Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-1159-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1159-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subgrid-scale horizontal and vertical variation of cloud water in stratocumulus clouds: a case study based on LES and comparisons with in situ observations
Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS, USA
David B. Mechem
Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS, USA
Zhibo Zhang
Joint Center for Earth Systems Technology, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
Department of Physics, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
Related authors
No articles found.
Jordan M. Eissner, David B. Mechem, Yi Jin, Virendra P. Ghate, and James F. Booth
Atmos. Chem. Phys., 25, 11275–11299, https://doi.org/10.5194/acp-25-11275-2025, https://doi.org/10.5194/acp-25-11275-2025, 2025
Short summary
Short summary
Low-level clouds have important radiative feedbacks and can occur in a range of meteorological conditions, yet our knowledge and prediction of them are insufficient. We evaluate model forecasts of low-level cloud properties across a cold front and the associated environments that they form in. The model represents the meteorological conditions well and produces broken clouds behind the cold front in areas of strong surface forcing, large stability, and large-scale subsiding motion.
Adeleke S. Ademakinwa, Zhibo Zhang, Daniel Miller, Kerry G. Meyer, Steven Platnick, Zahid H. Tushar, Sanjay Purushotham, and Jianwu Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4169, https://doi.org/10.5194/egusphere-2025-4169, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Many satellites measure cloud properties using reflected light from droplets, but most assume simple cloud structures, which can reduce accuracy. Using cloud simulations, we tested how these errors affect droplet number in a given volume and climate studies. We found that while they strongly affect small scales, at the larger scales used by satellites the errors mostly cancel out, meaning satellite data remain reliable for climate research.
Anthony La Luna, Zhibo Zhang, Jianyu Zheng, Qianqian Song, Hongbin Yu, Jiachen Ding, Ping Yang, and Masanori Saito
EGUsphere, https://doi.org/10.5194/egusphere-2025-1117, https://doi.org/10.5194/egusphere-2025-1117, 2025
Short summary
Short summary
The lidar backscattering properties of Asian dust particles were studied using a discrete dipole approximation (DDA) model. Both the lidar ratio (LR) and depolarization ratio (DPR) exhibit an asymptotic trend with dust particle size. Two parameterization schemes were developed: one to estimate the DPR of a single dust particle given its size, and the other to estimate the DPR of dust particles with a lognormal particle size distribution given the effective radius.
Adeleke S. Ademakinwa, Zahid H. Tushar, Jianyu Zheng, Chenxi Wang, Sanjay Purushotham, Jianwu Wang, Kerry G. Meyer, Tamas Várnai, and Zhibo Zhang
Atmos. Chem. Phys., 24, 3093–3114, https://doi.org/10.5194/acp-24-3093-2024, https://doi.org/10.5194/acp-24-3093-2024, 2024
Short summary
Short summary
Clouds play a critical role in our climate system. At present and in the near future, satellite-based remote sensing is the only means to obtain regional and global observations of cloud properties. The current satellite remote sensing algorithms are mostly based on the so-called 1D radiative transfer. This deviation from the 3D world reality can lead to large errors. In this study we investigate how this error affects our estimation of cloud radiative effects.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021, https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Short summary
We present a satellite-derived global dust climatological record over the last two decades, including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust extinction coefficient at a 2º × 5º spatial resolution derived from CALIOP and MODIS. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Cited articles
Ackerman, A. S., van Zanten, M. C., Stevens, B., Savic-Jovcic, V.,
Bretherton, C. S., Chlond, A., Golaz, J.-C., Jiang, H., Khairoutdinov, M.,
Krueger, S. K., Zulauf, M., Lewellen, D. C., Lock, A., Moeng, C.-H.,
Nakamura, K., Petters, M. D., Snider, J. R., and Weinbrecht, S.: Large-eddy
simulations of a drizzling, stratocumulus-topped marine boundary layer, Mon.
Weather Rev., 137, 1083–1110, 2009. a
Ahlgrimm, M. and Forbes, R. M.: Regime dependence of cloud condensate
variability observed at the Atmospheric Radiation Measurement Sites, Q.
J. Roy. Meteorol. Soc., 142, 1605–1617, https://doi.org/10.1002/qj.2783, 2016. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, 1989. a
ARM: Ka ARM Zenith Radar (KAZR2CFRGE), Atmospheric Radiation Measurement (ARM)
user facility, edited by: Lindenmaier, I., Bharadwaj, N., Johnson, K.,
Nelson, D., Isom, B., Hardin, J., Matthews, A., Wendler, T., and Castro, V., ARM Data
Center, https://doi.org/10.5439/1608607, 2019. a
Atmospheric Radiation Measurement: ACE-ENA field campaign data, available at: https://adc.arm.gov/discovery/#/results/s::ENA, last access: 11 January 2022.
Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pincus, R.,
Shepherd, T., Sherwood, S., Siebsema, A., Sobel, A., Watanabe, M., and Webb,
M.: Clouds, circulation and climate sensitivity, Nature, 8, 261–268,
https://doi.org/10.1038/ngeo2398, 2015. a
Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.: Spatial
variability of liquid cloud and rain: observations and microphysical effects,
Q. J. Roy. Meteorol. Soc., 140, 583–594, https://doi.org/10.1002/qj.2140, 2014. a
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D.,
Deque, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T.,
Lacis, A. A., Le Treut, H., Li, Z.-X., Liang, X.-Z., McAvaney, B. J.,
Meleshko, V. P., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Rikus,
L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A.,
Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai,
I., and Zhang, M.-H.: Intercomparison and interpretation of climate feedback
processes in 19 atmospheric general circulation models, J. Geophys. Res., 95,
16601–16615, https://doi.org/10.1029/JD095iD10p16601, 1990. a
Covert, J., Mechem, D., and Zhang, Z.: ENA Variability Data, Github [code], available at: https://github.com/dmechem/ENA_variability_LES_bulk_paper, last access: 20 January 2022. a
Deardorff, J. W.: Cloud top entrainment instability, J. Atmos. Sci., 37,
131–147, 1980. a
Ghate, V., Albrecht, A., Miller, M., Brewer, A., and Fairall, C.: Turbulence
and Radiation in Stratocumulus-Topped Marine Boundary Layers: A Case Study
from VOCALS-REx, J. Appl. Meteorol. Climatol., 53, 117–135, https://doi.org/10.1175/JAMC-D-12-0225.1, 2014. a
Hill, P. G., Morcrette, C. J., and Boutle, I. A.: A regime-dependent
parametrization of subgrid-scale cloud water content variability, Q. J.
Roy. Meteorol. Soc., 141, 1975–1986, https://doi.org/10.1002/qj.2506,
2015.
a
Kazemirad, M. and Miller, M. A.: Summertime post-cold-frontal marine
stratocumulus transition processes over the eastern north atlantic, J.
Atmos. Sci., 77, 2011–2037, 2020. a
Kessler, E.: On the Distribution and Continuity of Water Substance in
Atmospheric Circulations, Meteor. Monogr., 32, 1–84,
https://doi.org/10.1007/978-1-935704-36-2_1, 1969. a
Khairoutdinov, M. and Randall, D.: Cloud Resolving Modeling of the ARM Summer
1997 IOP: Model Formulation, Results, Uncertainties, and Sensitivities, J.
Atmos. Sci., 60, 607–625, 2003. a
Kiehl, J., Hack, J., Bonan, G., Boville, B., Williamson, D., and Rasch, P.: The
national center for atmospheric research community climate model: CCM3,
J. Clim., 11, 1131–1149, 1998. a
Klein, S. and Hartmann, D.: The Seasonal Cycle of Low Stratiform Clouds, J. Clim., 6,
1587–1606,
1993. a
Kogan, Y. L. and Mechem, D. B.: A PDF-based microphysics parameterization for
shallow cumulus clouds, J. Atmos. Sci., 71, 1070–1089,
2014. a
Kogan, Y. L. and Mechem, D. B.: A PDF-based formulation of microphysical
variability in cumulus congestus clouds, J. Atmos. Sci.,
73, 167–184, 2016. a
Larson, V. E. and Griffin, B. M.: Analytic upscaling of a local microphysics
scheme, Part I: Derivation, Q. J. Roy. Meteorol.
Soc., 139, 46–57, 2013. a
Larson, V. E., Wood, R., Field, P. R., Golaz, J., Vonder Haar, T. H., and
Cotton, W. R.: Systematic Biases in the Microphysics and Thermodynamics of
Numerical Models That Ignore Subgrid-Scale Variability, J. Atmos. Sci., 58,
1117–1128,
2001. a
Lebo, Z. J., Williams, C. R., Feingold, G., and Larson, V. E.: Parameterization
of the Spatial Variability of Rain for Large-Scale Models and Remote Sensing,
J. Appl. Meteorol. Climatol., 54, 2027–2046,
https://doi.org/10.1175/JAMC-D-15-0066.1, 2015. a
Lebsock, M., Morrison, H., and Gettelman, A.: Microphysical implications of
cloud-precipitation covariance derived from satellite remote sensing, J.
Geophys. Res., 118, 6521–6533, https://doi.org/10.1002/jgrd.50347, 2013. a, b, c
Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., and Zhang, J.: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys., 7, 3425–3446, https://doi.org/10.5194/acp-7-3425-2007, 2007. a
Martin, G., Johnson, D., Rogers, D., Jonas, P., Minnis, P., and Hegg, D.:
Observations of the Interaction between Cumulus Clouds and Warm Stratocumulus
Clouds in the Marine Boundary Layer during ASTEX, J. Atmos. Sci., 51,
2902–2922,
1995. a
Mechem, D. B., Yuter, S. E., and de Szoeke, S. P.: Thermodynamic and Aerosol
Controls in Southeast Pacific Stratocumulus, J. Atmos. Sci., 69, 1250–1266,
https://doi.org/10.1175/JAS-D-11-0165.1, 2012. a
Morrison, H. and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3), Part
I: Description and Numerical Tests, J. Clim., 21, 3642–3659,
https://doi.org/10.1175/2008JCLI2105.1, 2008. a, b
Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J., L’Ecuyer,
T. S., Lohmann, U., Ma, P.-L., Myhre, G., Neubauer, D., Stier, P., Suzuki, K., Wang, M., and Quaas, J.:
Reducing the aerosol forcing uncertainty using observational constraints on
warm rain processes, Sci. Adv., 6, eaaz6433, https://doi.org/10.1126/sciadv.aaz6433, 2020. a
Pawlowska, H. and Brenguier, J.-L.: An observational study of drizzle formation
in stratocumulus clouds for general circulation model (GCM)
parameterizations, J. Geophys. Res.-Atmos., 108, 8630–8643, 2003. a
Pincus, R. and Klein, S.: Unresolved spatial variability and microphysical
process rates in large-scale models, J. Geophys. Res., 105, 27059–27065,
https://doi.org/10.1029/2000JD900504, 2000. a, b
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation,
2nd Edn., Kluwer Academic Publishers, Dordrecht, the Netherlands, p. 954,
1997. a
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the
Cloud Parameterization Deadlock, Bull. Am. Meteorol. Soc., 84, 1547–1564,
https://doi.org/10.1175/BAMS-84-11-1547, 2003. a
Remillard, J., Fridlind, A., Ackerman, A. S., Tselioudis, T., Kollias, P.,
Mechem, D. B., Chandler, H., Luke, E., Wood, R., Witte, M., Chuang, P., and
Ayers, J.: Use of Cloud Radar Doppler Spectra to Evaluate Stratocumulus
Drizzle Size Distributions in Large-Eddy Simulations with Size-Resolved
Microphysics, J. Appl. Meteorol. Climatol., 56, 3263–3283, https://doi.org/10.1175/JAMC-D-17-0100.1, 2017. a
Salzmann, M., Ming, Y., Golaz, J.-C., Ginoux, P. A., Morrison, H., Gettelman,
A., Krämer, M., and Donner, L. J.: Two-moment bulk stratiform cloud
microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity
tests, Atmos. Chem. Phys., 10, 8037–8064, https://doi.org/10.5194/acp-10-8037-2010, 2010. a
Stevens, B., Ackerman, A. S., Albrecht, B. A., Brown, A. R., Chlond, A.,
Cuxart, J., Duynkerke, P. G., Lewellen, D. C., Macvean, M. K., Neggers, R.
A. J., Sanchez, E., Siebesma, A. P., and Stevens, D. E.: Simulations of trade
wind cumuli under a strong inversion, J. Atmos. Sci., 58, 1870–1891, 2001. a, b
Stevens, B., Lenschow, D. H., Faloona, I., Moeng, C.-H., Lilly, D. K.,
Blomquist, B., Vali, G., Bandy, A., Campos, T., Gerber, H., Haimov, S.,
Morley, B., and Thornton, D.: On entrainment rates in nocturnal marine
stratocumulus, Q. J. Roy. Meteorol. Soc., 129, 3469–3493, 2003. a
Wang, J., Wood, R., Jensen, M. P., Chiu, C., Liu, Y., and Co-authors: Aerosol
and Cloud Experiments in the Eastern North Atlantic (ACE-ENA), in review,
2021. a
Warren, S., Hahn, C., London, J., Chervin, R., and Jenne, R.: Global
Distribution of Total Cloud Cover and Cloud Type Amounts Over Land, NCAR
Tech. Note (NCAR/TN-2731STR), University Corporation for Atmospheric
Research, https://doi.org/10.5065/D6GH9FXB, 1986.
a
Witte, N., Morrison, H., Jensen, J., Bansemer, A., and Gettelman, A.: On the
Covariability of Cloud and Rain Water as a Function of Length Scale, J.
Atmos. Sci., 76, 2295–2308, https://doi.org/10.1175/JAS-D-19-0048.1, 2019. a
Wood, R.: Drizzle in Stratiform Boundary Layer Clouds, Part II: Microphysical
Aspects, J. Atmos. Sci., 62, 3034–3050, https://doi.org/10.1175/JAS3530.1, 2005. a
Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/mwr-d-11-00121.1, 2012. a
Wu, P., Xi, B., Dong, X., and Zhang, Z.: Evaluation of autoconversion and
accretion enhancement factors in general circulation model warm-rain
parameterizations using ground-based measurements over the Azores, Atmos. Chem. Phys., 18,
17405–17420, https://doi.org/10.5194/acp-18-17405-2018, 2018. a
Xie, S., Zhang, Y., Giangrande, S. E., Jensen, M. P., McCoy, R., and Zhang, M.:
Interactions between cumulus convection and its environment as revealed by
the MC3E sounding array, J. Geophys. Res., 119, 11784–11808, 2014. a
Xie, X. and Zhang, M.: Scale-aware parameterization of liquid cloud
inhomogeneity and its impact on simulated climate in CESM, J. Geophys. Res.,
120, 8359–8371, https://doi.org/10.1002/2015JD023565, 2015. a
Yamaguchi, T., Randall., D. A., and Khairoutdinov, M. F.: Cloud Modeling Tests
of the ULTIMATE-MACHO Scalar Advection Scheme, Mon. Weather Rev., 139,
3248–3264, https://doi.org/10.1175/MWR-D-10-05044.1, 2011. a
Zhang, M. H. and Lin, J. L.: Constrained Variational Analysis of Sounding Data
Based on Column-Integrated Budgets of Mass, Heat, Moisture, and Momentum:
Approach and Application to ARM Measurements, J. Atmos.
Sci., 54, 1503–1524,
https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2, 1997. a
Zhang, Z., Song, H., Ma, P.-L., Larson, V. E., Wang, M., Dong, X., and Wang, J.: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models, Atmos. Chem. Phys., 19, 1077–1096, https://doi.org/10.5194/acp-19-1077-2019, 2019. a, b, c, d, e, f, g, h, i
Zhang, Z., Song, Q., Mechem, D., Larsen, V., Wang, J., Liu, Y., Witte, M.,
Dong, X., and Wu, P.: Vertical dependence of horizontal variation of cloud
microphysics: observations from the ACE-ENA field campaign and implications
for warm-rain simulation in climate models, Atmos. Chem. Phys., 21, 3103–3121,
https://doi.org/10.5194/acp-21-3103-2021, 2021. a, b, c, d, e, f, g, h, i, j
Zuidema, P., Westwater, E. R., Fairall, C., and Hazen, D.: Ship-based liquid
water path estimates in marine stratocumulus, J. Geophys.
Res.-Atmos., 110, D20206, https://doi.org/10.1029/2005JD005833, 2005. a
Short summary
Stratocumulus play an important role in Earth's radiative balance. The simulation of these cloud systems in climate models is difficult due to the scale at which cloud microphysical processes occur compared with model grid sizes. In this study, we use large-eddy simulation to analyze subgrid-scale variability of cloud water and its implications on a cloud water to drizzle model enhancement factor E. We find current values of E may be too large and that E should be vertically dependent in models.
Stratocumulus play an important role in Earth's radiative balance. The simulation of these cloud...
Altmetrics
Final-revised paper
Preprint