Articles | Volume 22, issue 6
https://doi.org/10.5194/acp-22-3945-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-3945-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario
Patricia Tarín-Carrasco
Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
Camilla Geels
Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
Laura Palacios-Peña
Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
Dept. of Meteorology, Meteored, Almendricos, Spain
Pedro Jiménez-Guerrero
CORRESPONDING AUTHOR
Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
Related authors
Patricia Tarín-Carrasco, Desislava Petrova, Laura Chica-Castells, Jelena Lukovic, Xavier Rodó, and Ivana Cvijanovic
EGUsphere, https://doi.org/10.5194/egusphere-2023-3057, https://doi.org/10.5194/egusphere-2023-3057, 2024
Preprint archived
Short summary
Short summary
Future precipitation in Mediterranean climate regions are associated with a high uncertainty. Using CMIP6 ensemble, this study examines future precipitation projections under two climate change scenarios. Overall, annual precipitation decreases across these regions, except northern California. Despite improvements in CMIP6, significant intermodel differences persist, emphasizing the need for impact studies that consider the entire range of projected precipitation changes to address uncertainties
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
William J. Collins, Fiona M. O'Connor, Rachael E. Byrom, Øivind Hodnebrog, Patrick Jöckel, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
Atmos. Chem. Phys., 25, 9031–9060, https://doi.org/10.5194/acp-25-9031-2025, https://doi.org/10.5194/acp-25-9031-2025, 2025
Short summary
Short summary
We used 7 climate models that include atmospheric chemistry and find that in a scenario with weak controls on air quality, the warming effects (over 2015 to 2050) of decreases in ozone-depleting substances and increases in air quality pollutants are approximately equal and would make ozone the second highest contributor to warming over this period. We find that for stratospheric ozone recovery, the standard measure of climate effects underestimates a more comprehensive measure.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Jakob Boyd Pernov, William H. Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild B. Skeie, Stephan Henne, Ulas Im, Patricia K. Quinn, Lucia M. Upchurch, and Julia Schmale
Atmos. Chem. Phys., 25, 6497–6537, https://doi.org/10.5194/acp-25-6497-2025, https://doi.org/10.5194/acp-25-6497-2025, 2025
Short summary
Short summary
Particulate methanesulfonic acid (MSAp) is vital for the Arctic climate system. Numerical models struggle to reproduce the MSAp seasonal cycle. We evaluate three numerical models and one reanalysis product’s ability to simulate MSAp. We develop data-driven models for MSAp at four Arctic stations. The data-driven models outperform the numerical models and reanalysis product and identified precursor source-, chemical-processing-, and removal-related features as being important for modeling MSAp.
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848, https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols (small airborne particles) impact Earth's climate, but their extent is unknown. By running climate model simulations and emulating millions of additional variants with different settings, we found that natural emissions like sea spray and sulfur are key sources of uncertainty in climate predictions. Our work shows that understanding these natural processes better can help improve climate models and make future climate projections more accurate.
Marc Guevara, Augustin Colette, Antoine Guion, Valentin Petiot, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Andrea Bolignano, Paula Camps, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Hugo Denier van der Gon, Gaël Descombes, John Douros, Hilde Fagerli, Yalda Fatahi, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Risto Hänninen, Kaj Hansen, Oriol Jorba, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Victor Lannuque, Frédérik Meleux, Agnes Nyíri, Yuliia Palamarchuk, Carlos Pérez García-Pando, Lennard Robertson, Felicita Russo, Arjo Segers, Mikhail Sofiev, Joanna Struzewska, Renske Timmermans, Andreas Uppstu, Alvaro Valdebenito, and Zhuyun Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1287, https://doi.org/10.5194/egusphere-2025-1287, 2025
Short summary
Short summary
Air quality models require hourly emissions to accurately represent dispersion and physico-chemical processes in the atmosphere. Since emission inventories are typically provided at the annual level, emissions are downscaled to a refined temporal resolution using temporal profiles. This study quantifies the impact of using new anthropogenic temporal profiles on the performance of an European air quality multi-model ensemble. Overall, the findings indicate an improvement of the modelling results.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Jiemei Liu, Jesper H. Christensen, Zhuyun Ye, Shikui Dong, Camilla Geels, Jørgen Brandt, Athanasios Nenes, Yuan Yuan, and Ulas Im
Atmos. Chem. Phys., 24, 10849–10867, https://doi.org/10.5194/acp-24-10849-2024, https://doi.org/10.5194/acp-24-10849-2024, 2024
Short summary
Short summary
China was chosen as an example to conduct a quantitative analysis using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from the Weather Research and Forecasting (WRF) model. Meteorological conditions and emission inventories contributed 46 % (65 %) and 54 % (35 %) to the variations in PM2.5 concentrations (oxidative potential – OP), respectively, highlighting secondary aerosol formation and biomass burning as the primary contributors to PM2.5 and OP levels.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 17, 1469–1495, https://doi.org/10.5194/gmd-17-1469-2024, https://doi.org/10.5194/gmd-17-1469-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.
Patricia Tarín-Carrasco, Desislava Petrova, Laura Chica-Castells, Jelena Lukovic, Xavier Rodó, and Ivana Cvijanovic
EGUsphere, https://doi.org/10.5194/egusphere-2023-3057, https://doi.org/10.5194/egusphere-2023-3057, 2024
Preprint archived
Short summary
Short summary
Future precipitation in Mediterranean climate regions are associated with a high uncertainty. Using CMIP6 ensemble, this study examines future precipitation projections under two climate change scenarios. Overall, annual precipitation decreases across these regions, except northern California. Despite improvements in CMIP6, significant intermodel differences persist, emphasizing the need for impact studies that consider the entire range of projected precipitation changes to address uncertainties
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Short summary
Given the hazardous nature of medicanes, studies focused on understanding and quantifying the processes governing their formation have become paramount for present and future disaster risk reduction. Therefore, enhancing the modeling and forecasting capabilities of such events is of crucial importance. In this sense, the authors find that the microphysical processes, and specifically the wind--sea salt aerosol feedback, play a key role in their development and thus should not be neglected.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, https://doi.org/10.5194/acp-21-7373-2021, 2021
Short summary
Short summary
This study provides a comprehensive assessment of air quality changes across the main European urban areas induced by the COVID-19 lockdown using satellite observations, surface site measurements, and the forecasting system from the Copernicus Atmospheric Monitoring Service (CAMS). We demonstrate the importance of accounting for weather and seasonal variability when calculating such estimates.
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Short summary
The effect of aerosols on regional climate simulations presents large uncertainties due to their complex and non-linear interactions with a wide variety of factors, including aerosol–radiation and aerosol–cloud interactions. We show how these interactions are strongly conditioned by the meteorological situation and the type of aerosol. While natural aerosols tend to increase precipitation in some areas, anthropogenic aerosols decrease the number of rainy days in some pollutant regions.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, https://doi.org/10.5194/gmd-13-6051-2020, 2020
Short summary
Short summary
This work shows TITAM, a time-independent tracking algorithm specifically suited for Mediterranean tropical-like cyclones, often referred to as medicanes. The methodology developed has the capacity to track multiple simultaneous cyclones, the ability to track a medicane in the presence of intense extratropical lows, and the potential to separate the medicane from other similar structures by handling the intermittent loss of structure and managing the tilting of the axis.
Laura Palacios-Peña, Jerome D. Fast, Enrique Pravia-Sarabia, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 13, 5897–5915, https://doi.org/10.5194/gmd-13-5897-2020, https://doi.org/10.5194/gmd-13-5897-2020, 2020
Short summary
Short summary
The main objective of this work is to study the impact of the representation of aerosol size distribution on aerosol optical properties over central Europe and the Mediterranean Basin during a summertime aerosol episode using the WRF-Chem online model. Results reveal that the reduction in the standard deviation of the accumulation mode leads to the largest impacts on aerosol optical depth (AOD) representation due to a transfer of particles from the accumulation mode to the coarse mode.
Cited articles
Andersson, C., Bergstrom, R., and Johansson, C.: Population exposure and
mortality due to regional background PM in Europe – Long-term simulations of
source region and shipping contributions, Atmos. Environ., 43, 3614–3620, https://doi.org/10.1016/j.atmosenv.2009.03.040, 2009. a, b
Anenberg, S. C., West, J. J., Yu, H., Chin, M., Schulz, M., Bergmann, D., Bey,
I., Bian, H., Diehl, T., Fiore, A., Hess, P., Marmer, E., Montanaro, V.,
Park, R., Shindell, D., Takemura, T., and Dentener, F.: Impacts of
intercontinental transport of anthropogenic fine particulate matter on human
mortality, Air Qual. Atmos. He., 7, 369–379,
https://doi.org/10.1007/s11869-014-0248-9, 2014. a, b, c
Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen,
A. J., Stanaway, J. D., Beig, G., Joshi, T. K., Aggarwal, A. N., Sabde, Y.,
Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K., Kumar, G. A.,
Varghese, C. M., Muraleedharan, P., Agrawal, A., Anjana, R. M., Bhansali, A.,
Bhardwaj, D., Burkart, K., Cercy, K., Chakma, J. K., Chowdhury, S.,
Christopher, D. J., Dutta, E., Furtado, M., Ghosh, S., Ghoshal, A. G., Glenn,
S. D., Guleria, R., Gupta, R., Jeemon, P., Kant, R., Kant, S., Kaur, T.,
Koul, P. A., Krish, V., Krishna, B., Larson, S. L., Madhipatla, K., Mahesh,
P. A., Mohan, V., Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Nguyen,
G., Odell, C. M., Pandian, J. D., Prabhakaran, D., Prabhakaran, P., Roy, A.,
Salvi, S., Sambandam, S., Saraf, D., Sharma, M., Shrivastava, A., Singh, V.,
Tandon, N., Thomas, N. J., Torre, A., Xavier, D., Yadav, G., Singh, S.,
Shekhar, C., Vos, T., Dandona, R., Reddy, K. S., Lim, S. S., Murray, C.
J. L., Venkatesh, S., and Dandona, L.: The impact of air pollution on
deaths, disease burden, and life expectancy across the states of India: the
Global Burden of Disease Study 2017, The Lancet Planetary Health, 3,
e26–e39, https://doi.org/10.1016/S2542-5196(18)30261-4, 2019. a
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A.,
Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A.,
Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., and Kaufman, J. D.:
Particulate Matter Air Pollution and Cardiovascular Disease, Circulation,
121, 2331–2378, https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010. a
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin,
R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve,
P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra,
M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B., Allen,
R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G.,
Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of
mortality associated with long-term exposure to outdoor fine particulate
matter, P. Natl. Acad. Sci. USA, 115, 9592–9597,
https://doi.org/10.1073/pnas.1803222115, 2018. a, b, c, d
Chen, H., Zhang, Z., van Donkelaar, A., Bai, L., Martin, R. V., Lavigne, E.,
Kwong, J. C., and Burnett, R. T.: Understanding the Joint Impacts of Fine
Particulate Matter Concentration and Composition on the Incidence and
Mortality of Cardiovascular Disease: A Component-Adjusted Approach,
Environ. Sci. Technol., 54, 4388–4399,
https://doi.org/10.1021/acs.est.9b06861, 2020. a
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
aerosol optical thickness from the GOCART model and comparisons with
satellite and Sun photometer measurements, J. Atmos.
Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K.,
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas,
M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and
Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389,
1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Crippa, M., Janssens-Maenhout, G., Guizzardi, D., Van Dingenen, R., and Dentener, F.: Contribution and uncertainty of sectorial and regional emissions to regional and global PM2.5 health impacts, Atmos. Chem. Phys., 19, 5165–5186, https://doi.org/10.5194/acp-19-5165-2019, 2019. a, b, c, d
de Bruine, M., Krol, M., van Noije, T., Le Sager, P., and Röckmann, T.: The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0, Geosci. Model Dev., 11, 1443–1465, https://doi.org/10.5194/gmd-11-1443-2018, 2018. a
Domínguez-Morueco, N., Ratola, N., Sierra, J., Nadal, M., and
Jiménez-Guerrero, P.: Combining monitoring and modelling approaches for BaP
characterization over a petrochemical area, Sci. Total Environ.,
658, 424–438, https://doi.org/10.1016/j.scitotenv.2018.12.202, 2019. a
European Climate Foundation: Roadmap 2050: a practical guide to a prosperous,
low-carbon Europe. Volume I. Technical and economic assessment,
http://www.roadmap2050.eu/project/roadmap-2050 (last access: 20 December 2021), 2010. a
European Environment Agency: EMEP/EEA air pollutant emission Inventory
Guidebook. Technical guidance to prepare national emission inventories, EEA
Report No 13/2019, https://doi.org/10.2800/293657,
2019. a, b
Evans, J., van Donkelaar, A., Martin, R. V., Burnett, R., Rainham, D. G.,
Birkett, N. J., and Krewski, D.: Estimates of global mortality attributable
to particulate air pollution using satellite imagery, Environ. Res.,
120, 33–42, https://doi.org/10.1016/j.envres.2012.08.005, 2013. a
Fang, Y., Mauzerall, D. L., Liu, J., Fiore, A. M., and Horowitz, L. W.:
Impacts of 21st century climate change on global air pollution-related
premature mortality, Clim. Change, 121, 239–253,
https://doi.org/10.1007/s10584-013-0847-8, 2013a. a, b, c
Fang, Y., Naik, V., Horowitz, L. W., and Mauzerall, D. L.: Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present, Atmos. Chem. Phys., 13, 1377–1394, https://doi.org/10.5194/acp-13-1377-2013, 2013b. a
Fernández, J., Frías, M. D., Cabos, W. D., Cofiño, A. S.,
Domínguez, M., Fita, L., Gaertner, M. A., García-Díez, M.,
Gutiérrez, J. M., Jiménez-Guerrero, P., Liguori, G., Montávez,
J. P., Romera, R., and Sánchez, E.: Consistency of climate change
projections from multiple global and regional model intercomparison projects,
Clim. Dynam., 52, 1139–1156, https://doi.org/10.1007/s00382-018-4181-8, 2019. a, b
Ford, B. and Heald, C. L.: Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter, Atmos. Chem. Phys., 16, 3499–3523, https://doi.org/10.5194/acp-16-3499-2016, 2016. a
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011. a
Geels, C., Andersson, C., Hänninen, O., Lansø, A., Schwarze, P.,
Skjøth, C., and Brandt, J.: Future Premature Mortality Due to O3,
Secondary Inorganic Aerosols and Primary PM in Europe? Sensitivity to
Changes in Climate, Anthropogenic Emissions, Population and Building Stock,
Int. J. Env. Res. Pub. He., 12,
2837–2869, https://doi.org/10.3390/ijerph120302837, 2015. a
Geiger, H., Barnes, I., Bejan, I., Benter, T., and Spittler, M.: The
tropospheric degradation of isoprene: an updated module for the regional
atmospheric chemistry mechanism, Atmos. Environ., 37, 1503–1519,
https://doi.org/10.1016/S1352-2310(02)01047-6, 2003. a
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and
Lin, S.-J.: Sources and distributions of dust aerosols simulated with the
GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001. a
Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger, T.,
Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Kinne,
S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Muller, U.,
Notz, D., Raddatz, T., Rast, S., Reckner, E., Salzmann, M., Schmidt, H.,
Schunur, R., Segschneider, J., Six, K., Stockhause, M., Wegner, J., Widmann,
H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Forcing data
for Regional Climate Models based on the MPI-ESM-LR model of the Max Planck
Institute for Meteorology (MPI-M): The CMIP5 historical experiment., World
Data Center for Climate (WDCC) at DKRZ,
https://doi.org/10.1594/WDCC/RCM_CMIP5_historical-LR,
2012a. a
Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger, T.,
Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Kinne,
S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Muller, U.,
Notz, D., Raddatz, T., Rast, S., Roeckner, E., Salzmann, M., Schmidt, H.,
Schunur, R., Segschneider, J., Six, K., Stockhause, M., Wegner, J., Widmann,
H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Forcing data
for Regional Climate Models based on the MPI-ESM-LR model of the Max Planck
Institute for Meteorology (MPI-M): The CMIP5 rcp85 experiment., World Data
Center for Climate (WDCC) at DKRZ,
https://doi.org/10.1594/WDCC/RCM_CMIP5_rcp85-LR,
2012b. a
Grant, N., Hawkes, A., Napp, T., and Gambhir, A.: The appropriate use of
reference scenarios in mitigation analysis, Nat. Clim. Change, 10,
605–610, https://doi.org/10.1038/s41558-020-0826-9, 2020. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled online chemistry within the WRF model,
Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Guzmán, P., Tarín-Carrasco, P., Morales-Suárez-Varela, M., and
Jiménez-Guerrero, P.: Effects of air pollution on dementia over Europe for
present and future climate change scenarios, Environ. Res., 204,
112012, https://doi.org/10.1016/j.envres.2021.112012,
2022. a
Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet,
J. M., Vineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., and Loomis, D.:
Outdoor particulate matter exposure and lung cancer: a systematic review and
meta-analysis, Environ. Health Persp., 122, 906–911,
https://doi.org/10.1289/ehp/1408092, 2014. a
Hausfather, Z. and Peters, G. P.: RCP8.5 is a problematic scenario for
near-term emissions, P. Natl. Acad. Sci. USA, 117,
27791–27792, https://doi.org/10.1073/pnas.2017124117, 2020. a
Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T., and Brown, S. J.:
Calibration Strategies: A Source of Additional Uncertainty in Climate Change
Projections, B. Am. Meteorol. Soc., 93, 21–26,
https://doi.org/10.1175/2011BAMS3110.1,
2012. a
Ho, E., Budescu, D. V., Bosetti, V., van Vuuren, D. P., and Keller, K.: Not all
carbon dioxide emission scenarios are equally likely: a subjective expert
assessment, Clim. Change, 155, 545–561, https://doi.org/10.1007/s10584-019-02500-y, 2019. a
Hong, C., Zhang, Q., Zhang, Y., Davis, S. J., Zhang, X., Tong, D., Guan, D.,
Liu, Z., and He, K.: Weakening aerosol direct radiative effects mitigate
climate penalty on Chinese air quality, Nat. Clim. Change, 10, 845–850,
https://doi.org/10.1038/s41558-020-0840-y, 2020. a
Hou, P., Wu, S., McCarty, J. L., and Gao, Y.: Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change, Atmos. Chem. Phys., 18, 8173–8182, https://doi.org/10.5194/acp-18-8173-2018, 2018. a
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A.,
Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Denier van der
Gon, H., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P.,
Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Makar, P. A.,
Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San
Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A.,
Tuccella, P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang,
J., Hogrefe, C., and Galmarini, S.: Evaluation of operational online-coupled
regional air quality models over Europe and North America in the context of
AQMEII phase 2. Part II: Particulate matter, Atmos. Environ., 115,
421–441, https://doi.org/10.1016/j.atmosenv.2014.08.072,
2015. a
Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S., Solazzo, E., Kioutsioukis, I., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liang, C.-K., Nopmongcol, U., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G., West, J., Yarwood, G., Hogrefe, C., and Galmarini, S.: Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3, Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, 2018. a
Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly,
C., Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., Damm, A., Sakalli,
A., and van Vliet, M. T. H.: Climate Impacts in Europe Under +1.5 ∘C
Global Warming, Earth's Future, 6, 264–285, https://doi.org/10.1002/2017EF000710,
2018. a
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M.,
Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin,
E. L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner,
M. A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez,
S., Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström,
E., Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré,
N., Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen,
J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community, Reg. Environ. Change, 20, 51,
https://doi.org/10.1007/s10113-020-01606-9, 2020. a
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63,
https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009. a
Jerez, S., López-Romero, J. M., Turco, M., Lorente-Plazas, R.,
Gómez-Navarro, J. J., Jiménez-Guerrero, P., and Montávez, J. P.: On the
Spin-Up Period in WRF Simulations Over Europe: Trade-Offs Between Length
and Seasonality, J. Adv. Model. Earth Syst., 12,
e2019MS001945, https://doi.org/10.1029/2019MS001945, 2020. a
Jerez, S., Palacios-Peña, L., Gutiérrez, C., Jiménez-Guerrero, P., López-Romero, J. M., Pravia-Sarabia, E., and Montávez, J. P.: Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols, Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, 2021. a
Jiménez-Guerrero, P.: Data for manuscript Reducing future air pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario, Atmos. Chem. Phys. Atmospheric Chemistry and Physics, Zenodo [data set], https://doi.org/10.5281/zenodo.6230393, 2022. a
Jiménez-Guerrero, P. and Ratola, N.: Influence of the North Atlantic
oscillation on the atmospheric levels of benzo[a]pyrene over Europe,
Clim. Dynam., 57, 1173–1186, https://doi.org/10.1007/s00382-021-05766-0, 2021. a
Jiménez-Guerrero, P., Montávez, J. P., Gómez-Navarro, J. J., Jerez, S.,
and Lorente-Plazas, R.: Impacts of climate change on ground level gas-phase
pollutants and aerosols in the Iberian Peninsula for the late XXI century,
Atmos. Environ., 55, 483–495,
https://doi.org/10.1016/j.atmosenv.2012.02.048, 2012. a
Jiménez-Guerrero, P., Gómez-Navarro, J. J., Baró, R.,
Lorente, R., Ratola, N., and Montávez, J. P.: Is there a common
pattern of future gas-phase air pollution in Europe under diverse climate
change scenarios?, Clim. Change, 121, 661–671,
https://doi.org/10.1007/s10584-013-0944-8, 2013a. a
Jiménez-Guerrero, P., Jerez, S., Montávez, J. P., and Trigo, R. M.:
Uncertainties in future ozone and PM10 projections over Europe from a
regional climate multiphysics ensemble, Geophys. Res. Lett., 40,
5764–5769, https://doi.org/10.1002/2013GL057403, 2013b. a, b
Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R.,
Camilloni, I., Doblas-Reyes, F., Fiore, A. M., Kimoto, M., Meehl, G.,
Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J.,
Vecchi, G., and Wang, H. J.: Near-term Climate Change: Projections and
Predictability, in: Climate Change 2013 – The Physical Science Basis, edited
by Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 9781107057,
953–1028,
https://doi.org/10.1017/CBO9781107415324.023,
2013. a
Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols
suggests climate models underestimate the size of the global dust cycle,
P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a, b
Lee, C. J., Martin, R. V., Henze, D. K., Brauer, M., Cohen, A., and Donkelaar,
A. v.: Response of Global Particulate-Matter-Related Mortality to Changes in
Local Precursor Emissions, Environ. Sci. Technol., 49,
4335–4344, https://doi.org/10.1021/acs.est.5b00873, 2015. a
Lelieveld, J., Barlas, C., Giannadaki, D., and Pozzer, A.: Model calculated global, regional and megacity premature mortality due to air pollution, Atmos. Chem. Phys., 13, 7023–7037, https://doi.org/10.5194/acp-13-7023-2013, 2013. a, b
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015. a, b, c
Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M.,
Daiber, A., and Münzel, T.: Cardiovascular disease burden from ambient
air pollution in Europe reassessed using novel hazard ratio functions,
European Heart Journal, 40, 1590–1596, https://doi.org/10.1093/eurheartj/ehz135, 2019. a
Liang, C.-K., West, J. J., Silva, R. A., Bian, H., Chin, M., Davila, Y., Dentener, F. J., Emmons, L., Flemming, J., Folberth, G., Henze, D., Im, U., Jonson, J. E., Keating, T. J., Kucsera, T., Lenzen, A., Lin, M., Lund, M. T., Pan, X., Park, R. J., Pierce, R. B., Sekiya, T., Sudo, K., and Takemura, T.: HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018, 2018. a, b
López-Romero, J. M., Montávez, J. P., Jerez, S., Lorente-Plazas, R., Palacios-Peña, L., and Jiménez-Guerrero, P.: Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe, Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, 2021. a
Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review,
Current Climate Change Reports, 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a
McConnell, R., Berhane, K., Yao, L., Jerrett, M., Lurmann, F., Gilliland, F.,
Künzli, N., Gauderman, J., Avol, E., Thomas, D., and Peters, J.:
Traffic, susceptibility, and childhood asthma, Environ. Health
Persp., 114, 766–772, https://doi.org/10.1289/ehp.8594, 2006. a
McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J.,
O'Rourke, P., Hammer, M. S., van Donkelaar, A., Bindle, L., Shah, V.,
Jaeglé, L., Luo, G., Yu, F., Adeniran, J. A., Lin, J., and Brauer, M.:
Source sector and fuel contributions to ambient PM2.5 and attributable
mortality across multiple spatial scales, Nat. Commun., 12, 3594,
https://doi.org/10.1038/s41467-021-23853-y, 2021. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1,
2009. a, b
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010. a, b
NASA SocioEconomic Data and Applications Center: Basic Demographic
Characteristics, v4.11, http://sedac.ciesin.columbia.edu (last access: 17 November 2021),
2019. a
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A New Thermodynamic
Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols, Aquat.
Geochem., 4, 123–152, https://doi.org/10.1023/A:1009604003981, 1998. a
Ohata, S., Moteki, N., Mori, T., Koike, M., and Kondo, Y.: A key process
controlling the wet removal of aerosols: new observational evidence,
Sci. Rep.-UK, 6, 34113, https://doi.org/10.1038/srep34113, 2016. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Palacios-Peña, L., Fast, J. D., Pravia-Sarabia, E., and Jiménez-Guerrero, P.: Sensitivity of aerosol optical properties to the aerosol size distribution over central Europe and the Mediterranean Basin using the WRF-Chem v.3.9.1.1 coupled model, Geosci. Model Dev., 13, 5897–5915, https://doi.org/10.5194/gmd-13-5897-2020, 2020a. a, b, c
Palacios-Peña, L., Montávez, J. P., López-Romero, J. M., Jerez, S.,
Gómez-Navarro, J. J., Lorente-Plazas, R., Ruiz, J., and Jiménez-Guerrero,
P.: Added value of aerosol-cloud interactions for representing aerosol
optical depth in an online coupled climate-chemistry model over Europe,
Atmosphere, 11, 360, https://doi.org/10.3390/atmos11040360,
2020b. a, b
Park, S., Allen, R. J., and Lim, C. H.: A likely increase in fine particulate
matter and premature mortality under future climate change, Air Qual.
Atmos. He., 13, 143–151, https://doi.org/10.1007/s11869-019-00785-7, 2020. a, b, c
Pielke, R. and Ritchie, J.: Distorting the view of our climate future: The
misuse and abuse of climate pathways and scenarios, Energy Research Social
Science, 72, 101890, https://doi.org/10.1016/j.erss.2020.101890,
2021. a, b
Pope, C. A., Burnett, R. T., Krewski, D., Jerrett, M., Shi, Y., Calle, E. E.,
and Thun, M. J.: Cardiovascular mortality and exposure to airborne fine
particulate matter and cigarette smoke, Circulation, 120, 941–948,
https://doi.org/10.1161/CIRCULATIONAHA.109.857888, 2009. a
Pope, C. A., Coleman, N., Pond, Z. A., and Burnett, R. T.: Fine particulate air
pollution and human mortality: 25+ years of cohort studies, Environ.
Res., 183, 108924, https://doi.org/10.1016/j.envres.2019.108924, 2020. a
Pravia-Sarabia, E., Gómez-Navarro, J. J., Jiménez-Guerrero, P., and Montávez, J. P.: TITAM (v1.0): the Time-Independent Tracking Algorithm for Medicanes, Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, 2020. a
Prüss-Üstün, A., Wolf, J., Corvalán, C. F., Bos, R., and Neira, M. P.:
Preventing disease through healthy environments: a global assessment of the
burden of disease from environmental risks, World Health Organization, ISBN 9789241565196, 2016. a
Räisänen, J.: How reliable are climate models?, Tellus A, 59, 2–29,
https://doi.org/10.1111/j.1600-0870.2006.00211.x, 2007. a
Räisänen, J. and Räty, O.: Projections of daily mean temperature
variability in the future: cross-validation tests with ENSEMBLES regional
climate simulations, Clim. Dynam., 41, 1553–1568,
https://doi.org/10.1007/s00382-012-1515-9, 2013. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5—A scenario of comparatively
high greenhouse gas emissions, Clim. Change, 109, 33,
https://doi.org/10.1007/s10584-011-0149-y, 2011. a
Ritchie, J. and Dowlatabadi, H.: Why do climate change scenarios return to
coal?, Energy, 140, 1276–1291,
https://doi.org/10.1016/j.energy.2017.08.083,
2017. a
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP8.5 tracks cumulative CO2
emissions, P. Natl. Acad. Sci. USA, 117,
19656–19657, https://doi.org/10.1073/pnas.2007117117,
2020a. a
Schwalm, C. R., Glendon, S., and Duffy, P. B.: Reply to Hausfather and Peters:
RCP8.5 is neither problematic nor misleading, P. Natl. Acad. Sci. USA, 117, 27793–27794, https://doi.org/10.1073/pnas.2018008117,
2020b. a
Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F.,
Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G.,
Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K.,
Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M.,
Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson,
D. S., Strode, S., Szopa, S., and Zeng, G.: Global premature mortality due
to anthropogenic outdoor air pollution and the contribution of past climate
change, Environ. Res. Lett., 8, 034005,
https://doi.org/10.1088/1748-9326/8/3/034005, 2013. a, b
Silva, R. A., Adelman, Z., Fry, M. M., and West, J. J.: The Impact of
Individual Anthropogenic Emissions Sectors on the Global Burden of Human
Mortality due to Ambient Air Pollution, Environ. Health Persp.,
124, 1776–1784, https://doi.org/10.1289/EHP177, 2016a. a, b, c, d
Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., and Zengast, G.: The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble, Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, 2016b. a
Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J.,
Faluvegi, G., Folberth, G. A., Horowitz, L. W., Nagashima, T., Naik, V.,
Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P.,
Doherty, R. M., Josse, B., MacKenzie, I. A., Stevenson, D. S., and Zeng, G.:
Future global mortality from changes in air pollution attributable to
climate change, Nat. Clim. Change, 7, 647–651,
https://doi.org/10.1038/nclimate3354, 2017. a, b
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for
regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847–25879, https://doi.org/10.1029/97JD00849, 1997. a
Tarín-Carrasco, P., Morales-Suárez-Varela, M., Im, U., Brandt, J., Palacios-Peña, L., and Jiménez-Guerrero, P.: Isolating the climate change impacts on air-pollution-related-pathologies over central and southern Europe – a modelling approach on cases and costs, Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019, 2019. a, b, c, d, e
Tarín-Carrasco, P., Im, U., Geels, C., Palacios-Peña, L., and
Jiménez-Guerrero, P.: Contribution of fine particulate matter to present
and future premature mortality over Europe: A non-linear response,
Environ. Int., 153, 106517,
https://doi.org/10.1016/j.envint.2021.106517,
2021. a, b, c, d
Ukhov, A., Ahmadov, R., Grell, G., and Stenchikov, G.: Improving dust simulations in WRF-Chem v4.1.3 coupled with the GOCART aerosol module, Geosci. Model Dev., 14, 473–493, https://doi.org/10.5194/gmd-14-473-2021, 2021. a
United Nations: Department of Economic and Social Affairs Population
Dynamics, https://population.un.org/wpp/ (last access: 19 November 2021), 2020. a
van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy,
R. C., Lyapustin, A., Sayer, A. M., and Winker, D. M.: Global Estimates of
Fine Particulate Matter using a Combined Geophysical-Statistical Method with
Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762–3772, https://doi.org/10.1021/acs.est.5b05833, 2016. a
Vedal, S., Han, B., Xu, J., Szpiro, A., and Bai, Z.: Design of an air pollution
monitoring campaign in beijing for application to cohort health studies,
Int. J. Env. Res. Pub. He., 14, 1580,
https://doi.org/10.3390/ijerph14121580, 2017.
a
World Health Organization: Review of evidence on health aspects of air
pollution – REVIHAAP Project: Technical Report, World Health Organization, p.
301, https://doi.org/10.1007/BF00379640,
2013. a, b
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter,...
Altmetrics
Final-revised paper
Preprint