Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4721-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4721-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
Yiqing Liu
School of the Built Environment, University of Reading, Reading, UK
School of the Built Environment, University of Reading, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Related authors
No articles found.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, Angela Wendnagel-Beck, and Emmanouil Panagiotakis
Nat. Hazards Earth Syst. Sci., 25, 2481–2502, https://doi.org/10.5194/nhess-25-2481-2025, https://doi.org/10.5194/nhess-25-2481-2025, 2025
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020, https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary
Short summary
Thermal emissions or anthropogenic heat fluxes (QF) from human activities impact the local- and larger-scale urban climate. DASH considers both urban form and function in simulating QF by use of an agent-based structure that includes behavioural characteristics of city populations. This allows social practices to drive the calculation of QF as occupants move, varying by day type, demographic, location, activity, and socio-economic factors and in response to environmental conditions.
Cited articles
Allen, L., Lindberg, F., and Grimmond, C. S. B.: Global to city scale urban
anthropogenic heat flux: Model and variability, Int. J. Climatol., 31,
1990–2005, https://doi.org/10.1002/joc.2210, 2011.
ASHRAE: ANSI/ASHRAE Standard 140-2017 Standard method of test for the evaluation of building energy analysis computer programs, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2017.
Biggart, M., Stocker, J., Doherty, R. M., Wild, O., Carruthers, D., Grimmond, S., Han, Y., Fu, P., and Kotthaus, S.: Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale, Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, 2021.
Chen, X., Yang, H., and Wang, Y.: Parametric study of passive design
strategies for high-rise residential buildings in hot and humid climates:
miscellaneous impact factors, Renew. Sustain. Energy Rev., 69,
442–460, https://doi.org/10.1016/j.rser.2016.11.055, 2017.
China Meteorological Bureau, Climate Information Center, Climate Data Office
and Tsinghua University, Department of Building Science and Technology.:
China Standard Weather Data for Analyzing Building Thermal Conditions,
Beijing: China Building Industry Publishing House, ISBN 7-112-07273-3, 2005.
Chow, W. T. L., Salamanca, F., Georgescu, M., Mahalov, A., Milne, J. M., and
Ruddell, B. L.: A multi-method and multi-scale approach for estimating
city-wide anthropogenic heat fluxes, Atmos. Environ., 99, 64–76,
https://doi.org/10.1016/j.atmosenv.2014.09.053, 2014.
Daish, N. C., Carrilho da Graça, G., Linden, P. F., and Banks, D.: Impact
of aperture separation on wind-driven single-sided natural ventilation,
Build. Environ., 108, 122–134, https://doi.org/10.1016/j.buildenv.2016.08.015, 2016.
DOE: EnergyPlus™ Version 9.4.0, https://energyplus.net/ (last access: 13 October 2021), 2020a.
DOE: EnergyPlus™ Version 9.4.0, Input Output Reference, https://energyplus.net/documentation (last access: 13 October 2021), 2020b.
Duan, S., Luo, Z., Yang, X., and Li, Y.: The impact of building operations on
urban heat/cool islands under urban densification: A comparison between
naturally-ventilated and air-conditioned buildings, Appl. Energ., 235, 129–138, https://doi.org/10.1016/j.apenergy.2018.10.108, 2019.
Fan, H. and Sailor, D. J.: Modeling the impacts of anthropogenic heating on
the urban climate of Philadelphia: A comparison of implementations in two
PBL schemes, Atmos. Environ., 39, 73–84,
https://doi.org/10.1016/j.atmosenv.2004.09.031, 2005.
Fan, S., Davies Wykes, M. S., Lin, W. E., Jones, R. L., Robins, A. G., and
Linden, P. F.: A full-scale field study for evaluation of simple analytical
models of cross ventilation and single-sided ventilation, Build. Environ.,
187, 107386, https://doi.org/10.1016/j.buildenv.2020.107386, 2021.
Ferrando, M., Hong, T., and Causone, F.: A simulation-based assessment of
technologies to reduce heat emissions from buildings, Build. Environ.,
195, 107772, https://doi.org/10.1016/j.buildenv.2021.107772, 2021.
Goward, S. N.: Thermal behavior of uban landscapes and the urban heat
island, Phys. Geogr., 2, 19–33, https://doi.org/10.1080/02723646.1981.10642202,
1981.
Grimmond, C. S. B.: The suburban energy balance: Methodological
considerations and results for a mid-latitude west coast city under winter
and spring conditions, Int. J. Climatol., 12, 481–497,
https://doi.org/10.1002/joc.3370120506, 1992.
Heiple, S. and Sailor, D. J.: Using building energy simulation and
geospatial modeling techniques to determine high resolution building sector
energy consumption profiles, Energ. Buildings, 40, 1426–1436,
https://doi.org/10.1016/j.enbuild.2008.01.005, 2008.
Hong, T., Ferrando, M., Luo, X., and Causone, F.: Modeling and analysis of
heat emissions from buildings to ambient air, Appl. Energ., 277,
115566, https://doi.org/10.1016/j.apenergy.2020.115566, 2020.
Iamarino, M., Beevers, S., and Grimmond, C. S. B.: High-resolution (space,
time) anthropogenic heat emissions: London 1970–2025, Int. J. Climatol.,
32, 1754–1767, https://doi.org/10.1002/joc.2390, 2012.
Ichinose, T., Shimodozono, K., and Hanaki, K.: Impact of anthropogenic heat
on urban climate in Tokyo, Atmos. Environ., 33, 3897–3909, https://doi.org/10.1016/S1352-2310(99)00132-6, 1999.
Kelly, O. and Scott, P.: City vacant: Dublin's hundreds of multimillion-euro empty sites and properties, https://www.irishtimes.com/news/environment/city-vacant- dublin-s-hundreds-of-multimillion-euro-empty-sites-and-properties-1.3635595 (last access: 8 December 2021), 2018.
Koralegedara, S. B., Lin, C. Y., Sheng, Y. F., and Kuo, C. H.: Estimation of
anthropogenic heat emissions in urban Taiwan and their spatial patterns,
Environ. Pollut., 215, 84–95, https://doi.org/10.1016/j.envpol.2016.04.055, 2016.
Lindberg, F., Grimmond, C. S. B., Yogeswaran, N., Kotthaus, S., and Allen,
L.: Impact of city changes and weather on anthropogenic heat flux in Europe
1995–2015, Urban Clim., 4, 1–15, https://doi.org/10.1016/j.uclim.2013.03.002,
2013.
Liu, Y., Luo, Z., and Grimmond, S.: Revising the definition of anthropogenic
heat flux from buildings: role of human activities and building storage heat
flux, Zenodo [data set], https://doi.org/10.5281/zenodo.5903303, 2021.
MOHURD: Design standard for energy efficiency of residential
building in severe cold and cold zones, JGJ 26-2018, Ministry of
Housing and Urban-Rural, ISBN 151133345, 2018 (in Chinese).
Nicol, J. F. and Humphreys, M. A.: Adaptive thermal comfort and sustainable
thermal standards for buildings, Energ. Buildings, 34, 563–572,
https://doi.org/10.1016/S0378-7788(02)00006-3, 2002.
Nie, W. S., Sun, T., and Ni, G. H.: Spatiotemporal characteristics of
anthropogenic heat in an urban environment: A case study of Tsinghua Campus,
Build. Environ., 82, 675–686, https://doi.org/10.1016/j.buildenv.2014.10.011, 2014.
Oikonomou, E., Davies, M., Mavrogianni, A., Biddulph, P., Wilkinson, P., and
Kolokotroni, M.: Modelling the relative importance of the urban heat island
and the thermal quality of dwellings for overheating in London, Build.
Environ., 57, 223–238, https://doi.org/10.1016/j.buildenv.2012.04.002, 2012.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, Cambridge University Press, https://doi.org/10.1017/9781139016476, 2017.
Oliphant, A. J., Grimmond, C. S. B., Zutter, H. N., Schmid, H. P., Su, H.
B., Scott, S. L., Offerle, B., Randolph, J. C., and Ehman, J.: Heat storage
and energy balance fluxes for a temperate deciduous forest, Agric. Forest Meteorol., 126, 185–201, https://doi.org/10.1016/j.agrformet.2004.07.003, 2004.
Sailor, D. J. and Lu, L.: A top-down methodology for developing diurnal and
seasonal anthropogenic heating profiles for urban areas, Atmos. Environ.,
38, 2737–2748, https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004.
Sailor, D. J. and Vasireddy, C.: Correcting aggregate energy consumption
data to account for variability in local weather, Environ. Modell. Softw.,
21, 733–738, https://doi.org/10.1016/j.envsoft.2005.08.001, 2006.
Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C.,
Argiriou, A., and Assimakopoulos, D. N.: On the impact of urban climate on
the energy consuption of building, Sol. Energy, 70, 201–216,
https://doi.org/10.1016/S0038-092X(00)00095-5, 2001.
Shepard, W.: Ghost cities of China: The story of cities without people in the world's most populated country, Zed Books Ltd., ISBN-10: 178360218X, 2015.
Takane, Y., Kikegawa, Y., Hara, M., and Grimmond, C. S. B.: Urban warming and
future air-conditioning use in an Asian megacity: importance of positive
feedback, NPJ Clim. Atmos. Sci., 2, 1–11, https://doi.org/10.1038/s41612-019-0096-2,
2019.
Wang, H. and Chen, Q.: A new empirical model for predicting single-sided,
wind-driven natural ventilation in buildings, Energ. Buildings, 54, 386–394,
https://doi.org/10.1016/j.enbuild.2012.07.028, 2012.
Wang, H. and Chen, Q.: A semi-empirical model for studying the impact of
thermal mass and cost-return analysis on mixed-mode ventilation in office
buildings, Energ. Buildings, 67, 267–274, https://doi.org/10.1016/j.enbuild.2013.08.025,
2013.
Wang, K., Li, Y., Li, Y., and Lin, B.: Stone forest as a small-scale field
model for the study of urban climate, Int. J. Climatol., 38, 3723–3731,
https://doi.org/10.1002/joc.5536, 2018.
Wang, L. and Greenberg, S.: Window operation and impacts on building energy
consumption, Energ. Buildings, 92, 313–321, https://doi.org/10.1016/j.enbuild.2015.01.060,
2015.
Warren, P.: Ventilation through openings on one wall only, in: Proceedings of
International Centre for Heat and Mass Transfer Seminar “Energy
Conservation in Heating, Cooling, and Ventilating Buildings, Washington, 29 August, 189–209, 1977.
Yu, Z., Hu, L., Sun, T., Albertson, J., and Li, Q.: Impact of heat storage on
remote-sensing based quantification of anthropogenic heat in urban
environments, Remote Sens. Environ., 262, 112520,
https://doi.org/10.1016/j.rse.2021.112520, 2021.
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The...
Altmetrics
Final-revised paper
Preprint