 66, 3237–3256, 2009.
Wang, M., Ghan, S., Ovchinnikov, M., Liu, X., Easter, R., Kassianov, E., Qian, Y., and Morrison, H.: Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF, Atmos. Chem. Phys., 11, 5431–5455, https://doi.org/10.5194/acp-11-5431-2011, 2011.
Wang, Y., Niu, S., Lv, J., Lu, C., Xu, X., Wang, Y., Ding, J., Zhang, H.,
Wang, T., and Kang, B.: A new method for distinguishing unactivated
particles in cloud condensation nuclei measurements: Implications for
aerosol indirect effect evaluation, Geophys. Res. Lett., 46,
14185–14194, 2019.
Wang, Y., Zhao, C., McFarquhar, G. M., Wu, W., Reeves, M., and Li, J.:
Dispersion of Droplet Size Distributions in Supercooled Non-precipitating
Stratocumulus from Aircraft Observations Obtained during the Southern Ocean
Cloud Radiation Aerosol Transport Experimental Study, J. Geophys. Res.-Atmos., 126, e2020JD033720, https://doi.org/10.1029/2020JD033720, 2021.
Wood, R.: Review: Stratocumulus Clouds, Mon. Weather Rev., 140,
2373–2423, 2012.
Xu, K.-M. and Randall, D. A.: A semiempirical cloudiness parameterization
for use in climate models, J. Atmos. Sci., 53, 3084–3102, 1996.
Xu, X., Lu, C., Liu, Y., Gao, W., Wang, Y., Cheng, Y., Luo, S., and Van
Weverberg, K.: Effects of cloud liquid-phase microphysical processes in
mixed-phase cumuli over the Tibetan Plateau, J. Geophys. Res.-Atmos., 125, e2020JD033371, https://doi.org/10.1029/2020JD033371, 2020.
Xu, X., Sun, C., Lu, C., Liu, Y., Zhang, G. J., and Chen, Q.: Factors
affecting entrainment rate in deep convective clouds and parameterizations,
J. Geophys. Res.-Atmos., 126, e2021JD034881, https://doi.org/10.1029/2021JD034881, 2021.
Yang, B., Wang, M., Zhang, G. J., Guo, Z., Huang, A., Zhang, Y., and Qian,
Y.: Linking Deep and Shallow Convective Mass Fluxes via an Assumed
Entrainment Distribution in CAM5-CLUBB: Parameterization and Simulated
Precipitation Variability, J. Adv. Model. Earth Syst., 13, e2020MS002357, https://doi.org/10.1029/2020MS002357, 2021.
Yang, F., Shaw, R., and Xue, H.: Conditions for super-adiabatic droplet growth after entrainment mixing, Atmos. Chem. Phys., 16, 9421–9433, https://doi.org/10.5194/acp-16-9421-2016, 2016.
Yum, S.: Cloud droplet spectral broadening in warm clouds: An observational
and model study, Dissertation for the Doctoral Degree, University of Nevada,
Reno, Nevada, USA, 191 pp., https://ui.adsabs.harvard.edu/abs/1998PhDT........19Y (last access: 20 April 2022), 1998.
Zhang, M. H., Lin, J. L., Cederwall, R. T., Yio, J. J., and Xie, S. C.:
Objective analysis of ARM IOP data: Method and sensitivity, Mon. Weather
Rev., 129, 295–311, https://doi.org/10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2, 2001.
Zheng, Y. and Rosenfeld, D.: Linear relation between convective cloud base
height and updrafts and application to satellite retrievals, Geophys. Res. Lett., 42, 6485–6491, https://doi.org/10.1002/2015gl064809, 2015.
Zheng, Y., Rosenfeld, D., and Li, Z.: Quantifying cloud base updraft speeds
of marine stratocumulus from cloud top radiative cooling, Geophys. Res. Lett., 43, 11407–11413, 2016.
Zhu, L., Lu, C., Yan, S., Liu, Y., Zhang, G. J., Mei, F., Zhu, B., Fast, J.
D., Matthews, A., and Pekour, M. S.: A New Approach for Simultaneous
Estimation of Entrainment and Detrainment Rates in Non-Precipitating
Shallow Cumulus, Geophys. Res. Lett., 48, e2021GL093817, https://doi.org/10.1029/2021gl093817, 2021.
Short summary
A new entrainment–mixing parameterization which can be directly implemented in microphysics schemes without requiring the relative humidity of the entrained air is proposed based on the explicit mixing parcel model. The parameterization is implemented in the two-moment microphysics scheme and exhibits different effects on different types of clouds and even on different stages of stratocumulus clouds, which are affected by turbulent dissipation rate and aerosol concentration.
A new entrainment–mixing parameterization which can be directly implemented in microphysics...
Altmetrics
Final-revised paper
Preprint