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Abstract. Emission inventories are essential for modelling studies and pollution control, but traditional emis-
sion inventories are usually updated after a few years based on the statistics of “bottom-up” approach from the
energy consumption in provinces, cities, and counties. The latest emission inventories of multi-resolution emis-
sion inventory in China (MEIC) was compiled from the statistics for the year 2016 (MEIC_2016). However,
the real emissions have varied yearly, due to national pollution control policies and accidental special events,
such as the coronavirus disease (COVID-19) pandemic. In this study, a four-dimensional variational assimilation
(4DVAR) system based on the “top-down” approach was developed to optimise sulfur dioxide (SO2) emissions
by assimilating the data of SO2 concentrations from surface observational stations. The 4DVAR system was
then applied to obtain the SO2 emissions during the early period of COVID-19 pandemic (from 17 January to
7 February 2020), and the same period in 2019 over China. The results showed that the average MEIC_2016,
2019, and 2020 emissions were 42.2×106, 40.1×106, and 36.4×106 kg d−1. The emissions in 2020 decreased
by 9.2 % in relation to the COVID-19 lockdown compared with those in 2019. For central China, where the lock-
down measures were quite strict, the mean 2020 emission decreased by 21.0 % compared with 2019 emissions.
Three forecast experiments were conducted using the emissions of MEIC_2016, 2019, and 2020 to demonstrate
the effects of optimised emissions. The root mean square error (RMSE) in the experiments using 2019 and 2020
emissions decreased by 28.1 % and 50.7 %, and the correlation coefficient increased by 89.5 % and 205.9 %
compared with the experiment using MEIC_2016. For central China, the average RMSE in the experiments with
2019 and 2020 emissions decreased by 48.8 % and 77.0 %, and the average correlation coefficient increased by
44.3 % and 238.7 %, compared with the experiment using MEIC_2016 emissions. The results demonstrated that
the 4DVAR system effectively optimised emissions to describe the actual changes in SO2 emissions related to
the COVID lockdown, and it can thus be used to improve the accuracy of forecasts.
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1 Introduction

Sulfur dioxide (SO2) causes acid rain through the forma-
tion of sulfuric acid, which destroys infrastructure and harms
aquatic and terrestrial ecosystems (Saikawa et al., 2017;
Zheng et al., 2018). SO2 is also a precursor of sulfate
aerosols, which directly affect the radiation budget and in-
directly modulate clouds and precipitation, and also cause
haze pollution (Qin et al., 2022). Thus, SO2 emission impacts
the ecological environment. SO2 pathway in the atmosphere
is generally investigated using chemistry transport models
(CTMs) to estimate the three-dimensional changes of SO2
concentrations. Thus, accurately estimating SO2 emissions
is important for understanding spatiotemporal distribution of
SO2 concentrations in CTMs (Zeng and Wu, 2021).

SO2 emissions are generally estimated using the “bottom-
up” approach, which requires direct observations of the ac-
tivities and emissions factors from all possible sources (Zhao
et al., 2020). However, the estimates are subject to substantial
uncertainties because of limited available observations, with
the differences among existing inventories as high as 42 %
(Granier et al., 2011). Saikawa et al. (2017) compared five
types of emission inventories and found a significant differ-
ence in SO2 emissions from the power sector due to the dif-
ference in the assumed installation period of flue gas desulfu-
risation in coal-fired power plants. Moreover, most “bottom-
up” emissions are recorded annually or monthly amounts,
which need to be spatiotemporally allocated into the hourly
gridded emissions for use in regional air quality models,
and thus can cause uncertainties (Peng et al., 2017, 2018;
Zeng and Wu, 2018). China has implemented several control
strategies, such as strengthening emission standards, phas-
ing out obsolete industrial capacity, and establishing small
but high-emitting factories (Zheng et al., 2018), all of these
have markedly reduced the emissions. However, these poli-
cies have been applied to varying extents in different regions,
so that emission changes vary spatiotemporally (Chen et al.,
2019; Dai et al., 2021). Such complex changes in SO2 emis-
sion were not reflected in the “bottom-up” estimates. Dif-
ferences in the spatiotemporal control also caused additional
uncertainties in gridded hourly emissions reducing their ac-
curacy (Zeng et al., 2020).

In contrast to the “bottom-up” approach, data assimilation
(DA) provides a “top-down” approach, where the ensemble
Kalman filter (EnKF) and four-dimensional variational DA
(4DVAR) are two of the most explored algorithms to opti-
mise emissions (Cohen and Wang, 2014; Wang et al., 2022).
The EnKF method uses flow-dependent covariance gener-
ated by an ensemble of model outputs to convert observa-
tional information into emissions (Tang et al., 2013; Ma et
al., 2019), and has been used to estimate regional and global
aerosols and gas-phase emissions, such as SO2, NOx , CO,
and particulate matter. (Huneeus et al., 2012, 2013; Miyazaki
et al., 2012, 2014; Tang et al., 2013, 2016; Chu et al., 2018).
For example, Dai et al. (2021) developed a four-dimensional

regional ensemble transform Kalman filter and showed that
SO2 emissions over China in November 2016 decreased by
49.4 % in comparison to the 2010 background emission due
to the implementation of emission control policies (Zheng et
al., 2018). Peng et al. (2017, 2018) developed an EnKF sys-
tem to include more spatiotemporal emission characteristics
over China using hourly surface observations as constraints,
and the forecasting results with optimised emissions are more
accurate than those with the background emissions. The SO2
forecasts with the optimised emissions were improved for the
forecast out to 72 h, and the root mean square errors (RM-
SEs) decreased by 30 % in comparison to the forecasts with
the background emission. Feng et al. (2020) quantitatively
optimised the gridded CO emissions in China using hourly
surface CO measurements and EnKF algorithm with the
weather research and forecasting (WRF)/Community Mul-
tiscale Air Quality (CMAQ) model, and found the optimised
CO emissions in December 2017 17 % lower than those in
December 2013.

A 4DVAR method has been used to estimate emissions
based on the adjoint model of a CTM and is known as
an inverse process (Bao et al., 2019; Yumimoto and Uno,
2006, 2007; Wang et al., 2022). Several studies have shown
that 4DVAR is a promising approach to derive the emission
rates (Dubovik et al., 2008; Hakami et al., 2005; Müller and
Stavrakou, 2005; Elbern et al., 2007; Yumimoto et al., 2007,
2008). Stavrakou and Müller (2006) estimated CO and NOx
emissions with a 4DVAR system using satellite data as a
constraint, and showed that the optimised CO emission was
2900 Tg yr−1, which was about 5 % higher than the back-
ground emission. Henze et al. (2007) developed an adjoint
model based on the GEOS-Chem model, and used it to opti-
mise the SOx , NOx , and NH3 emissions. The model was also
used to investigate the sensitivity of modelled aerosol con-
centrations to their precursor emissions, suggesting that their
relationship strongly depended on thermodynamic competi-
tion. Qu et al. (2019) estimated SO2 emissions by assimilat-
ing Ozone Monitoring Instrument (OMI) observations using
the GEOS-Chem model and its adjoint model, and found that
the SO2 emissions decreased by 48 % over China from 2008
to 2016. The emissions based on a “top-down” approach can
reduce the uncertainty of “bottom-up” emissions and provide
a more accurate emission related to a special event than tra-
ditional emissions.

Emergence of the coronavirus disease (COVID-19) pan-
demic during the period from the end of 2019 through the
beginning of 2020 (Wang et al., 2020) impacted more than
200 countries. To slow and stop the rapid spread of the virus,
Wuhan was the first city to implement a lockdown on 23
January 2020, followed by the entire Hubei province 1 d
later (Wuhan is capital of the Hubei province). Subsequently,
all provinces in China successively implemented a national
emergency to respond to major public health emergencies.
The pollutant emissions decreased because human activities
reduced during the lockdown (Filonchyk et al., 2020; Forster
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et al., 2020; Ghahremanloo et al., 2021; Keller et al., 2021; Li
et al., 2020, 2021; Miyazaki et al., 2020; Huang et al., 2021a;
Zhan and Xie, 2022; Zhang et al., 2020). For example, Huang
et al. (2021b) estimated NOx emissions over China during
this period, and found a decreased trend owing to human ac-
tivity reduction.

In this study, we developed a 4DVAR system to estimate
SO2 emissions, using the WRF model coupled with chem-
istry (WRF–Chem; Grell et al., 2005). Some physical and
chemical processes, including transport, dry/wet deposition,
emission, vertical mixing, and SO2 chemicals, were imple-
mented to describe the pathway of SO2 in WRF–Chem. The
4DVAR system was applied to investigate the changes in
SO2 emissions over China during the COVID-19 lockdown.
Hourly surface SO2 observations were assimilated.

This paper is organised as follows. Section 2 describes the
methodology, including the WRF–Chem and 4DVAR sys-
tem configurations and their adjoint model, as well as ob-
servational data. In Sect. 3, the spatiotemporal changes in
SO2 emission during the COVID-19 lockdown are estimated.
SO2 simulations using optimised emissions are also verified
against observations to show the improvements in emission
data. Finally, a discussion and conclusions are presented in
Sect. 4.

2 Method and data

2.1 WRF–Chem model

WRF–Chem is an online coupled air quality model (Grell
et al., 2005), which includes sophisticated and comprehen-
sive physical and chemical processes such as transport, tur-
bulence, emission, chemical transformation, photolysis, ra-
diation, and more. The WRF–Chem version 3.9.1 was used
in this study. The WRF–Chem domain (Fig. 1a) is centred at
101.5◦ E, 37.5◦ N, and covers all of China with 27 km hor-
izontal resolution. There are totally 169× 211 grid points.
In the vertical, 40 vertical layers extend from the surface to
50 hPa, with high resolution near the surface. Meteorological
initial and boundary conditions were derived from the 1◦×1◦

National Centers for Environmental Prediction Global Final
Analysis data at a 6 h frequency. Most of the WRF–Chem set-
tings follow Hu et al. (2022; Table 1). Those settings include
the WRF Lin microphysics scheme (Lin et al., 1983), rapid
radiative transfer model longwave (Mlawer et al., 1997),
Goddard shortwave radiation schemes (Chou, 1994), Yon-
sei University (YSU) boundary layer scheme (Hong et al.,
2006), Noah land surface model (Chen et al., 2010), and
Grell-3D cumulus parameterisation (Grell, 1993; Grell and
Dévényi, 2002). Aerosol and gas-phase chemistry schemes
are the aerosol interactions and chemistry (MOSAIC-4 bin)
and carbon bond mechanism-Z (CBMZ; Zaveri and Peters,
1999; Zaveri et al., 2008). The heterogeneous SO2 reaction is
also added to the WRF–Chem (Sha et al., 2019). The anthro-
pogenic emissions from the multi-resolution emission inven-

tory for China (MEIC) in 2016 are used as the background
emission input.

2.2 4DVAR system

4DVAR is a continuous data assimilation method to simulta-
neously assimilate a time series of observations over a time
window. It produces an analysis that fit a set of observations
taken over the time window. The time evolution of the con-
cerning quantities is governed using a deterministic model
as a strong constraint. The cost function of 4DVAR can be
written as follows:
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where c0 and ei are the control variables to denote the initial
concentration vector and the emission to estimate. cb

0 is the
background concentration at zero time, and eb

i is the back-
ground emission. The subscripts of the variables represent
time levels, and n is the time window. The first term in Eq. (1)
is the background term due to the initial concentration field,
and the second term is the background term for emissions in
the time window. Bc and Bei are the background error covari-
ances (BECs) for the initial concentrations and background
emissions. The third term is the observation term, where yo

i is
the observation vector at time i. H i is the observation opera-
tor mapping the control variables to the observations, and Ri
is the observation error covariance matrix. The concentration
ci is governed by a model.

ci = fi,i−1 (ci−1,ei−1) , (2)

where fi,i−1 represents the model time integration for one
time step from time i− 1 to i. The increment field of the ini-
tial SO2 concentration can be written as δc0 = c0− c

b
0, and

the increment field of SO2 emission as δei = ei− eb
i . The in-

novation vector is denoted as di ≡ yo
i −H i(ci), which is the

difference between the observations and the model equiva-
lent state. Thus, the cost function Eq. (1) can be written in an
incremental form as follows:
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1
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Using a linearisation approximation, Eq. (2) becomes

δci = Li,i−1δci−1+Li,i−10i−1δei−1, (4)

where Li,i−1 and 0i−1 are Jacobians of fi,i−1 with respect
to δci−1 and δei−1, and i = 1,2, . . .n. Thus, with a time inte-
gration, Eq. (4) can be presented as

δci = Li,0δc0+
∑i−1

l=0
Li,l0lδel, (5)

https://doi.org/10.5194/acp-22-13183-2022 Atmos. Chem. Phys., 22, 13183–13200, 2022



13186 Y. Hu et al.: Four-dimensional variational assimilation

Figure 1. (a) Maps of the WRF modelling domain and (b) central China. The colour bars represent the terrain altitude. The black rectangles
in (a) are North China Plain (NCP), northeastern China (NEC), Energy Golden Triangle (EGT), Xinjiang (XJ), Sichuan Basin (SB), Yangtze
River Delta (YRD), and Pearl River Delta (PRD). The red rectangle in (a) represents central China (CC). (b) The details of CC. Black circle
with dots in (b) represent the locations of large cities. The red characters in (b) are the name of provinces, and the black characters are the
name of capital cities. Wuhan and Changsha are the capitals of Hubei and Hunan provinces. Inset in (a): South China Sea. Units: m.

Table 1. WRF–Chem model configuration.

Physical or chemical process Option

Microphysics Lin microphysics scheme (Lin et al., 1983)

Longwave radiation Rapid radiative transfer model longwave
(Mlawer et al., 1997)

Shortwave radiation Goddard Space Flight Center shortwave radia-
tion scheme (Chou, 1994)

Boundary layer scheme Yonsei University (Hong et al., 2006)

Land surface model Noah land surface model (Chen et al., 2010)

Cumulus parameterisation Grell-3D scheme (Grell, 1993; Grell and
Dévényi, 2002)

Aerosol scheme Model for simulating aerosol interactions and
chemistry (MOSAIC-4 bin; Zaveri et al., 2008)

Gas scheme Carbon bond mechanism-Z (CBMZ; Zaveri and
Peters, 1999)

where Li,0 denotes the tangent linear model operator of the
CTM acting on δc0, and the subscript is the time step from
i to the initial time. Li,l0l (l = 0,1, . . .i− 1) is the operator
acting on δel , and 0l is an operator that converts emissions
to concentrations.

There are several numerical algorithms available to min-
imise the cost function in Eq. (3) (Courtier et al., 1994; Li
and Navon, 2001). For the algorithms to minimise Eq. (3)
with large dimensions, the gradient of the cost function
is required. The gradient with respect to δc0 and δei (i =

0,1, . . .,n− 1) can be written as

∂J
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(dl −H lδcl) (i = 0,1, . . .,n− 1). (7)

Here, L0,0 = I for i = 0, where I is an identity matrix. A
time window of 6 h is typically used in operational synoptic-
scale numerical weather predictions. Since a SO2 lifetime in
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a model grid is usually less than 6 h (Fioletov et al., 2015), we
still use a window of 6 h (n= 6) in the experiments presented
in the following sections.

Equations (6) and (7) include three types of adjoint op-
erators, that is, 0TLT and H T , which are derived from the
tangent linear model operator 0L, and observation operator
H , respectively. The tangent linear operators 0 and L from
WRF–Chem are very complex and computationally demand-
ing, we simplify the CTM to focus on SO2.

WRF–Chem is an online coupled air quality model with
sophisticated and comprehensive physical and chemical pro-
cesses. Focusing on SO2, the governing equation for the con-
centration can be written as
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where c is the gas/aerosol concentration, and u, v, and w de-
note the wind in x, y, and z directions, respectively. Thus,
the u ∂cdx + v

∂c
dy +w

∂c
dz is a transport term. Kx , Ky , and Kz

are turbulent exchange coefficients in x, y, and z direc-
tions, respectively, based on K theory of turbulence, and
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In the study, the horizontal grid spacing is 27 km, thus the
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should be retained since the

vertical grid spacing is generally less 200 m in the lower
and middle layers. e−3 ∂c

∂t
denotes the wet deposition term,

where 3 is the loss rate (Grell and Dévényi, 2002) and e is
the base of natural logarithms (= 0.272), r ∂c

∂t
is the chemical

term, where r is the chemical reaction rate of the species, and
Vm

ρair
ρ
1S
dz e is the emission term, where e denotes the emis-

sion source of the species. Vm = 22.4×10−3 m3 mol−1 is the
molar gas volume, ρ is the air density of the actual atmo-
sphere (kg m−3), ρair is the standard air density indicating
the molar volume, and 1S is the grid area.

From the simplified Eq. (8), the model operators of 0 and
L can be written as
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Using tangent linear coding techniques, we could derive the
code for the discretised tangent linear operators L and 0

(Eqs. 9–10) from the source code built in WRF–Chem. Once
the source code is available for the tangent linear operators,
we use the adjoint coding technique to derive the adjoint op-
erator. The adjoint coding technique are detailed in Hoffman
et al. (1992).

2.3 Observational and background error covariances

Ri in Eq. (1) is the observational error covariance for a set
of observations (yi), where Bc and Bei are the BECs for the
concentrations and emissions, respectively. In a DA system,
Ri and BEC play important roles in successful assimilation.
The observational errors include the measurement error (ob-
served value error) and representative error (error of obser-
vation operator H). The observation error εSO2 is defined as
below:

εSO2 =

√
ε2

r + ε
2
o, (11)

where εo is the measurement error, and εr is the representa-
tive error. The measurement error εo is the systematic error
generated during monitoring by the instrument at each en-
vironmental monitoring station. Therefore, the measurement
error εo of SO2 observation in this study is 1.0 µg m−3, simi-
lar to that reported by Chen et al. (2019).

The representative error εr is caused by converting the
model variable to the observation variable (Schwartz et al.,
2012) and can be expressed as

εr = γ εo

√
dx
L
, (12)

where γ is an adjustable parameter scaling εo. γ = 0.5 was
used in accordance with that used in Dai et al. (2021). Fur-
thermore, dx is the grid spacing (27 km in this study) andL is
the radius of influence of an observation, which was taken as
2 km according to that reported by Chen et al. (2019). Then,
εr = 1.8 µg m−3 is calculated from Eq. (12).

BECs (Bc and Bei in Eq. 1) are the error covariance ma-
trices of SO2 concentrations and emissions. Practically, the
BEC is overly large for handling numerically. Thus, we fol-
lowed the method used by Li et al. (2013) and Zang et
al. (2016) to simplify B:

B= DCDT , (13)

where D is the RMSE matrix and C is the correlation matrix.
C can be simplified by the Cholesky factorisation and Kro-

necker product method (Li et al., 2013) as

C
1
2 = C

1
2
x ⊗C

1
2
y ⊗C

1
2
z . (14)

For Bei , the standard deviation Dei is diagonal with a 200 %
error (Wang et al., 2012) and Cei is a block diagonal matrix,
with the main diagonal blocks being the correlation matrices
of SO2 emission. The main diagonal blocks of Cei is 1.0 be-
cause the emission in each grid point is independent of that
in other grids.
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The National Meteorological Center method (Parrish and
Derber, 1992) was used to estimate the BEC of SO2 concen-
trations. The differences between 48 and 24 h forecasts were
generated from 17 January to 18 February 2020. The first ini-
tial chemical field at 00:00 UTC on 17 January 2020 was ob-
tained from a 10 d forecast in consideration of spin-up. The
subsequent initial chemical fields were derived from the for-
mer forecast 1 d prior. The horizontal length scale was used
to determine the magnitude of SO2 variance in the horizon-
tal direction. This scale can be estimated by the curve of the
horizontal correlation with distances, and the horizontal cor-
relation is approximately expressed by a Gaussian function

e

(x1−x)2

2L2
s (e is the base of natural logarithms equal to 0.272).

Here, x1 and x are two points, and Ls is the horizontal length
scale. According to Zang et al. (2016), when the intersec-
tion of the decline curve reaches e1/2, the distance can be
approximated as the horizontal length scale in Fig. 2a. The
horizontal length scale was 81 km in this study. The vertical
variance of SO2 concentrations was considered by the ver-
tical correlations in the BEC. A strong relationship was ob-
served in the boundary layer (approximately below the 20th
model layer) in the vertical direction (Fig. 2b). The stan-
dard deviation demonstrates the reliability of the forecasting
model, and the standard deviation for the vertical distribu-
tion of SO2 concentrations decreased with increasing height
in the Bc (Fig. 2c).

2.4 Observation and emission data

Hourly SO2 data obtained from the website of the China Na-
tional Environmental Monitoring Center (http://www.cnemc.
cn/en/, last access: 28 September 2022) were used for assim-
ilation and evaluation. There were 1933 stations in China in
January 2020. Most observational stations were located in
central and eastern China, whereas the stations in the west
were relatively sparse. The sites were gridded into the model
grid (27× 27 km2). If more than two stations were in the
same grid, one station was randomly selected to verify the
improvements relating to using optimised emissions, and the
remaining sites were used for assimilation. In this study,
508 sites were selected for verification, and the remaining
1425 stations were used for assimilation. A strict criterion
was used to remove SO2 observations with values exceeding
650 µg m−3 to ensure data quality (Chen et al., 2019).

The background anthropogenic emissions data were ob-
tained from the MEIC (http://www.meicmodel.org/, last ac-
cess: 28 September 2022) developed by Tsinghua University,
with a 0.25◦× 0.25◦ resolution and 2016 as the base year.
The MEIC is a “bottom-up” emission inventory that covers
31 provinces on the Chinese mainland, and includes eight
major chemical species (Zhang et al., 2009), and counts an-
thropogenic emissions from sources in five sectors (power,
industry, residential, transportation, and agriculture). Details
of the technology-based approach and source classifications

have been reported by Zhang et al. (2009). The actual emis-
sion inventory (0.25◦× 0.25◦) was pre-processed to match
the model grid spacing (27 km).

2.5 Experimental design

Figure 4 shows a flowchart of the procedure used to opti-
mise SO2 emissions in a single time step of i. First, a fore-
cast was performed using the WRF–Chem model and back-
ground emissions to generate the meteorological and chem-
ical fields, which were recorded every 10 min and then used
in the 4DVAR system. Then, the 4DVAR system performed
every 6 h to obtain SO2-optimised emissions and initial con-
centrations by assimilating the hourly SO2 observations. For
example, the observations during 00:00–06:00 UTC were as-
similated using Eq. (1). The assimilated SO2 concentration
initial field (00:00 UTC) and the optimised SO2 emissions
during 00:00–05:00 UTC were obtained.

The SO2 emissions during the COVID-19 lockdown over
China were optimised to evaluate the performance of the
4DVAR system, and to analyse the reduction of SO2 emis-
sions related to the COVID-19 lockdown. The national lock-
down was imposed in Wuhan and surrounding cities of Hubei
provinces on 23 and 24 January 2020, respectively. Then, the
Chinese mainland implemented the national lockdown poli-
cies on 26 January 2020. We selected the study period from
17 January to 6 February 2020, which covered the time be-
fore and during lockdown. The latest available MEIC emis-
sion inventory is based on the statistics of 2016. However,
the changes of emissions between 2020 and 2016 are both
related to the emissions reduction policies and COVID-19
lockdown. The difference between 2019 and 2020 emissions
during the same period reflected the influence of COVID-19
lockdown on SO2 emissions. Thus, the SO2 emissions during
the study period in 2019 was also optimised.

Table 2 summarises the details of DA emissions experi-
ments. For the set of Emi_2019 experiments, the first DA
process started on 17 January 2019, and the observations
during 00:00–06:00 UTC of 17 January 2019 were assim-
ilated by the 4DVAR system. Then, the optimised initial
SO2 concentration field (00:00 UTC) and SO2 emissions
during 00:00–05:00 UTC were obtained. Before conducting
Emi_2019 experiment, 24 h forecasts were performed by
WRF–Chem with MEIC_2016 emissions every 00:00 UTC
from 17 January to 7 February 2019 to provide the physi-
cal and chemical parameters. The daily chemical initial con-
ditions were obtained from the 24 h forecast of the pre-
vious day. For the 24 h forecast, the meteorological initial
and boundary conditions were provided by the 1◦× 1◦ Na-
tional Centers for Environmental Prediction (NCEP) global
final analysis data at a 6 h frequency. The chemical bound-
ary fields were not considered because the domain used in
this study was wider than that in China. For the Emi_2019
experiment, the emissions of 2019 were optimised by the
4DVAR system every 6 h with the background emissions of
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Figure 2. Background error covariation of SO2 concentrations. (a) Vertical distribution of the horizontal correlation; the horizontal thin
black line is the reference line (e1/2) used to determine the horizontal correlation scales. (b) Vertical correlations. (c) Vertical distribution of
the standard deviation.

Figure 3. The locations of the 1425 SO2 assimilated and 508 inde-
pendent verification observation stations of the CNEMC are shown
by the red and black dots, respectively. Inset: South China Sea.

MEIC_2016. The physical and chemical parameters used in
this DA process were obtained from the WRF–Chem fore-
cast. For the Emi_2020 experiment, the DA process settings
were similar to those of the Emi_2019 experiment. The op-
timised emissions for 2020 were obtained with the emission
2019 as background emission.

To estimate the improvement of SO2 forecasts using op-
timised emissions, three sets of forecast experiments were
performed using the MEIC_2016 emissions and the opti-
mised emissions for 2019 and 2020, respectively, labelled
Ctr_2016, DA_2019, and DA_2020, respectively (see Ta-
ble 3). The three experiments were run daily with 24 h fore-
casts from 17 January to 7 February 2020 using the same
WRF–Chem domain settings and physiochemical parame-
ters. The SO2 initial condition (IC) at 00:00 UTC on 17
January was based on the spin-up forecasts initialised at
00:00 UTC on 7 January 2020 for all three forecast experi-
ments. The SO2 ICs were later obtained from the 24 h fore-
cast of the previous day for the three experiments, respec-
tively. For example, the SO2 IC of the experiment beginning

at 00:00 UTC on 18 January was taken from the 24 h fore-
cast result of the experiment beginning at 00:00 UTC of 17
January, and so on. Meteorological initial and boundary con-
ditions were provided by the 1◦×1◦ NCEP global final anal-
ysis data at a 6 h frequency. The chemical boundary fields
were not considered.

3 Results

3.1 Results of 4DVAR emission experiments

3.1.1 4DVAR test case

The first day (17 January 2019) was used as a test case to
determine the effectiveness of using 4DVAR. The experi-
ment employed MEIC_2016 as the background emissions
and assimilated the hourly surface SO2 observations dur-
ing 00:00–06:00 UTC of 17 January 2019. The observed
SO2 concentrations in Fig. 5a indicated the heavy polluted
areas with SO2 concentrations exceeding 80 µg m−3 were
mostly located in the North China Plain and northeast China.
The areas lightly polluted with SO2 concentrations below
40 µg m−3 were mostly located in southern China. Compared
with the observed concentrations, the background concentra-
tions (Fig. 5b) were underestimated in North China Plain and
northeast China but overestimated in central China and the
Sichuan Basin. Figure 5c shows the increment field of SO2
concentrations (analysed field minus background field). Pos-
itive values in most of northern China and negative in cen-
tral China and the Sichuan Basin were observed, suggest-
ing that the optimised IC is more consistent with the ob-
served SO2 concentrations than the background concentra-
tions. The evaluations of the optimised IC and background
concentrations are shown in Fig. 5d. Compared with the
background field, the mean bias in analysis field improved
from−2.76 to 1.79 µg m−3 and RMSE decreased from 23.12
to 11.81 µg m−3, and the correlation coefficient (CORR) of
analysis field increased from 0.19 to 0.84. The result indi-
cates that the accuracy of the ICs of SO2 concentrations were
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Figure 4. Flow chart of the SO2 emissions optimisation procedure in a single time step of i. The orange boxes represent the SO2-optimised
emissions and SO2 concentrations of output. The cb

0 , c0, eb
i
, ei , and yo

i
are the mathematical symbols from Eq. (1).

Table 2. Details of 4DVAR experiments to optimise emissions for 2019 and 2020.

Name Background emissions Optimised emissions Study period

Emi_2019 MEIC_2016 2019 optimised emissions Every 6 h from 17 January to 7 February 2019
Emi_2020 2019 optimised emissions 2020 optimised emissions Every 6 h from 17 January to 7 February 2020

improved after using the 4DVAR method. The forecast ac-
curacy can be improved using optimised ICs (Peng et al.,
2017, 2018), but the emission is the most important factor
influencing the forecast accuracy. The emissions and IC con-
centrations were simultaneously optimised in the EMI_2019
experiment using our 4DVAR system.

Figure 5e presents the background emission of
MEIC_2016 at 00:00 UTC. According to Fig. 5a and b,
MEIC_2016 emissions underestimated in most of northern
China and overestimated in central China and Sichuan
Basin. Figure 5f shows the increment of SO2 emissions
at 00:00 UTC 17 January 2019 by using the 4DVAR
system. There were positive increment in North China
Plain and northeast China, and negative increment in
central China and Sichuan Basin. The distribution of the
incremental SO2 emissions was consistent with that of
the incremental SO2 concentration (Fig. 5c). There is a
reasonable relationship between the two increments since
the underestimated/overestimated emission may result in
underestimated/overestimated simulation of concentration.

3.1.2 Spatial distribution of emissions

Compared with MEIC_2016 (Fig. 6a), the emissions for
2019 and 2020 (Fig. 6b and c) from the 4DVAR experi-
ments of Emi_2019 and Emi_2020 decreased in the area with

heavy emissions, particularly in North China Plain and cen-
tral China. The reduction in emissions between 2019 and
MEIC_2016 may primarily result from the national pollution
control policy. However, the reduction of emissions between
2020 and 2019 may primarily result from the COVID 2019
lockdown, including school and workplace closures, event
and public gathering cancellation, and restrictions on public
transport.

Figure 7a shows the difference in emissions between 2020
and 2019. The negative values were seen in most of the ar-
eas with strict lockdown, such as North China Plain, cen-
tral China, Yangtze River Delta, and Pearl River Delta. It in-
dicates that the 2020 emission substantially decrease, com-
pared with the 2019 emission due to the COVID-19 lock-
down. The reducing ratio of emission was averaged in China
as 9.2 % (Fig. 7b), but over 40.0 % in most areas of north
China and central China. Zheng et al. (2021) have found
that SO2 emissions in China decreased by 12.0 % in Jan-
uary and February 2020 compared to values in 2019. Fan
et al. (2020) have also reported the SO2 concentration de-
creased by 20.0 %–50.0 % over China during the COVID-19
lockdown period in the spring of 2020 based on TROPOMI
satellite data. Our results are similar to those of previous
studies. In addition, SO2 emissions increased in some areas
of northeast China, Tibetan Plateau, Yunnan province, and
the southeast coastal areas, where the epidemic was weaker
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Table 3. Details of the forecast experiments using emissions from 2016, 2019, and 2020.

Name Emission Forecast duration Study period

Ctrl_2016 MEIC_2016 24 h Daily from 17 January to 7 February 2020
DA_2019 The 2019 optimised emissions 24 h Daily from 17 January to 7 February 2020
DA_2020 The 2020 optimised emissions 24 h Daily from 17 January to 7 February 2020

Figure 5. Simulated and observed SO2 concentrations at 00:00 UTC, 17 January 2019. (a) Observations, (b) background concentrations,
(c) SO2 concentrations increment, (d) scatter plots, (e) background emissions, and (f) SO2 emissions increment. Units: µg m−3 for (a)–(d),
and mol km−2 h−1 for (e) and (f). Insets: South China Sea.
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Figure 6. Emissions in China for (a) MEIC_2016, (b) 2019, and (c) 2020. Units: mol km−2 h−1. Insets: South China Sea.

than that in other areas (Kraemer et al., 2020; Tian et al.,
2020). Most of the increase in SO2 was < 10 mol km−2 h−1,
but the positive ratios were > 100.0 %, suggesting that new
emission sources were generated. It is suggested that these
newly generated emissions were probably due to relocating
power plants and factories from cities to the surrounding vil-
lages (Chen et al., 2019).

Figure 8 shows the similar analyses as in Fig. 6, but for
central China. Wuhan first implemented the first-level re-
sponse to COVID-19 with strict lockdown policies on 23
January 2020, and the entire Hubei province implemented
lockdown on 24 January 2020. The heavy emissions exceed-
ing 20.0 mol km−2 h−1 were most located around large cities
from the emissions of 2019 and 2020 (Fig. 8b and c). Fig-
ure 9a shows the difference between 2020 and 2019 emis-
sions in central China. The average emission value in Wuhan
was 43.0 mol km−2 h−1 in 2019 and 34.0 mol km−2 h−1 in
2020, showing a reduction of 21.0 % compared with the
emissions for 2019. Al-qaness et al. (2021) have also found
approximately 15 % decrease in SO2 concentrations with
15 % around Wuhan. Furthermore, almost all emissions
around the large cities decreased by 5–10 mol km−2 h−1

(Fig. 9a), and the negative ratios were > 20.0 % (Fig. 9b).
The large reduction in SO2 emissions were related to the de-
crease in industrial and domestic coal combustion and power
plants during the COVID-19 lockdown (Zheng et al., 2018,
2021; Bian et al., 2019; van der A et al., 2017).

3.1.3 Temporal evolution of emissions

Figure 10 shows the daily SO2 emissions for MEIC_2016,
Emi_2019, and Emi_2020 over all grid points. The aver-
age emissions in the Chinese mainland (Fig. 10a) from
MEIC_2016, Emi_2019, and Emi_2020 were 42.2× 106,
40.1× 106, and 36.4× 106 kg d−1 during the same period
from 17 January to 7 February. The emissions for 2020 de-
creased by 9.2 % compared with those for 2019, indicating
a decrease between 2020 and 2019 due to the COVID-19-
related lockdown. In Emi_2019 emissions, the lowest emis-

sions occurred on 1 February 2019, but increased during 4–6
February 2019, mainly attributed to the traditional firework
displays during Spring Festival (Wang et al., 2007; Zhang
et al., 2020; Huang et al., 2021a). Complex changes in SO2
emission trends were observed in 2020 in relation to reduced
human activity. For example, a peak of 40.1×106 kg d−1 oc-
curred on 24 January 2020, in relation to firework displays
(Fig. 10a), after which the SO2 emissions decreased because
of the COVID-19 lockdown. For central China, the average
SO2 emissions were 5.7×106, 4.2×106 and 3.1×106 kg d−1

during the same period from 17 January to 7 February
(Fig. 10b). The SO2 emissions peaked at 3.5× 106 kg d−1

on 24 January 2020 due to firework displays, and a reduction
began from 26 January 2020 because of the national lock-
down.

Figure 11 shows the average hourly emissions for
MEIC_2016, Emi_2019, and Emi_2020 emissions from 17
January to 7 February over all grid points. The hourly fac-
tors for MEIC_2016 were obtained from power plant report,
with two peaks during the day at 01:00 UTC (09:00 BJ time
– Beijing time) and 09:00 UTC (17:00 BJ time) to reflect
the emissions at rush hours (Chen et al., 2019; Hu et al.,
2022). In the Chinese mainland (Fig. 11a), the emissions of
2019 and 2020 were lower than those of MEIC_2016 dur-
ing 06:00–12:00 UTC. This is primarily due to the recent
implementation of China’s emission reduction policies and
the COVID-19 lockdown. Previous studies have shown that
the second peak (09:00 UTC) of SO2 emissions had weak-
ened (Chen et al., 2019), which was also reflected in our
hourly emission analysis. The emissions for Emi_2019 and
Emi_2020 were higher than those of MEIC_2016 during
16:00–20:00 UTC, but remain almost unchanged between
Emi_2019 and Emi_2020 emissions. During this time pe-
riod, most factories were closed and human activities were
reduced. The SO2 emissions are primarily emitted from
power plants, and the changes in emissions are small be-
tween different years (Zheng et al., 2018, 2021; Hu et al.,
2022). Thus, the increase in Emi_2019 and Emi_2020 emis-
sions during 16:00–20:00 UTC are mainly due to the uncer-
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Figure 7. (a) Difference between 2020 and 2019 emissions, and (b) ratios of (2020–2019)/2019 emissions in China. Units are mol km−2 h−1

for (a) and percent (%) for (b). Insets: South China Sea.

Figure 8. Emissions in central China for (a) MEIC_2016, (b) 2019, and (c) 2020. Black circles with dots are the locations of large cities.
The red characters in (c) are the name of provinces, and the black characters are the name of cities. Wuhan and Changsha are the capitals of
Hubei and Hunan provinces, respectively. Unit: mol km−2 h−1.

tainties of MEIC_2016 (Chen et al., 2019). Compared with
the average emissions for Emi_2019, those for Emi_2020
emissions decreased by 18.0 %, reflecting the reduction due
to the COVID-19 lockdown. The emissions in 2019 and
2020 in central China were lower than those in MEIC_2016
for 24 h period, with a maximum reduction at 09:00 UTC
(Fig. 9b). Compared with the emissions in 2019, the emis-
sions in 2020 appreciably decreased by 22.3 %–42.1 %. The
first peak of the emissions in 2020 was delayed and oc-
curred at 02:00 UTC because of the national lockdown poli-
cies. The most substantial reduction between 2019 and 2020
emissions was−120.4×103 kg h−1 at 01:00 UTC, reflecting
the change in human activities at the first peak. Additionally,
although there was only a moderate decrease in SO2 emis-
sions (−72.3×103 kg h−1) at 13:00 UTC, the reduction ratio
(−54.5 %) was the largest during 24 h.

3.2 Results of forecast experiments

Using the emissions of MEIC_2016, Emi_2019, and
Emi_2020, three forecast experiments (Ctrl_2016,
DA_2019, and DA_2020 in Table 3) were implemented
to further demonstrate the effect of optimised emissions.
Figure 12 shows the average 24 h forecast of SO2 concen-
trations of the three forecast experiments over all stations
in China during the study period from 17 January to 7
February 2020. The DA_2020 experiment with the 2020
emissions performed much better than the Ctrl_2016 and
DA_2019 experiments, indicating that the emission is one
of the most important factors for 24 h forecasts. The SO2
concentrations in Ctrl_2016 and DA_2019 were overes-
timated, particularly during 08:00–18:00 UTC (Fig. 12a),
while the SO2 concentrations in DA_2020 are similar to
the observed concentrations. The result showed the 4DVAR

https://doi.org/10.5194/acp-22-13183-2022 Atmos. Chem. Phys., 22, 13183–13200, 2022



13194 Y. Hu et al.: Four-dimensional variational assimilation

Figure 9. (a) Difference between 2020 and 2019 emissions, and (b) ratios of (2020–2019)/2019 emissions in central China. Black circles
with dots are the location of large cities. The red characters are the name of provinces, and the black characters are the name of cities. Wuhan
and Changsha are the capitals of Hubei and Hunan provinces, respectively. Units: mol km−2 h−1 for (a) and percent (%) for (b).

Figure 10. Time series of daily SO2 emissions in (a) China and (b) central China. The red dotted lines represent the dates of the start
of national lockdown and the Chinese Spring Festival in 2020. The blue dotted line represents the Chinese Spring Festival in 2019. Units:
106 kg d−1.

system effectively optimises emissions and improves the
accuracy of forecasts. The average RMSEs of the three
experiments were 21.7, 15.6, and 10.7 µg m−3, respectively.
Compared to the average RMSE of Ctrl_2016 experiment,
the RMSEs of the DA_2019 and DA_2020 decreased by
28.1 % and 50.7 %. The average CORRs for the Ctrl_2016,
DA_2019, and DA_2020 experiments were 0.20, 0.38, and
0.61, respectively. Thus, the average CORRs for DA_2019
and DA_2020 experiments increased by 89.5 % and 205.9 %
from the CORR for Ctrl_2016 experiment. The average
bias of Ctrl_2016, DA_ 2019, and DA_2020 experiments

were 5.9, 4.9, and −0.1 µg m−3, respectively. It is suggested
that the optimised emissions could substantially improve
forecast accuracy, and the 4DVAR approach is effective to
optimise daily and hourly emissions during an accidental
special event.

Figure 13 shows the same analyses as those presented in
Fig. 12, but for central China. It also showed that the fore-
cast accuracies of the DA_2019 and DA_2020 experiments
were higher than those of Ctrl_2016. The average observa-
tion concentration was < 10 µg m−3, which is substantially
lower than that for Chinese mainland (Fig. 12a). The mean
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Figure 11. Hourly emissions for (a) China and (b) central China (unit: 103 kg h−1).

Figure 12. Forecast accuracy of SO2 concentrations in China for the Ctrl_2016, DA_2019, and DA_2020 experiments during the study
period in 2020: (a) mean concentration, (b) RMSE, (c) CORR, and (d) bias. Unit: µg m−3 for (a), (b), and (d). Obs: observation.

concentration of DA_2020 was close to the observed con-
centration in central China. The above results suggest that
although the 2020 optimised emissions were generally con-
sistent with the real emissions, they were slightly higher than
the real emissions. In the 4DVAR optimisation process, each
grid will be influenced by surrounding grids because of the
advection and vertical mixing. The theory of 4DVAR method
is to take a balance between the observations and background
field, and to obtain the optimised field. Therefore, when the
observations are lower and the background fields are higher,

the value of the optimised field will be higher than the ob-
servation. Compared to that of Ctrl_2016, the average bias
of the DA_2019 and DA_2020 experiments decreased from
20.1 to 12.6 and 3.5 µg m−3. The average RMSE decreased
by 48.8 % and 77.0 %, and the average CORR increased by
44.3 % and 238.7 %. This indicates that the forecast accuracy
substantially improved after using optimised emissions.
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Figure 13. Forecast accuracy of SO2 concentrations in central China using the Ctrl_2016, DA_2019, and DA_2020 experiments during the
study period in 2020. (a) Mean concentration, (b) root mean square error (RMSE), (c) correlation coefficient (CORR), and (d) bias. Unit:
µg m−3 for (a), (b), and (d). Obs: observation.

4 Conclusions

In this study, we developed a 4DVAR system based on the
WRF–Chem model to estimate SO2 emissions, where the ini-
tial SO2 concentration and emissions were set as the state
variables to estimate SO2 emissions. An adjoint operator
was derived from the WRF–Chem model, focusing on the
processes of transport, dry/wet deposition, vertical turbu-
lence, and SO2 chemical reactions. Hourly SO2 concentra-
tion observations were assimilated to optimise SO2 emis-
sions, which were used to improve the SO2 forecasting ac-
curacy.

The 4DVAR system was applied to investigate SO2 emis-
sion changes during the COVID-19 lockdown in China, par-
ticularly focusing on central China. The MEIC_2016 emis-
sions were set as the background values. The average emis-
sions of MEIC_2016, 2019, and 2020 were 42.2× 106,
40.1× 106, and 36.4× 106 kg d−1, namely 2020 emissions
decreased by 9.2 % compared with those in 2019, indicat-
ing a substantial decrease between 2019 and 2020 due to
the COVID-19 related lockdown. The average 2020 emis-
sions in central China dropped by 21.0 % compared to the
2019 emissions, owing to the strict lockdown policy during
COVID-19. The largest decrease in emissions occurred in

Wuhan (decline of 57.0 %), which COVID-19 had heavily af-
fected by this time. Hourly average emissions were analysed
to estimate the changes between 2019 and 2020. Compared
with 2019 emissions, the average 2020 emissions decreased
by 18.0 %, reflecting lockdown-associated reduction in SO2
emissions. The 2020 emissions in central China decreased by
22.3 %–42.1 % compared with the 2019 emissions.

Three sets of forecast experiments for 2020, using
MEIC_2016, Emi_2019, and Emi_2020 emissions, were
conducted to illustrate the effects of the optimised emissions.
The experiment with MEIC_2016 emissions overestimated
the SO2 concentration forecast, whereas the experiment with
2019 optimised emissions decreased the concentrations but
still overestimated the values. The forecast accuracy of the
experiment with the 2020 emissions was the closest to the
observation. The RMSE of the experiments with the emis-
sions in 2019 and 2020 decreased from 21.7 to 15.6, and
10.7 µg m−3, respectively, and the correlation coefficient in-
creased from 0.20 to 0.38 and 0.61, respectively, compared
with those of the experiment with MEIC_2016 emissions.
For central China, the average RMSE and correlation coeffi-
cient of the experiment with MEIC_2016 were 24.6 µg m−3

and 0.1. Compared with the average RMSE of the experi-
ment with MEIC_2016, those of the experiments with 2019
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and 2020 emissions decreased by 48.8 % and 77.0 %, and
the average correlation coefficient increased by 44.3 % and
238.7 %.

Though our 4DVAR system could effectively optimise real
time emission as a “top-down” approach, some limitations
still remain. Only hourly surface SO2 observations were used
to constrain the emission sources. The spatial distribution of
surface observation sites was uneven with fewer sites in the
northwest and southwest regions, resulting in limited adjust-
ments to emission sources in these regions. In future, satellite
data will be used to adjust the emission source to address the
lack of surface observation data. Furthermore, the simultane-
ous optimisation of SO2 concentrations and emissions will
be implemented in a 4DVAR system, and multi-source ob-
servation data will be used to improve its performance.
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