Articles | Volume 22, issue 19
https://doi.org/10.5194/acp-22-13183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China
Yiwen Hu
Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological
Administration, Nanjing University of Information Science & Technology,
Nanjing 210044, China
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Zengliang Zang
CORRESPONDING AUTHOR
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological
Administration, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Yi Li
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Yanfei Liang
No. 32145 Unit of PLA, Xinxiang 453000, China
Wei You
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Xiaobin Pan
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Zhijin Li
Department of Atmospheric and Oceanic Sciences, Fudan University,
Shanghai 200031, China
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California 91109, USA
Related authors
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Tong Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2555, https://doi.org/10.5194/egusphere-2025-2555, 2025
Short summary
Short summary
We use the WRF-Chem-SBM model to investigate how the meteorological conditions impact aerosol-cloud interactions (ACI) under different pollution regimes for marine liquid-phase clouds. Our findings highlight the changes in aerosol effects on clouds and precipitation with thermodynamic conditions, as well as the sensitivity of ACI to meteorological conditions under different pollution regimes, which help to advance the understanding of ACI.
Xiaoya Zhang, Lei Liu, Jianfang Fei, Zhijin Li, Zexun Wei, Zhiwei Zhang, Xingliang Jiang, Zexin Dong, and Feng Xu
Ocean Sci., 21, 1033–1045, https://doi.org/10.5194/os-21-1033-2025, https://doi.org/10.5194/os-21-1033-2025, 2025
Short summary
Short summary
Our research evaluated the precision of mapping the ocean's surface with combined data from a couple of satellites, focusing on dynamic aspects revealed by sea level changes. The results show that 2DVAR (two-dimensional variation), a new mapping product, aligns more closely and with less error with the most advanced satellite observations than a widely used mapping product called AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic). The results suggest that 2DVAR detects minor ocean movements better, making it more valuable and reliable for ocean dynamic study.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Fengwen Wang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
Atmos. Chem. Phys., 25, 1569–1585, https://doi.org/10.5194/acp-25-1569-2025, https://doi.org/10.5194/acp-25-1569-2025, 2025
Short summary
Short summary
This study uses WRF-Chem to assess how meteorological conditions and emission reductions affected fine particulate matter (PM2.5) in the North China Plain (NCP). It highlights regional disparities: in the northern NCP, adverse weather negated emission reduction effects. In contrast, the southern NCP featured a PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology, and PM2.5.
Jianqi Zhao, Xiaoyan Ma, and Johannes Quaas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3662, https://doi.org/10.5194/egusphere-2024-3662, 2024
Preprint archived
Short summary
Short summary
We conduct a comparative analysis of aerosol-cloud responses in liquid-phase clouds under different aerosol and meteorological conditions based on simulations using the WRF-Chem-SBM model. Our findings highlight the different effects of aerosols on clouds and precipitation, as well as variations in the roles of aerosol and meteorological factors influencing aerosol-cloud interactions, in different environment.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys., 23, 4091–4104, https://doi.org/10.5194/acp-23-4091-2023, https://doi.org/10.5194/acp-23-4091-2023, 2023
Short summary
Short summary
From 12 March to 6 April 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days, and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing and then conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-331, https://doi.org/10.5194/egusphere-2023-331, 2023
Preprint archived
Short summary
Short summary
We improve the ability of WRF-Chem model to simulate aerosol-cloud physical and chemical processes by coupling a spectral-bin cloud microphysics scheme and online aerosol module, and consequently explore the aerosol-cloud interactions over eastern China and its adjacent ocean in boreal winter. Our study highlights the differences in aerosol-cloud interactions between land and ocean, precipitation clouds and non-precipitation clouds, and differentiates and quantifies their underlying mechanisms.
Zhijin Li, Matthew R. Archer, Jinbo Wang, and Lee-Lueng Fu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1399, https://doi.org/10.5194/egusphere-2022-1399, 2022
Preprint archived
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) satellite mission will carry a new-generation altimeter to measure sea surface height in two-dimensions at unprecedented spatial resolution. An integration of SWOT measurements into an oceanic numerical model will improve our oceanic prediction in spatial resolution and accuracy. It has been demonstrated that the methodology used is ready to integrate SWOT measurements into the model, and the result may be used to interpret SWOT measurements.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Zhijin Li, Matthew Archer, Jinbo Wang, and Lee-Lueng Fu
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-89, https://doi.org/10.5194/os-2021-89, 2021
Preprint withdrawn
Short summary
Short summary
We developed a data assimilation (DA) system coupled to a high-resolution model of the California Current region. This three-dimensional variational DA system has been extended to effectively assimilate a longer window of high-density ocean observations, in anticipation of the upcoming SWOT (surface water and ocean topography) satellite mission. The new era of swath-altimetry ushered in by SWOT will challenge existing DA systems, and this study presents a first approach to this challenge.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Rong Tian, Xiaoyan Ma, and Jianqi Zhao
Atmos. Chem. Phys., 21, 4319–4337, https://doi.org/10.5194/acp-21-4319-2021, https://doi.org/10.5194/acp-21-4319-2021, 2021
Short summary
Short summary
We improve the treatment of the dust emission process in GEOS-Chem by considering the effect of geographical variation of aerodynamic roughness length, smooth roughness length and soil texture, as well as the Owen effect and a more physically based formulation of sandblasting efficiency, which improve estimated threshold friction velocity and dust concentrations over China. Our study highlights the importance of incorporation of realistic land-surface properties into the dust emission scheme.
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, https://doi.org/10.5194/gmd-13-6285-2020, 2020
Cited articles
Al-qaness, M. A. A., Fan, H., Ewees, A. A., Yousri, D., and Abd Elaziz, M.:
Improved ANFIS model for forecasting Wuhan City Air Quality and analysis
COVID-19 lockdown impacts on air quality, Environ. Res., 194,
110607, https://doi.org/10.1016/j.envres.2020.110607, 2021.
Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che, H.,
Ali, G., Dong, Y., Tang, Z., Gu, Y., Tang, W., and Hou, Y.: Assessing the
impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts:
Sand dust events in northeast China, Atmos. Environ., 205, 78–89,
https://doi.org/10.1016/j.atmosenv.2019.02.026, 2019.
Bian, Y., Huang, Z., Ou, J., Zhong, Z., Xu, Y., Zhang, Z., Xiao, X., Ye, X., Wu, Y., Yin, X., Li, C., Chen, L., Shao, M., and Zheng, J.: Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015, Atmos. Chem. Phys., 19, 11701–11719, https://doi.org/10.5194/acp-19-11701-2019, 2019.
Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air
pollution in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data assimilation system , Atmos. Chem. Phys., 19, 8619–8650, https://doi.org/10.5194/acp-19-8619-2019, 2019.
Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah Land
Surface Model in Arid Regions with an Appropriate Parameterization of the
Thermal Roughness Length, J. Hydrometeorol., 11, 995–1006,
https://doi.org/10.1175/2010JHM1185.1, 2010.
China National Environmental Monitoring Centre: Real-time national air quality, CNEMC [data set], http://www.cnemc.cn/en/, last access: 28 September 2022.
Chou, M. and Suarez, M.: An efficient thermal infrared radiation
parameterization for use in general circulation models,
http://purl.fdlp.gov/GPO/gpo60401 (last access: 28 September 2022), 1994.
Chu, K., Peng, Z., Liu, Z., Lei, L., Kou, X., Zhang, Y., Bo, X., and Tian,
J.: Evaluating the Impact of Emissions Regulations on the Emissions
Reduction During the 2015 China Victory Day Parade With an Ensemble Square
Root Filter, J. Geophys. Res.-Atmos., 123, 4122–4134,
https://doi.org/10.1002/2017JD027631, 2018.
Cohen, J. B. and Wang, C.: Estimating global black carbon emissions using a
top-down Kalman Filter approach, J. Geophys. Res.-Atmos., 119, 307–323, https://doi.org/10.1002/2013JD019912, 2014.
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach,
Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994.
Dai, T., Cheng, Y., Goto, D., Li, Y., Tang, X., Shi, G., and Nakajima, T.: Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem, Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, 2021.
Dubovik, O., Lapyonok, T., Kaufman, Y. J., Chin, M., Ginoux, P., Kahn, R. A., and Sinyuk, A.: Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem. Phys., 8, 209–250, https://doi.org/10.5194/acp-8-209-2008, 2008.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
Fan, C., Li, Y., Guang, J., Li, Z., Elnashar, A., Allam, M., and de Leeuw, G.: The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China, Remote Sens., 12, 1613, https://doi.org/10.3390/rs12101613, 2020.
Feng, S., Jiang, F., Wu, Z., Wang, H., Ju, W., and Wang, H.: CO Emissions
Inferred From Surface CO Observations Over China in December 2013 and 2017,
J. Geophys. Res.-Atmos., 125, e2019JD031808,
https://doi.org/10.1029/2019JD031808, 2020.
Filonchyk, M., Hurynovich, V., Yan, H., Gusev, A., and Shpilevskaya, N.:
Impact Assessment of COVID-19 on Variations of SO2, NO2, CO and AOD over
East China, Aerosoll Air. Qual. Res., 20, 1530–1540,
https://doi.org/10.4209/aaqr.2020.05.0226, 2020.
Fioletov, V. E., McLinden, C. A., Krotkov, N., and Li, C.: Lifetimes and
emissions of SO2 from point sources estimated from OMI, Geophys. Res. Lett., 42, 1969–1976, https://doi.org/10.1002/2015GL063148, 2015.
Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D.,
Keller, C. A., Lamboll, R. D., Quéré, C. L., Rogelj, J., Rosen, D.,
Schleussner, C.-F., Richardson, T. B., Smith, C. J., and Turnock, S. T.:
Current and future global climate impacts resulting from COVID-19, Nat. Clim. Change, 10, 913–919, https://doi.org/10.1038/s41558-020-0883-0, 2020.
Ghahremanloo, M., Lops, Y., Choi, Y., and Mousavinezhad, S.: Impact of the
COVID-19 outbreak on air pollution levels in East Asia, Sci. Total Environ.,
754, 142226, https://doi.org/10.1016/j.scitotenv.2020.142226, 2021.
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H.,
Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S.,
Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara,
T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Clim. Change, 109, 163,
https://doi.org/10.1007/s10584-011-0154-1, 2011.
Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus
Parameterizations, Mon. Weather Rev., 121, 764–787,
https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 3831–3834, https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Hakami, A., Henze, D. K., Seinfeld, J. H., Chai, T., Tang, Y., Carmichael,
G. R., and Sandu, A.: Adjoint inverse modeling of black carbon during the
Asian Pacific Regional Aerosol Characterization Experiment, J. Geophys. Res.-Atmos., 110, D14301, https://doi.org/10.1029/2004jd005671, 2005.
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433, https://doi.org/10.5194/acp-7-2413-2007, 2007.
Hoffman, R., Louis, J. F., and Nehrkorn, T.: A method for implementing
adjoint calculations in the discrete case, Technical memorandum, ECMWF, Shinfield Park,
Reading, https://www.ecmwf.int/node/9906 (last access: 28 September 2022), 1992.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with
an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/mwr3199.1, 2006.
Hu, Y., Zang, Z., Chen, D., Ma, X., Liang, Y., You, W., Pan, X., Wang, L.,
Wang, D., and Zhang, Z.: Optimization and Evaluation of SO2 Emissions Based
on WRF-Chem and 3DVAR Data Assimilation, Remote Sens., 14, 220,
https://doi.org/10.3390/rs14010220, 2022.
Huang, C., Wang, T., Niu, T., Li, M., Liu, H., and Ma, C.: Study on the
variation of air pollutant concentration and its formation mechanism during
the COVID-19 period in Wuhan, Atmos. Environ., 251, 118276,
https://doi.org/10.1016/j.atmosenv.2021.118276, 2021a.
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang,
J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N.,
Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F.,
Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset
reduction of primary emissions during COVID-19 lockdown in China, Nat. Sci. Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2021b.
Huneeus, N., Chevallier, F., and Boucher, O.: Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model, Atmos. Chem. Phys., 12, 4585–4606, https://doi.org/10.5194/acp-12-4585-2012, 2012.
Huneeus, N., Boucher, O., and Chevallier, F.: Atmospheric inversion of SO2
and primary aerosol emissions for the year 2010, Atmos. Chem. Phys., 13, 6555–6573, https://doi.org/10.5194/acp-13-6555-2013, 2013.
Keller, C. A., Evans, M. J., Knowland, K. E., Hasenkopf, C. A., Modekurty, S., Lucchesi, R. A., Oda, T., Franca, B. B., Mandarino, F. C., Díaz Suárez, M. V., Ryan, R. G., Fakes, L. H., and Pawson, S.: Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone, Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, 2021.
Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B.,
Pigott David, M., null, n., du Plessis, L., Faria Nuno, R., Li, R., Hanage
William, P., Brownstein John, S., Layan, M., Vespignani, A., Tian, H., Dye,
C., Pybus Oliver, G., and Scarpino Samuel, V.: The effect of human mobility
and control measures on the COVID-19 epidemic in China, Science, 368,
493–497, https://doi.org/10.1126/science.abb4218, 2020.
Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi,
L., Li, R., Azari, M., Wang, Y., Zhang, X., Liu, Z., Zhu, Y., Zhang, K.,
Xue, S., Ooi, M. C. G., Zhang, D., and Chan, A.: Air quality changes during
the COVID-19 lockdown over the Yangtze River Delta Region: An insight into
the impact of human activity pattern changes on air pollution variation, Sci.
Total Environ., 732, 139282, https://doi.org/10.1016/j.scitotenv.2020.139282, 2020.
Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Fu, Q., Zhao, M., Wu, H.,
Liu, J., Saikawa, E., and Liao, K.: Drivers for the poor air quality
conditions in North China Plain during the COVID-19 outbreak, Atmos. Environ., 246, 118103, https://doi.org/10.1016/j.atmosenv.2020.118103,
2021.
Li, Z. and Navon, I. M.: Optimality of variational data assimilation and
its relationship with the Kalman filter and smoother, Q. J. Roy. Meteor. Soc., 127, 661–683,
https://doi.org/10.1002/qj.49712757220, 2001.
Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou,
K. N.: A three-dimensional variational data assimilation system for multiple
aerosol species with WRF/Chem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265–4278, https://doi.org/10.5194/acp-13-4265-2013, 2013.
Lin, Y., Farley, R., and Orville, H.: Bulk
Parameterization of the Snow Field in a Cloud Model, J. Clim. Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and
Wu, R.: Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for
Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over
Eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412,
https://doi.org/10.1029/2019jd030421, 2019.
Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NOx emission estimates
derived from an assimilation of OMI tropospheric NO2 columns, Atmos. Chem. Phys., 12, 2263–2288, https://doi.org/10.5194/acp-12-2263-2012, 2012.
Miyazaki, K., Eskes, H. J., Sudo, K., and Zhang, C.: Global lightning NOx
production estimated by an assimilation of multiple satellite data sets, Atmos. Chem. Phys., 14, 3277–3305, https://doi.org/10.5194/acp-14-3277-2014, 2014.
Miyazaki, K., Bowman, K., Sekiya, T., Jiang, Z., Chen, X., Eskes, H., Ru,
M., Zhang, Y., and Shindell, D.: Air Quality Response in China Linked to the
2019 Novel Coronavirus (COVID-19) Lockdown, Geophys. Res. Lett., 47,
e2020GL089252, https://doi.org/10.1029/2020GL089252, 2020.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.
Müller, J.-F. and Stavrakou, T.: Inversion of CO and NOx emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, https://doi.org/10.5194/acp-5-1157-2005, 2005.
National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce: NCEP FNL Operational Model Global Tropospheric Analyses, NCAR [data set], https://rda.ucar.edu/datasets/ds083.2/, last access: 28 September 2022.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
Spectral Statistical-Interpolation Analysis System, Mon. Weather Rev.,
120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017, 2017.
Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact of multi-species surface chemical observation assimilation on air quality forecasts in China, Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018, 2018.
Qin, K., He, Q., Zhang, Y., Cohen, J. B., Tiwari, P., and Lolli, S.: Aloft
Transport of Haze Aerosols to Xuzhou, Eastern China: Optical Properties,
Sources, Type, and Components, Remote Sens., 14, 1589, https://doi.org/10.3390/rs14071589, 2022.
Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid Mass
Balance/4D-Var Joint Inversion of NOx and SO2 Emissions in East Asia,
J. Geophys. Res.-Atmos., 124, 8203–8224,
https://doi.org/10.1029/2018JD030240, 2019.
Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-Maenhout, G., Kurokawa, J.-I., Klimont, Z., Wagner, F., Naik, V., Horowitz, L. W., and Zhang, Q.: Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China, Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, 2017.
Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous
three-dimensional variational assimilation of surface fine particulate
matter and MODIS aerosol optical depth, J. Geophys. Res.-Atmos., 117, D13202, https://doi.org/10.1029/2011JD017383, 2012.
Sha, T., Ma, X., Jia, H., Tian, R., Chang, Y., Cao, F., and Zhang, Y.:
Aerosol chemical component: Simulations with WRF-Chem and comparison with
observations in Nanjing, Atmos. Environ., 218, 116982,
https://doi.org/10.1016/j.atmosenv.2019.116982, 2019.
Stavrakou, T. and Müller, J.-F.: Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data, J. Geophys. Res.-Atmos., 111, D15304, https://doi.org/10.1029/2005JD006896, 2006.
Tang, X., Zhu, J., Wang, Z. F., Wang, M., Gbaguidi, A., Li, J., Shao, M.,
Tang, G. Q., and Ji, D. S.: Inversion of CO emissions over Beijing and its
surrounding areas with ensemble Kalman filter, Atmos. Environ., 81,
676–686, https://doi.org/10.1016/j.atmosenv.2013.08.051, 2013.
Tang, X., Zhu, J., Wang, Z., Gbaguidi, A., Lin, C., Xin, J., Song, T., and Hu, B.: Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas, Atmos. Chem. Phys., 16, 6395–6405, https://doi.org/10.5194/acp-16-6395-2016, 2016.
Tian, H., Liu, Y., Li, Y., Wu, C. H., Chen, B., Kraemer, M. U. G., Li, B.,
Cai, J., Xu, B., Yang, Q., Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P.,
Wang, Q., Bjornstad, O. N., Yang, R., Grenfell, B. T., Pybus, O. G., and
Dye, C.: An investigation of transmission control measures during the first
50 days of the COVID-19 epidemic in China, Science, 368, 638–642,
https://doi.org/10.1126/science.abb6105, 2020.
Tsinghua University: MEICv1.0-v1.3, Tsinghua University [data set], http://meicmodel.org/?page_id=541&lang=en, last access: 28 September 2022.
van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys, N.: Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China, Atmos. Chem. Phys., 17, 1775–1789, https://doi.org/10.5194/acp-17-1775-2017, 2017.
Wang, D., You, W., Zang, Z., Pan, X., Hu, Y., and Liang, Y.: A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations, Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, 2022.
Wang, J., Xu, X., Henze, D. K., Zeng, J., Ji, Q., Tsay, S.-C., and Huang,
J.: Top-down estimate of dust emissions through integration of MODIS and
MISR aerosol retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802, https://doi.org/10.1029/2012gl051136, 2012.
Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution
events not avoided by reduced anthropogenic activities during COVID-19
outbreak, Resour. Conserv. Recycl., 158, 104814,
https://doi.org/10.1016/j.resconrec.2020.104814, 2020.
Wang, S., Cohen, J. B., Deng, W., Qin, K., and Guo, J.: Using a New Top-Down
Constrained Emissions Inventory to Attribute the Previously Unknown Source
of Extreme Aerosol Loadings Observed Annually in the Monsoon Asia Free
Troposphere, Earth's Future, 9, e2021EF002167,
https://doi.org/10.1029/2021EF002167, 2021.
Wang, Y., Zhuang, G., Xu, C., and An, Z. J. A. E.: The air pollution caused
by the burning of fireworks during the lantern festival in Beijing, Atmos. Environ., 41,
417–431, https://doi.org/10.1016/j.atmosenv.2006.07.043, 2007.
Yumimoto, K. and Uno, I.: Adjoint inverse modeling of CO emissions over
Eastern Asia using four-dimensional variational data assimilation,
Atmos. Environ., 40, 6836–6845,
https://doi.org/10.1016/j.atmosenv.2006.05.042, 2006.
Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., and Satake, S.: Adjoint
inverse modeling of dust emission and transport over East Asia, Geophys. Res. Lett., 34, L08806, https://doi.org/10.1029/2006gl028551, 2007.
Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., and Winker, D. M.: Adjoint inversion modeling of Asian dust emission using lidar observations, Atmos. Chem. Phys., 8, 2869–2884, https://doi.org/10.5194/acp-8-2869-2008, 2008.
Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation
and forecasting experiments using aircraft and surface observations during
CalNex, Tellus B, 68, 29812,
https://doi.org/10.3402/tellusb.v68.29812, 2016.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999jd900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, https://doi.org/10.1029/2007jd008782, 2008.
Zhan, C. and Xie, M.: Land use and anthropogenic heat modulate ozone by meteorology: a perspective from the Yangtze River Delta region, Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, 2022.
Zhao, J., Cohen, J. B., Chen, Y., Cui, W., Cao, Q., Yang, T., and Li, G.: High-resolution spatiotemporal patterns of China’s FFCO2 emissions under the impact of LUCC from 2000 to 2015, Environ. Res. Lett., 15, 044007, https://doi.org/10.1088/1748-9326/ab6edc, 2020.
Zeng, Q. and Wu, L.: Optimal reduction of anthropogenic emissions for air
pollution control and the retrieval of emission source from observed
pollutants ?. Application of incomplete adjoint operator, Sci. China Earth Sci., 61, 951–956, https://doi.org/10.1007/s11430-017-9199-2, 2018.
Zeng, Q., Wu, L., and Fei, K.: Optimal reduction of anthropogenic emissions
for air pollution control and the retrieval of emission source from observed
pollutants II: Iterative optimization using a positive-negative
discriminant, Sci. China Earth Sci., 63, 726–730,
https://doi.org/10.1007/s11430-018-9568-5, 2020.
Zeng, Q. and Wu, L.: Optimal reduction of anthropogenic emissions for air
pollution control and the retrieval of emission source from observed
pollutants III: Emission source inversion using a double correction
iterative method, Sci. China Earth Sci., 45, 553–555, https://doi.org/10.1007/s11430-020-9860-7,
2021.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, R., Zhang, Y., Lin, H., Feng, X., Fu, T.-M., and Wang, Y.: NOx
Emission Reduction and Recovery during COVID-19 in East China, Atmosphere,
11, 433, https://doi.org/10.3390/atmos11040433, 2020.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-13-2895-2021, 2021.
Short summary
This study developed a four-dimensional variational assimilation (4DVAR) system based on WRF–Chem to optimise SO2 emissions. The 4DVAR system was applied to obtain the SO2 emissions during the early period of the COVID-19 pandemic over China. The results showed that the 4DVAR system effectively optimised emissions to describe the actual changes in SO2 emissions related to the COVID lockdown, and it can thus be used to improve the accuracy of forecasts.
This study developed a four-dimensional variational assimilation (4DVAR) system based on...
Altmetrics
Final-revised paper
Preprint