

Supplement of

Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario

Patricia Tarín-Carrasco et al.

Correspondence to: Pedro Jiménez-Guerrero (pedro.jimenezguerrero@um.es)

The copyright of individual parts of the supplement might differ from the article licence.

Target domain

Figure S1. Target domain and European regions included in this contribution: Western Europe (yellow), Central Europe (blue) and Eastern Europe (purple).

Population density

Figure S2. Population density (pop/km^2) in each grid cell for the present case (top) and difference with UN-projected population in 2050 (bottom) over the European target domain (pop/km^2) .

WRF-Chem physico-chemical configuration used in the simulations

Scheme	Option	Reference				
Physics						
Microphysics	Lin	Lin et al. (1983)				
SW & LW radiation	RRTM	Iacono et al. (2008)				
Planetary boundary layer	YSU	Hong et al. (2006)				
Cumulus	Grell 3D	Grell and Dévényi (2002)				
Soil	Noah	Tewari et al. (2004)				
Chemistry						
Gas-phase	RACM-KPP	Stockwell et al. (1997)				
		Geiger et al. (2003)				
Aerosols	GOCART	Ginoux et al. (2001)				
		Chin et al. (2002)				
Photolysis	Fast-J	Fast et al. (2006)				
Biogenic emissions	MEGAN	Guenther et al. (2006)				
Anthropogenic emissions	ACCMIP	Lamarque et al. (2010)				

 Table S1. WRF-Chem physico-chemical configuration used in the simulations.

Model evaluation of PM2.5 concentrations against available concentrations

In this Section we compare the WRF-Chem output for PM2.5 with available data. Hence, the modelling results for fine particulate matter were validated against data from 108 AirBase air quality stations (Figure 3,a from the European Environment Agency, data publicly available through https://discomap.eea.europa.eu/App/AirQualityStatistics/index.html#) for Europe during the years 1991 and 2010. The station data fulfilled a double condition: (1) stations were background stations, so the spatial coverage of the station fits the working resolution of the model; and (2) the availability of data at the station was higher than 50% for the target period.

Statistical metrics used in this evaluation have been widely used in previous works regarding validation of air quality models (e.g. Ratola and Jiménez-Guerrero (2016); Nopmongcol et al. (2017); Odman et al. (2020); among many others) and cover the mean values of model and observations 3,b and c, respectively), bias metrics (mean bias, B; mean fractional bias, MFB) and error metrics (root mean square error, RMSE; mean fractional error, MFE). These statistics and errors are defined and summarized in Table SM2. Table SM3 presents the evaluation results for each individual station included in this contribution.

Table S2. Summary of statistical figures used for PM2.5 validation, where c is the concentration of the model (m) or the observations (o). c_{mm} and c_{om} represent the mean concentrations of the model and the observations, respectively.

Parameter	Definition	Value
Mean Bias (B)	$B = \frac{1}{N} \sum (c_m - c_o)$	$1.94~\mu\mathrm{g~m^{-3}}$
Root Mean Square Error (RMSE)	$RMSE = \sqrt{\frac{\sum (c_m - c_o)^2}{N}}$	$3.75~\mu\mathrm{g~m^{-3}}$
Mean Fractional Bias (MFB)	$MFB = \frac{1}{N} \sum \frac{(c_m - c_o)}{\frac{(c_m + c_o)}{2}}$	8.95%
Mean Fractional Error (MFE)	$MFE = \frac{1}{N} \sum \frac{\frac{ c_m - c_o }{2}}{\frac{(c_m + c_o)}{2}}$	27.50%

Station	EoI Code	Longitude	Latitude	Mod. $(\mu g m^{-3})$	Meas. $(\mu g m^{-3})$	$B(\mu g m^{-3})$	MFB (%)	MFE (%)	RMSE $(\mu g m^{-3})$
1	AT4S108	14.5747	48.5311	10.91	11.06	-0.15	-1.24	1.37	0.17
2	AT30302	16.6753	48.0503	15.23	13.44	1.79	11.25	12.50	1.97
3	AT0ILL1	16.7664	47.7703	19.17	13.08	6.08	33.95	37.73	6.69
4	BETN029	2.5823	51.0163	17.47	12.06	5.41	32.95	36.62	5.95
5	BETR833	4.3610	51.3282	17.99	13.18	4.80	27.74	30.82	5.28
6	BETN085	6.0017	50.3032	10.17	11.72	-1.55	-12.78	14.20	1.71
7	BETN063	4.6683	50.6554	15.21	12.66	2.56	16.50	18.33	2.81
8	BEGRT01	5.0533	51.2309	17.79	13.47	4.31	24.84	27.61	4.75
9	BETN100	4.5948	50.0957	11.20	12.16	-0.96	-7.36	8.18	1.05
10	BETN093	5.2352	50.2745	12.67	11.88	0.79	5.79	6.43	0.87
11	BETN132	5.6304	49.7193	11.80	11.93	-0.13	-1.00	1.11	0.14
12	BG0070A	23.2439	42.6372	8.99	12.76	-3.77	-31.22	34.69	4.15
13	BG0053R	24.7381	41.6943	7.34	11.14	-3.80	-37.03	41.15	4.18
14	CY0002R	33.0578	35.0380	15.71	11.15	4.56	30.59	33.99	5.02
15	CZ0ESVR	16.0342	49.7351	10.94	13.12	-2.18	-16.28	18.09	2.39
16	CZ0UDOK	14.1702	50.4589	21.52	12.88	8.64	45.22	50.24	9.50
17	CZ0ULOM	13.6734	50.5858	21.10	11.88	9.22	50.30	55.89	10.14
18	CZ0BMIS	16.7245	48.7918	19.91	13.95	5.96	31.66	35.18	6.55
19	EE0011R	25.9306	59.4944	6.09	9.40	-3.31	-38.48	42.75	3.64
20	EE0009R	26.7589	58.7028	6.89	10.53	-3.64	-37.65	41.83	4.01
21	FI00349	24.6849	60.3144	8.19	10.31	-2.12	-20.64	22.93	2.33
22	FI00208	27.6714	60.5261	8.70	10.30	-1.61	-15.23	16.92	1.77
23	FI00351	-0.4583	48.6450	11.60	9.43	2.16	18.50	20.56	2.38
24	FR21050	4.6300	49.9078	18.63	12.19	6.44	37.60	41.78	7.08
25	FR14008	2.6101	46.8147	12.61	9.55	3.06	24.86	27.62	3.37
26	FR34038	0.1797	43.6303	13.51	8.47	5.04	41.26	45.85	5.54
27	FR12020	-0.7437	46.6567	14.99	9.33	5.66	41.89	46.54	6.23
28	FR23124	5.7856	49.0658	20.96	14.96	6.01	30.10	33.44	6.61
29	FR30033	7.9080	47.9133	8.15	12.01	-3.87	-34.54	38.38	4.26
30	DEUB004	7.7645	47.8099	7.44	11.95	-4.51	-41.83	46.48	4.96
31	DEBW031	10.7567	52.8008	15.07	10.97	4.09	28.29	31.44	4.50
32	DEUB005	10.2406	54.0932	16.21	10.09	6.12	41.87	46.53	6.73
33	DESH008	11.0434	51.6624	14.97	11.06	3.91	27.03	30.03	4.30
34	DEST098	8.1481	51.5707	17.34	12.43	4.90	29.65	32.94	5.39
35	DENW068	7.7299	50.4243	10.30	11.84	-1.54	-12.53	13.92	1.69
36	DERP028	11.8914	51.8373	20.41	13.05	7.36	39.59	43.98	8.10
37	DEST104	10.6125	51.7582	6.34	8.16	-1.82	-22.59	25.10	2.00
38	DENI051	7.8265	49.2703	9.13	13.49	-4.36	-34.70	38.56	4.80
39	DERP017	13.0094	51.3038	13.69	11.46	2.22	15.91	17.67	2.44
40	DESN076	11.1671	52.9570	12.99	10.70	2.29	17.42	19.35	2.52
41	DENI031	8.9282	51.4309	13.36	11.61	1.75	12.63	14.03	1.93
42	DEHE046	14.0153	52.5638	21.03	11.97	9.06	49.43	54.92	9.97
43	DEBB053	14.0153	52.5638	21.03	11.97	9.06	49.43	54.92	9.97
44	DEBB053	12.9619	42.5725	7.71	9.79	-2.08	-21.30	23.73	2.28
45	110989A	13.3367	42.9006	5.73	8.03	-2.30	-30.11	33.46	2.53
46	IT1842A	12.3342	44.9508	16.47	12.55	3.92	24.29	26.99	4.31
4/	IT1212A	11.4333	46.5892	8.28	9.41	-1.12	-11.44	12.72	1.24
48	110505A	12.9522	43.4681	9.35	10.96	-1.62	-14.55	15.92	1.78
49	IT1706A	13.6/47	45.5556	11.67	10.99	0.69	5.44	0.05	0.75
50	IT1/96A	11.0708	44.9969	23.68	10.09	7.59	34.55	38.15	8.34
51	111805A	8.9150	45.0408	18.58	13.54	5.04	28.27	31.41	5.55
52	111/30A	8.3103	44.8080	20.75	21.10	-0.34	-1.48	1.04	0.38
35	111948A	10.6639	44.8/31	24.05	10.00	1.45	32.98	30.05	8.19
54	11 1914A	11.1/80	44.9278	22.06	14.03	8.02	40.02	44.47	8.83
55	IT1921A	11.6394	44.6622	21.01	13.48	7.53	39.32	43.69	8.29
50	111451A	12.62/5	43.9328	15.00	11.45	3.57	24.51	27.02	3.93
5/	111464A	10.0192	44.9894	21.91	13.33	8.58	43.85	48.72	9.44
58	11 1924A	10.2889	44.0575	15.64	12.21	5.42	22.13	24.59	3.77
59	11 1911A	11.1144	40.1969	15.12	10.64	4.47	31.25	34.72	4.92
00	111930A	13.0/44	41.0/00	13.24	10.30	4.88	34.32	36.14	3.37

Table S3. Summary of statistical figures for each station, according to the statistical parameters defined in Table 2.

Table S3. (continued)

Station	EoI Code	Longitude	Latitude	Mod.	Meas.	В	MFB (%)	MFE (%)	RMSE
61	IT0992A	12.0617	44.1303	16.54	11.83	4.71	29.90	33.22	5.18
62	IT1909A	11.9422	44.7417	19.35	13.02	6.33	35.20	39.11	6.96
63	IT1927A	21.1733	56.1623	11.95	9.78	2.17	17.96	19.96	2.39
64	LV0010R	25.9056	57.1349	10.49	11.19	-0.71	-5.87	6.53	0.78
65	LV0016R	26.0042	55.4633	9.96	10.39	-0.43	-3.81	4.23	0.47
66	LT00051	5.8471	49.7318	16.35	12.24	4.10	25.84	28.71	4.51
67	MT00007	4.5103	52.2981	15.18	11.94	3.24	21.54	23.93	3.57
68	NL00444	4.9264	51.9714	17.22	12.65	4.57	27.53	30.59	5.03
69	NL00620	5.8536	51.5411	17.92	12.95	4.97	28.96	32.17	5.46
70	NL00131	5.0508	52.8047	13.80	11.14	2.66	19.23	21.37	2.93
71	NL00538	6.2775	53.3317	13.76	10.07	3.69	27.87	30.96	4.06
72	NL00934	4.5139	51.6528	14.95	12.72	2.23	14.50	16.11	2.45
73	NL00246	5.7086	52.1125	18.59	12.61	5.98	34.48	38.32	6.57
74	NL00738	8.2519	58.3885	3.41	5.40	-1.99	-40.63	45.14	2.19
75	NO0002R	19.4588	50.7109	21.85	17.42	4.43	20.30	22.55	4.87
76	PL0243A	15.4317	51.3176	17.47	12.61	4.86	29.07	32.30	5.34
77	PL0505A	22.0381	54.1248	15.17	12.05	3.12	20.63	22.93	3.43
78	PL0005R	17.9340	53.6621	19.54	12.81	6.73	37.44	41.60	7.40
79	PL0077A	-8.6939	41.8022	8.31	11.53	-3.23	-29.26	32.51	3.55
80	PT01047	-7.3975	38.6150	9.11	7.58	1.53	16.54	18.37	1.69
81	PT04006	-7.7908	41.3714	3.59	5.21	-1.62	-33.14	36.82	1.78
82	PT07001	-8.4661	39.3525	9.20	9.01	0.19	1.87	2.08	0.21
83	PT03096	-9.2456	39.2783	6.50	11.93	-5.43	-53.05	58.94	5.97
84	PT03102	-8.7986	38.0769	12.89	9.50	3.38	27.19	30.21	3.72
85	PT04002	-8.6906	38.6356	6.76	8.91	-2.15	-24.71	27.45	2.37
86	PT03099	-8.8917	39.9239	11.84	10.13	1.70	13.93	15.48	1.87
87	PT02019	-7.3019	40.2331	6.85	6.92	-0.07	-0.86	0.96	0.07
88	PT02020	20.2911	49.1528	10.22	14.45	-4.23	-30.87	34.30	4.65
89	SK0004R	17.8606	47.9600	18.43	14.51	3.92	21.42	23.80	4.31
90	SK0007R	14.8581	45.5611	11.61	11.26	0.35	2.77	3.08	0.39
91	SI0008R	0.3728	40.5547	9.58	6.71	2.88	31.79	35.33	3.16
92	ES0009R	-3.1425	41.2742	5.66	6.41	-0.75	-11.19	12.43	0.8
2 93	ES0010R	-6.9236	38.4728	7.64	7.52	0.12	1.43	1.59	0.13
94	ES0011R	0.7347	41.3939	7.32	7.25	0.06	0.79	0.88	0.07
95	ES0008R	-4.3506	39,5469	5.93	6.67	-0.75	-10.65	11.83	0.82
96	ES0001R	-5.8975	41.2389	4.86	6.21	-1.35	-21.97	24.41	1.49
97	ES0013R	-1.1011	39.0828	5.47	7.16	-1.68	-24.01	26.68	1.85
98	ES0012R	-0.8319	39,7081	9.03	6.90	2.13	24.02	26.69	2.34
99	ES1671A	-1.2814	39,5586	10.45	6.73	3.72	38.97	43.30	4.09
100	ES1670A	-0.1694	40.7350	8.40	6.54	1.86	22.40	24.89	2.05
101	ES1811A	-4,2752	40,2479	9,07	6,56	2.51	28.95	32.17	2.76
102	ES1810A	-3.4679	40.9090	8.91	7.46	1.45	15.91	17.67	1.59
103	ES1802A	17.3884	58,8058	5.69	7.67	-1.97	-26.59	29.55	2.17
104	SE0012R	18.6313	59,8324	4.70	6.70	-2.00	-31 55	35.06	2 20
105	SE0066A	13.1500	56.0281	7.19	7.34	-0.15	-1.87	2.08	0.17
106	GB0617A	-3.2429	55.7922	4.03	6.98	-2.94	-48.14	53.49	3.24
107	GB0048R	-1.3253	51,5711	8,64	9,75	-1.12	-10.94	12.15	1.23
109	CP0026P	1 2252	51 5712	10.20	0.75	0.53	4.77	5 20	0.59

Figure S3. (a) Station location and code; (b) Model mean concentration of PM2.5 for 1991-2010; and (c) Observations mean concentration of PM2.5 for 1991-2010.

Estimated annual premature deaths by age range.

	Present	PRE-P2010	RCP8.5	FUT-P2010	RCP8.5	REN80-P2010	RCP8.5	FUT-P2050	RCP8.5	REN80-P2050
Age Range	$PD \times 10^3$	PD/100,000 h.								
25-29	4.4	7.5	4.4	7.5	4.2	7.2	3.2	7.2	3.0	6.9
30-34	8.0	13.8	8.0	13.8	7.7	13.3	6.4	13.6	6.2	13.0
35-39	12.7	22.0	12.7	22.1	12.2	21.1	10.9	22.3	10.5	21.3
40-44	18.0	31.4	18.0	31.5	17.3	30.2	15.7	32.4	15.1	31.1
45-49	28.5	48.0	28.5	48.1	27.4	46.2	21.8	47.6	20.9	45.7
50-54	43.6	77.1	43.6	77.2	41.9	74.2	34.5	75.1	33.1	72.2
55-59	60.8	118.3	60.8	118.5	58.5	113.9	58.4	117.5	56.2	113.0
60-64	80.0	182.5	80.1	182.6	77.0	175.6	103 .4	191.0	99.3	183.4
65-69	80.7	236.9	80.8	237.2	77.8	228.4	126.7	243.8	121.8	234.3
70-74	112.3	328.3	112.5	328.8	108.0	315.7	153.9	321.9	147.7	308.8
75-79	116.8	460.9	117.0	461.8	112.4	443.5	195 .4	458.6	187.6	440.2
80+	328.7	1035.3	329.4	1037.5	317.2	999.3	807 .5	1043.7	778.0	1005.6
TOTAL	894.3	157.5	895.8	157.8	861.5	151.8	1537.9	254.3	1479.3	244.7

Table S4. Estimated annual premature deaths (PD $\times 10^3$) by age range in all scenarios covered (in thousands).

(PRE-P2010): PD for the present case; (FUT-P2010): PD for the future scenario with population at 2010 levels; (REN80-P2010): PD for the future mitigation scenario with population at 2010 levels; (FUT-P2050): PD for the future scenario with population projections of UN for 2050; (REN80-P2010): PD for the future mitigation scenario with population at 2010 levels; (REN80-P2050): PD for the future mitigation scenario with population projections of UN for 2050; (REN80-P2010): PD for the future mitigation scenario with population projections of UN for 2050; (REN80-P2010): PD for the future mitigation scenario with population projections of UN for 2050; (REN80-P2010): PD for the future mitigation scenario with population projections of UN for 2050.

References

- Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, Journal of the Atmospheric Sciences, 59, 461 – 483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
- Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, Journal of Geophysical Research: Atmospheres, 111, D21 305, https://doi.org/10.1029/2005JD006721, 2006.
- Geiger, H., Barnes, I., Bejan, I., Benter, T., and Spittler, M.: The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism, Atmospheric Environment, 37, 1503 1519, https://doi.org/10.1016/S1352-2310(02)01047-6, 2003.
- Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model, Journal of Geophysical Research: Atmospheres, 106, 20255 20273, https://doi.org/10.1029/2000JD000053, 2001.
- Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophysical Research Letters, 29, 38–1–38–4, https://doi.org/10.1029/2002GL015311, 2002.
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181 3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
- Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Monthly Weather Review, 134, 2318 – 2341, https://doi.org/10.1175/MWR3199.1, 2006.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres, 113, D13 103, https://doi.org/10.1029/2008JD009944, 2008.
- Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmospheric Chemistry and Physics, 10, 7017 – 7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
- Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the Snow Field in a Cloud Model, Journal of Climate and Applied Meteorology, 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
- Nopmongcol, U., Liu, Z., Stoeckenius, T., and Yarwood, G.: Modeling intercontinental transport of ozone in North America with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII) Phase 3, Atmospheric Chemistry and Physics, 17, 9931–9943, https://doi.org/10.5194/acp-17-9931-2017, https://acp.copernicus.org/articles/17/9931/2017/, 2017.
- Odman, M. T., Qin, M., Hu, Y., Russell, A. G., and Boylan, J. W.: Interstate transport of ozone in eastern United States: An analysis of the impact of southeastern states' emissions in 2017, Atmospheric Environment, 236, 117628, https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117628, https://www.sciencedirect.com/science/article/pii/S1352231020303617, 2020.
- Ratola, N. and Jiménez-Guerrero, P.: Can biomonitors effectively detect airborne benzo[a]pyrene? An evaluation approach using modelling, Atmospheric Chemistry and Physics, 16, 4271–4282, https://doi.org/doi: 10.5194/acp-16-4271-2016, 2016.

- Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling, Journal of Geophysical Research: Atmospheres, 102, 25 847 25 879, https://doi.org/10.1029/97JD00849, 1997.
- Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R.: Implementation and verification of the unified NOAH land surface model in the WRF model, in: 20th Conference on weather analysis and forecasting/16th Conference on numerical weather prediction, pp. 11 15, 2004.