Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-8531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Christopher P. West
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Anusha P. S. Hettiyadura
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Xiaoying Niu
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jiecan Cui
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Tenglong Shi
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA
Related authors
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021, https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021, https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Ana C. Morales, Thilina Jayarathne, Jonathan H. Slade, Alexander Laskin, and Paul B. Shepson
Atmos. Chem. Phys., 21, 129–145, https://doi.org/10.5194/acp-21-129-2021, https://doi.org/10.5194/acp-21-129-2021, 2021
Short summary
Short summary
Organic nitrates formed from the oxidation of biogenic volatile organic compounds impact both ozone and particulate matter as they remove nitrogen oxides, but they represent important aerosol precursors. We conducted a series of reaction chamber experiments that quantified the total organic nitrate and secondary organic aerosol yield from the OH-radical-initiated oxidation of ocimene, and also measured their hydrolysis lifetimes in the aqueous phase, as a function of pH.
Cited articles
Amoroso, A., Domine, F., Esposito, G., Morin, S., Savarino, J., Nardino, M., Montagnoli, M., Bonneville, J. M., Clement, J. C., Ianniello, A., and Beine, H. J.:
Microorganisms in Dry Polar Snow Are Involved in the Exchanges of Reactive Nitrogen Species with the Atmosphere,
Environ. Sci. Technol.,
44, 714–719, https://doi.org/10.1021/es9027309, 2010.
Anastasio, C. and Robles, T.:
Light absorption by soluble chemical species in Arctic and Antarctic snow,
J. Geophys. Res.-Atmos.,
112, D24304, https://doi.org/10.1029/2007JD008695, 2007.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Antony, R., Grannas, A. M., Willoughby, A. S., Sleighter, R. L., Thamban, M., and Hatcher, P. G.:
Origin and Sources of Dissolved Organic Matter in Snow on the East Antarctic Ice Sheet,
Environ. Sci. Technol.,
48, 6151–6159, https://doi.org/10.1021/es405246a, 2014.
Antony, R., Willoughby, A. S., Grannas, A. M., Catanzano, V., Sleighter, R. L., Thamban, M., Hatcher, P. G., and Nair, S.:
Molecular Insights on Dissolved Organic Matter Transformation by Supraglacial Microbial Communities,
Environ. Sci. Technol.,
51, 4328–4337, https://doi.org/10.1021/acs.est.6b05780, 2017.
Bandowe, B. A., Meusel, H., Huang, R., Hoffmann, T., Cao, J., and Ho, K.:
Azaarenes in fine particulate matter from the atmosphere of a Chinese megacity,
Environ. Sci. Pollut. Res. Int.,
23, 16025–16036, https://doi.org/10.1007/s11356-016-6740-z, 2016.
Bandowe, B. A. M. and Meusel, H.:
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – A review,
Sci. Total Environ.,
581–582, 237–257, https://doi.org/10.1016/j.scitotenv.2016.12.115, 2017.
Beine, H., Anastasio, C., Esposito, G., Patten, K., Wilkening, E., Domine, F., Voisin, D., Barret, M., Houdier, S., and Hall, S.:
Soluble, light-absorbing species in snow at Barrow, Alaska,
J. Geophys. Res.-Atmos.,
116, D00R05, https://doi.org/10.1029/2011jd016181, 2011.
Beres, N. D., Sengupta, D., Samburova, V., Khlystov, A. Y., and Moosmüller, H.: Deposition of brown carbon onto snow: changes in snow optical and radiative properties, Atmos. Chem. Phys., 20, 6095–6114, https://doi.org/10.5194/acp-20-6095-2020, 2020.
Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A., and Kujawinski, E. B.:
Molecular characterization of dissolved organic matter associated with the Greenland ice sheet,
Geochim. Cosmochim. Ac.,
74, 3768–3784, https://doi.org/10.1016/j.gca.2010.03.035, 2010.
Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J. L., Chaumerliac, N., and Bridoux, M.:
Molecular Characterization of Cloud Water Samples Collected at the Puy de Dome (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,
Environ. Sci. Technol.,
52, 10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018.
Birdwell, J. E. and Valsaraj, K. T.:
Characterization of dissolved organic matter in fogwater by excitation–emission matrix fluorescence spectroscopy,
Atmos. Environ.,
44, 3246–3253, https://doi.org/10.1016/j.atmosenv.2010.05.055, 2010.
Bond, T. C. and Bergstrom, R. W.:
Light absorption by carbonaceous particles: An investigative review,
Aerosol Sci. Tech.,
40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.:
Bounding the role of black carbon in the climate system: A scientific assessment,
J. Geophys. Res.-Atmos.,
118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Brutel-Vuilmet, C., Ménégoz, M., and Krinner, G.: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models, The Cryosphere, 7, 67–80, https://doi.org/10.5194/tc-7-67-2013, 2013.
Cain, J., Laskin, A., Kholghy, M. R., Thomson, M. J., and Wang, H.:
Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame,
Phys. Chem. Chem. Phys.,
16, 25862–25875, https://doi.org/10.1039/c4cp03330b, 2014.
Cech, N. B. and Enke, C. G.:
Practical implications of some recent studies in electrospray ionization fundamentals,
Mass Spectrom. Rev.,
20, 362–387, https://doi.org/10.1002/mas.10008, 2001.
Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., and Zhang, Y. L.:
Size-Resolved Characterization of the Chromophores in Atmospheric Particulate Matter From a Typical Coal-Burning City in China,
J. Geophys. Res.-Atmos.,
124, 10546–10563, https://doi.org/10.1029/2019jd031149, 2019.
Chen, Q., Li, J., Hua, X., Jiang, X., Mu, Z., Wang, M., Wang, J., Shan, M., Yang, X., Fan, X., Song, J., Wang, Y., Guan, D., and Du, L.:
Identification of species and sources of atmospheric chromophores by fluorescence excitation–emission matrix with parallel factor analysis,
Sci. Total Environ.,
718, 137322, https://doi.org/10.1016/j.scitotenv.2020.137322, 2020.
Chen, Q. C., Ikemori, F., and Mochida, M.:
Light Absorption and Excitation–Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure,
Environ. Sci. Technol.,
50, 10859–10868, https://doi.org/10.1021/acs.est.6b02541, 2016a.
Chen, Q. C., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer, R., Iwamoto, Y., Kagami, S., Deng, Y. G., Ogawa, S., Ramasamy, S., Kato, S., Ida, A., Kajii, Y., and Mochida, M.:
Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation Emission Matrix Spectroscopy,
Environ. Sci. Technol.,
50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643, 2016b.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Coble, P. G.:
Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy,
Mar. Chem.,
51, 325–346, https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P. G., Del Castillo, C. E., and Avril, B.:
Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,
Deep-Sea Res. Pt. II,
45, 2195–2223, https://doi.org/10.1016/S0967-0645(98)00068-X, 1998.
Cook, J. M., Hodson, A. J., Gardner, A. S., Flanner, M., Tedstone, A. J., Williamson, C., Irvine-Fynn, T. D. L., Nilsson, J., Bryant, R., and Tranter, M.: Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo, The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, 2017a.
Cook, J. M., Hodson, A. J., Taggart, A. J., Mernild, S. H., and Tranter, M.:
A predictive model for the spectral ”bioalbedo” of snow,
J. Geophys. Res.-Earth,
122, 434–454, https://doi.org/10.1002/2016JF003932, 2017b.
DiDonato, N., Chen, H., Waggoner, D., and Hatcher, P. G.:
Potential origin and formation for molecular components of humic acids in soils,
Geochim. Cosmochim. Ac.,
178, 210–222, https://doi.org/10.1016/j.gca.2016.01.013, 2016.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Duarte, R. M. B. O., Santos, E. B. H., Pio, C. A., and Duarte, A. C.:
Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances,
Atmos. Environ.,
41, 8100–8113, https://doi.org/10.1016/j.atmosenv.2007.06.034, 2007.
Duval, J., Pecher, V., Poujol, M., and Lesellier, E.:
Research advances for the extraction, analysis and uses of anthraquinones: A review,
Ind. Crop. Prod.,
94, 812–833, https://doi.org/10.1016/j.indcrop.2016.09.056, 2016.
Elliott, A., Mundy, C. J., Gosselin, M., Poulin, M., Campbell, K., and Wang, F.:
Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic,
Mar. Ecol.-Prog. Ser.,
541, 91–104, https://doi.org/10.3354/meps11540, 2015.
Fede, A. and Grannas, A. M.:
Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice,
Environ. Sci. Technol.,
49, 12808–12815, https://doi.org/10.1021/acs.est.5b03600, 2015.
Fellman, J. B., Hood, E., Raymond, P. A., Stubbins, A., and Spencer, R. G. M.:
Spatial Variation in the Origin of Dissolved Organic Carbon in Snow on the Juneau Icefield, Southeast Alaska,
Environ. Sci. Technol.,
49, 11492–11499, https://doi.org/10.1021/acs.est.5b02685, 2015.
Feng, L., Xu, J. Z., Kang, S. C., Li, X. F., Li, Y., Jiang, B., and Shi, Q.:
Chemical Composition of Microbe-Derived Dissolved Organic Matter in Cryoconite in Tibetan Plateau Glaciers: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis,
Environ. Sci. Technol.,
50, 13215–13223, https://doi.org/10.1021/acs.est.6b03971, 2016.
Feng, L., An, Y., Xu, J., and Kang, S.:
Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories,
Ann. Glaciol.,
59, 31–40, https://doi.org/10.1017/aog.2018.20, 2018.
Feng, L., An, Y., Xu, J., Li, X., Jiang, B., and Liao, Y.:
Biochemical evolution of dissolved organic matter during snow metamorphism across the ablation season for a glacier on the central Tibetan Plateau,
Sci. Rep.,
10, 6123, https://doi.org/10.1038/s41598-020-62851-w, 2020.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow,
J. Geophys. Res.-Atmos.,
112, D11202, https://doi.org/10.1029/2006jd008003, 2007.
Fu, P. Q., Kawamura, K., Chen, J., Qin, M. Y., Ren, L. J., Sun, Y. L., Wang, Z. F., Barrie, L. A., Tachibana, E., Ding, A. J., and Yamashita, Y.:
Fluorescent water-soluble organic aerosols in the High Arctic atmosphere,
Sci. Rep.,
5, 9845, https://doi.org/10.1038/Srep09845, 2015.
Ganey, G. Q., Loso, M. G., Burgess, A. B., and Dial, R. J.:
The role of microbes in snowmelt and radiative forcing on an Alaskan icefield,
Nat. Geosci.,
10, 754–759, https://doi.org/10.1038/ngeo3027, 2017.
Geisseler, D., Horwath, W. R., Joergensen, R. G., and Ludwig, B.:
Pathways of nitrogen utilization by soil microorganisms – A review,
Soil Biol. Biochem.,
42, 2058–2067, https://doi.org/10.1016/j.soilbio.2010.08.021, 2010.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Grannas, A. M., Pagano, L. P., Pierce, B. C., Bobby, R., and Fede, A.:
Role of dissolved organic matter in ice photochemistry,
Environ. Sci. Technol.,
48, 10725–10733, https://doi.org/10.1021/es5023834, 2014.
Hadley, O. L. and Kirchstetter, T. W.:
Black-carbon reduction of snow albedo,
Nat. Clim. Change,
2, 437–440, https://doi.org/10.1038/Nclimate1433, 2012.
Hagler, G. S. W., Bergin, M. H., Smith, E. A., and Dibb, J. E.:
A summer time series of particulate carbon in the air and snow at Summit, Greenland,
J. Geophys. Res.-Atmos.,
112, D21309, https://doi.org/10.1029/2007jd008993, 2007a.
Hagler, G. S. W., Bergin, M. H., Smith, E. A., Dibb, J. E., Anderson, C., and Steig, E. J.: Particulate and water-soluble carbon measured in recent snow at Summit, Greenland, Geophys. Res. Lett., 34, L16505, https://doi.org/10.1029/2007GL030110, 2007b.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.:
Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data,
Remote Sens. Environ.,
54, 127–140, https://doi.org/10.1016/0034-4257(95)00137-P, 1995.
Handley, S. R., Clifford, D., and Donaldson, D. J.:
Photochemical Loss of Nitric Acid on Organic Films: a Possible Recycling Mechanism for NOx,
Environ. Sci. Technol.,
41, 3898–3903, https://doi.org/10.1021/es062044z, 2007.
Hansen, J. and Nazarenko, L.:
Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA,
101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
He, C. L., Li, Q. B., Liou, K. N., Takano, Y., Gu, Y., Qi, L., Mao, Y. H., and Leung, L. R.:
Black carbon radiative forcing over the Tibetan Plateau,
Geophys. Res. Lett.,
41, 7806–7813, https://doi.org/10.1002/2014GL062191, 2014.
He, Z., Mao, J., Honeycutt, C. W., Ohno, T., Hunt, J. F., and Cade-Menun, B. J.:
Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques,
Biol. Fert. Soils,
45, 609–616, https://doi.org/10.1007/s00374-009-0369-8, 2009.
Hertkorn, N., Benner, R., Frommberger, M., Schmitt-Kopplin, P., Witt, M., Kaiser, K., Kettrup, A., and Hedges, J. I.:
Characterization of a major refractory component of marine dissolved organic matter,
Geochim. Cosmochim. Ac.,
70, 2990–3010, https://doi.org/10.1016/j.gca.2006.03.021, 2006.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D'Amore, D., and Scott, D.:
Glaciers as a source of ancient and labile organic matter to the marine environment,
Nature,
462, 1044–1047, https://doi.org/10.1038/nature08580, 2009.
Hood, E., Battin, T. J., Fellman, J., O'Neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets,
Nat. Geosci.,
8, 91–96, https://doi.org/10.1038/NGEO2331, 2015.
Huang, J. P., Fu, Q. A., Zhang, W., Wang, X., Zhang, R. D., Ye, H., and Warren, S. G.:
Dust And Black Carbon In Seasonal Snow across Northern China,
B. Am. Meteorol. Soc.,
92, 175–181, https://doi.org/10.1175/2010BAMS3064.1, 2011.
Hullar, T., Bononi, F. C., Chen, Z., Magadia, D., Palmer, O., Tran, T., Rocca, D., Andreussi, O., Donadio, D., and Anastasio, C.:
Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution,
Environ. Sci.-Proc. Imp.,
22, 1666–1677, https://doi.org/10.1039/d0em00242a, 2020.
Hunt, J. F. and Ohno, T.:
Characterization of Fresh and Decomposed Dissolved Organic Matter Using Excitation–Emission Matrix Fluorescence Spectroscopy and Multiway Analysis,
J. Agr. Food. Chem.,
55, 2121–2128, https://doi.org/10.1021/jf063336m, 2007.
Ikeya, K., Sleighter, R. L., Hatcher, P. G., and Watanabe, A.:
Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry,
Geochim. Cosmochim. Ac.,
153, 169–182, https://doi.org/10.1016/j.gca.2015.01.002, 2015.
Jacobson, M. Z.:
Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity,
J. Geophys. Res.-Atmos.,
109, D21201, https://doi.org/10.1029/2004jd004945, 2004.
Jaffé, R., Cawley, K. M., and Yamashita, Y.: Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in Assessing Environmental Dynamics of Natural Dissolved Organic Matter (DOM) in Aquatic Environments: A Review, in: Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems, ACS Symposium Series, 1160, American Chemical Society, Washington, DC, 27–73, 2014.
Jin, Z. H., Charlock, T. P., Rutledge, K., Stamnes, K., and Wang, Y. J.:
Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,
Appl. Optics,
45, 7443–7455, https://doi.org/10.1364/AO.45.007443, 2006.
Jones, H. G.:
The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold,
Hydrol. Process.,
13, 2135–2147, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2135::AID-HYP862>3.0.CO;2-Y, 1999.
Kim, S., Kramer, R. W., and Hatcher, P. G.:
Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram,
Anal. Chem.,
75, 5336–5344, https://doi.org/10.1021/ac034415p, 2003.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.:
Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,
J. Geophys. Res.-Atmos.,
109, D21208, https://doi.org/10.1029/2004jd004999, 2004.
Kirillova, E. N., Andersson, A., Han, J., Lee, M., and Gustafsson, Ö.: Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China, Atmos. Chem. Phys., 14, 1413–1422, https://doi.org/10.5194/acp-14-1413-2014, 2014.
Koch, B. P. and Dittmar, T.:
From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter,
Rapid Commun. Mass Sp.,
20, 926–932, https://doi.org/10.1002/rcm.2386, 2006.
Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Erratum, Rapid Commun. Mass Sp., 30, 250–250, https://doi.org/10.1002/rcm.7433, 2016.
Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and Tranvik, L. J.:
Inner filter correction of dissolved organic matter fluorescence,
Limnol. Oceanogr.-Meth.,
11, 616–630, https://doi.org/10.4319/Iom.2013.11.616, 2013.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.:
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol,
Nat. Chem.,
3, 133–139, https://doi.org/10.1038/nchem.948, 2011.
Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry, Environ. Sci. Technol., 43, 3764–3771, https://doi.org/10.1021/es803456n, 2009.
Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Chemistry of Atmospheric Brown Carbon,
Chem. Rev.,
115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lawaetz, A. J. and Stedmon, C. A.:
Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water,
Appl. Spectrosc.,
63, 936–940, https://doi.org/10.1366/000370209788964548, 2009.
Legrand, M., Preunkert, S., Jourdain, B., Guilhermet, J., Faïn, X., Alekhina, I., and Petit, J. R.: Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance, Clim. Past, 9, 2195–2211, https://doi.org/10.5194/cp-9-2195-2013, 2013.
Lin, P., Engling, G., and Yu, J. Z.: Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China, Atmos. Chem. Phys., 10, 6487–6500, https://doi.org/10.5194/acp-10-6487-2010, 2010.
Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.:
Elemental composition of HULIS in the Pearl River Delta Region, China: results inferred from positive and negative electrospray high resolution mass spectrometric data,
Environ. Sci. Technol.,
46, 7454–7462, https://doi.org/10.1021/es300285d, 2012.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.:
Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles,
Environ. Sci. Technol.,
50, 11815–11824, https://doi.org/10.1021/acs.est.6b03024, 2016.
Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.:
Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization,
Anal. Chem.,
90, 12493–12502, https://doi.org/10.1021/acs.analchem.8b02177, 2018.
Liu, Y. Q., Yao, T. D., Jiao, N. Z., Kang, S. C., Xu, B. Q., Zeng, Y. H., Huang, S. J., and Liu, X. B.:
Bacterial diversity in the snow over Tibetan Plateau Glaciers,
Extremophiles,
13, 411–423, https://doi.org/10.1007/s00792-009-0227-5, 2009.
Lobodin, V. V., Marshall, A. G., and Hsu, C. S.:
Compositional Space Boundaries for Organic Compounds,
Anal. Chem.,
84, 3410–3416, https://doi.org/10.1021/ac300244f, 2012.
Lu, Y., Li, X., Mesfioui, R., Bauer, J. E., Chambers, R. M., Canuel, E. A., and Hatcher, P. G.:
Use of ESI-FTICR-MS to Characterize Dissolved Organic Matter in Headwater Streams Draining Forest-Dominated and Pasture-Dominated Watersheds,
Plos One,
10, e0145639, https://doi.org/10.1371/journal.pone.0145639, 2015.
Lu, Z., Streets, D. G., Winijkul, E., Yan, F., Chen, Y., Bond, T. C., Feng, Y., Dubey, M. K., Liu, S., Pinto, J. P., and Carmichael, G. R.:
Light absorption properties and radiative effects of primary organic aerosol emissions,
Environ. Sci. Technol.,
49, 4868–4877, https://doi.org/10.1021/acs.est.5b00211, 2015.
Lutz, S., Anesio, A. M., Villar, S. E. J., and Benning, L. G.:
Variations of algal communities cause darkening of a Greenland glacier,
FEMS Microbiol. Ecol.,
89, 402–414, https://doi.org/10.1111/1574-6941.12351, 2014.
McLafferty, F. W., Tureček, F., and Turecek, F.: Interpretation of mass spectra, University science books, Sausalito, California, 1993.
McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P., Bartels-Rausch, T., Domine, F., Donaldson, D. J., Guzman, M. I., Heger, D., Kahan, T. F., Klán, P., Masclin, S., Toubin, C., and Voisin, D.: Organics in environmental ices: sources, chemistry, and impacts, Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012, 2012.
Mead, R. N., Felix, J. D., Avery, G. B., Kieber, R. J., Willey, J. D., and Podgorski, D. C.:
Characterization of CHOS compounds in rainwater from continental and coastal storms by ultrahigh resolution mass spectrometry,
Atmos. Environ.,
105, 162–168, https://doi.org/10.1016/j.atmosenv.2015.01.057, 2015.
Mladenov, N., Alados-Arboledas, L., Olmo, F. J., Lyamani, H., Delgado, A., Molina, A., and Reche, I.:
Applications of optical spectroscopy and stable isotope analyses to organic aerosol source discrimination in an urban area,
Atmos. Environ.,
45, 1960–1969, https://doi.org/10.1016/j.atmosenv.2011.01.029, 2011.
Mladenov, N., Williams, M. W., Schmidt, S. K., and Cawley, K.: Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains, Biogeosciences, 9, 3337–3355, https://doi.org/10.5194/bg-9-3337-2012, 2012.
Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M.:
Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy,
Mar. Chem.,
108, 40–58, https://doi.org/10.1016/j.marchem.2007.10.003, 2008.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.:
Fluorescence spectroscopy and multi-way techniques. PARAFAC,
Anal. Methods-UK,
5, 6557–6566, https://doi.org/10.1039/c3ay41160e, 2013.
Myers, O. D., Sumner, S. J., Li, S., Barnes, S., and Du, X.:
One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks,
Anal. Chem.,
89, 8696–8703, https://doi.org/10.1021/acs.analchem.7b00947, 2017.
Ning, C., Gao, Y., Zhang, H., Yu, H., Wang, L., Geng, N., Cao, R., and Chen, J.:
Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China,
Sci. Total Environ.,
689, 312–321, https://doi.org/10.1016/j.scitotenv.2019.06.418, 2019.
Niu, H. W., Kang, S. C., Lu, X. X., and Shi, X. F.: Distributions and light absorption property of water soluble organic carbon in a typical temperate glacier, southeastern Tibetan Plateau, Tellus B, 70, 1–15, https://doi.org/10.1080/16000889.2018.1468705, 2018.
Nizkorodov, S. A., Laskin, J., and Laskin, A.:
Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry,
Phys. Chem. Chem. Phys.,
13, 3612–3629, https://doi.org/10.1039/c0cp02032j, 2011.
Noziere, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgic, I., Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R., and Wisthaler, A.:
The molecular identification of organic compounds in the atmosphere: state of the art and challenges,
Chem. Rev.,
115, 3919–3983, https://doi.org/10.1021/cr5003485, 2015.
Ohno, T., He, Z., Sleighter, R. L., Honeycutt, C. W., and Hatcher, P. G.:
Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass-derived organic matter fractions,
Environ. Sci. Technol.,
44, 8594–8600, https://doi.org/10.1021/es101089t, 2010.
Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and Udall, B.:
Response of Colorado River runoff to dust radiative forcing in snow,
P. Natl. Acad. Sci. USA,
107, 17125–17130, https://doi.org/10.1073/pnas.0913139107, 2010.
Painter, T. H., Seidel, F. C., Bryant, A. C., McKenzie Skiles, S., and Rittger, K.:
Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow,
J. Geophys. Res.-Atmos.,
118, 9511–9523, https://doi.org/10.1002/jgrd.50520, 2013.
Pluskal, T., Castillo, S., Villar-Briones, A., and Orešič, M.:
MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,
BMC Bioinformatics,
11, 395, https://doi.org/10.1186/1471-2105-11-395, 2010.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Pu, W., Wang, X., Wei, H., Zhou, Y., Shi, J., Hu, Z., Jin, H., and Chen, Q.: Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China, The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, 2017.
Pu, W., Cui, J., Shi, T., Zhang, X., He, C., and Wang, X.: The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China, Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, 2019.
Qi, Y., Fu, P., and Volmer, D. A.: Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications, Mass Spectrom. Rev., https://doi.org/10.1002/mas.21634, in press, 2020.
Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China, Environ. Res. Lett., 9, 064001, https://doi.org/10.1088/1748-9326/9/6/064001, 2014.
Roach, P. J., Laskin, J., and Laskin, A.:
Higher-order mass defect analysis for mass spectra of complex organic mixtures,
Anal. Chem.,
83, 4924–4929, https://doi.org/10.1021/ac200654j, 2011.
Saleh, R.:
From Measurements to Models: Toward Accurate Representation of Brown Carbon in Climate Calculations,
Current Pollution Reports,
6, 90–104, https://doi.org/10.1007/s40726-020-00139-3, 2020.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 3rd Edn., John Wiley & Sons, Hoboken, New Jersey, 2016.
Shi, T., Pu, W., Zhou, Y., Cui, J., Zhang, D., and Wang, X.: Albedo of Black Carbon-Contaminated Snow Across Northwestern China and the Validation With Model Simulation, J. Geophys. Res.-Atmos., 125, e2019JD032065, https://doi.org/10.1029/2019jd032065, 2020.
Shick, J. M. and Dunlap, W. C.:
Mycosporine-like amino acids and related Gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms,
Annu. Rev. Physiol.,
64, 223–262, https://doi.org/10.1146/annurev.physiol.64.081501.155802, 2002.
Siegmann, K. and Sattler, K.:
Formation mechanism for polycyclic aromatic hydrocarbons in methane flames,
J. Chem. Phys.,
112, 698–709, https://doi.org/10.1063/1.480648, 2000.
Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P., Dittmar, T., and Battin, T. J.:
Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate,
Nat. Geosci.,
5, 710–714, https://doi.org/10.1038/NGEO1581, 2012.
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., and Painter, T. H.:
Radiative forcing by light-absorbing particles in snow,
Nat. Clim. Change,
8, 964–971, https://doi.org/10.1038/s41558-018-0296-5, 2018.
Spencer, R. G. M., Guo, W. D., Raymond, P. A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.:
Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau,
Geochim. Cosmochim. Ac.,
142, 64–74, https://doi.org/10.1016/j.gca.2014.08.006, 2014.
Stedmon, C. A. and Markager, S.:
Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis,
Limnol. Oceanogr.,
50, 686–697, https://doi.org/10.4319/lo.2005.50.2.0686, 2005.
Stedmon, C. A. and Bro, R.:
Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial,
Limnol. Oceanogr.-Meth.,
6, 572–579, https://doi.org/10.4319/lom.2008.6.572, 2008.
Stedmon, C. A., Markager, S., and Bro, R.:
Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,
Mar. Chem.,
82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Sun, H. L., Biedermann, L., and Bond, T. C.:
Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol,
Geophys. Res. Lett.,
34, L17813, https://doi.org/10.1029/2007gl029797, 2007.
Toon, O. B., Mckay, C. P., Ackerman, T. P., and Santhanam, K.:
Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple-Scattering Atmospheres,
J. Geophys. Res.-Atmos.,
94, 16287–16301, https://doi.org/10.1029/JD094iD13p16287, 1989.
Voisin, D., Jaffrezo, J. L., Houdier, S., Barret, M., Cozic, J., King, M. D., France, J. L., Reay, H. J., Grannas, A., Kos, G., Ariya, P. A., Beine, H. J., and Domine, F.:
Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow,
J. Geophys. Res.-Atmos.,
117, D00r19, https://doi.org/10.1029/2011jd016612, 2012.
Wang, K., Zhang, Y., Huang, R.-J., Cao, J., and Hoffmann, T.:
UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing),
Atmos. Environ.,
189, 22–29, https://doi.org/10.1016/j.atmosenv.2018.06.036, 2018.
Wang, X., Doherty, S. J., and Huang, J.:
Black carbon and other light-absorbing impurities in snow across Northern China,
J. Geophys. Res.-Atmos.,
118, 1471–1492, https://doi.org/10.1029/2012JD018291, 2013.
Wang, X., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C., Emmelin, C., Chen, J., George, C., and Wang, L.:
Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry,
J. Geophys. Res.-Atmos.,
122, 11703–11722, https://doi.org/10.1002/2017jd026930, 2017a.
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, 2017b.
Wang, X., Hayeck, N., Brüggemann, M., Abis, L., Riva, M., Lu, Y., Wang, B., Chen, J., George, C., and Wang, L.: Chemical characteristics and brown carbon chromophores of atmospheric organic aerosols over the Yangtze River channel: a cruise campaign, J. Geophys. Res.-Atmos., 125, e2020JD032497, https://doi.org/10.1029/2020jd032497, 2020a.
Wang, X., Zhang, X., and Di, W.: Development of an improved two-sphere integration technique for quantifying black carbon concentrations in the atmosphere and seasonal snow, Atmos. Meas. Tech., 13, 39–52, https://doi.org/10.5194/amt-13-39-2020, 2020b.
Wiscombe, W. J. and Warren, S. G.:
A Model for the Spectral Albedo of Snow. I: Pure Snow,
J. Atmos. Sci.,
37, 2712–2733, https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2, 1980.
Wu, C., Yang, J., Fu, Q., Zhu, B., Ruan, T., and Jiang, G.:
Molecular characterization of water-soluble organic compounds in PM2.5 using ultrahigh resolution mass spectrometry,
Sci. Total Environ.,
668, 917–924, https://doi.org/10.1016/j.scitotenv.2019.03.031, 2019.
Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E. A., Pradhan, B. B., Dangol, P. M., Panday, A. K., Wan, X., Bai, Z., Kang, S., Zhang, Q., and Cong, Z.:
Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia,
Environ. Sci. Technol.,
53, 3471–3479, https://doi.org/10.1021/acs.est.9b00596, 2019.
Wu, G., Wan, X., Ram, K., Li, P., Liu, B., Yin, Y., Fu, P., Loewen, M., Gao, S., Kang, S., Kawamura, K., Wang, Y., and Cong, Z.:
Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau,
Environ. Pollut.,
257, 113616, https://doi.org/10.1016/j.envpol.2019.113616, 2020.
Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin, A., and Cong, Z.:
Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol,
Environ. Pollut.,
268, 115906, https://doi.org/10.1016/j.envpol.2020.115906, 2021.
Xie, Q., Su, S., Chen, S., Zhang, Q., Yue, S., Zhao, W., Du, H., Ren, H., Wei, L., Dong, C., Xu, Y., Sun, Y., Wang, Z., and Fu, P.: Molecular Characterization of Size-Segregated Organic Aerosols in the Urban Boundary Layer in Wintertime Beijing by FT-ICR MS, Faraday Discuss., 226, 457, https://doi.org/10.1039/d0fd00084a, 2021.
Xu, C., Chen, Y., Yang, Y., Hao, X., and Shen, Y.:
Hydrology and water resources variation and its response to regional climate change in Xinjiang,
J. Geogr. Sci.,
20, 599–612, https://doi.org/10.1007/s11442-010-0599-6, 2010.
Yan, F., Kang, S., Li, C., Zhang, Y., Qin, X., Li, Y., Zhang, X., Hu, Z., Chen, P., Li, X., Qu, B., and Sillanpää, M.: Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau, The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, 2016.
Yang, W., Han, C., Yang, H., and Xue, X.:
Significant HONO formation by the photolysis of nitrates in the presence of humic acids,
Environ. Pollut.,
243, 679–686, https://doi.org/10.1016/j.envpol.2018.09.039, 2018.
Ye, H., Zhang, R. D., Shi, J. S., Huang, J. P., Warren, S. G., and Fu, Q.:
Black carbon in seasonal snow across northern Xinjiang in northwestern China,
Environ. Res. Lett.,
7, 044002, https://doi.org/10.1088/1748-9326/7/4/044002, 2012.
Zatko, M. C., Grenfell, T. C., Alexander, B., Doherty, S. J., Thomas, J. L., and Yang, X.: The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets, Atmos. Chem. Phys., 13, 3547–3567, https://doi.org/10.5194/acp-13-3547-2013, 2013.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Zhang, Y., Kang, S., Gao, T., Schmale, J., Liu, Y., Zhang, W., Guo, J., Du, W., Hu, Z., Cui, X., and Sillanpaa, M.:
Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties,
Sci. Total Environ.,
647, 1385–1397, https://doi.org/10.1016/j.scitotenv.2018.07.417, 2019.
Zhang, Y., Kang, S., Gao, T., Sprenger, M., Dou, T., Han, W., Zhang, Q., Sun, S., Du, W., Chen, P., Guo, J., Cui, X., and Sillanpää, M.:
Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability,
Tellus B,
72, 1–19, https://doi.org/10.1080/16000889.2020.1778968, 2020.
Zhang, Y. L., Zhang, E. L., Yin, Y., van Dijk, M. A., Feng, L. Q., Shi, Z. Q., Liu, M. L., and Qin, B. Q.:
Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude,
Limnol. Oceanogr.,
55, 2645–2659, https://doi.org/10.4319/lo.2010.55.6.2645, 2010.
Zhang, Y.-L., El-Haddad, I., Huang, R.-J., Ho, K.-F., Cao, J.-J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Slowik, J. G., Salazar, G., Prévôt, A. S. H., and Szidat, S.: Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China, Atmos. Chem. Phys., 18, 4005–4017, https://doi.org/10.5194/acp-18-4005-2018, 2018.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Zhao, Y., Song, K., Wen, Z., Li, L., Zang, S., Shao, T., Li, S., and Du, J.: Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation–emission matrix fluorescence and parallel factor analysis (EEM–PARAFAC), Biogeosciences, 13, 1635–1645, https://doi.org/10.5194/bg-13-1635-2016, 2016.
Zhou, L., Zhou, Y., Hu, Y., Cai, J., Liu, X., Bai, C., Tang, X., Zhang, Y., Jang, K. S., Spencer, R. G. M., and Jeppesen, E.:
Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau,
Water Res.,
160, 18–28, https://doi.org/10.1016/j.watres.2019.05.048, 2019.
Zhou, Y., Wen, H., Liu, J., Pu, W., Chen, Q., and Wang, X.: The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China, The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, 2019a.
Zhou, Y., Zhou, L., He, X., Jang, K. S., Yao, X., Hu, Y., Zhang, Y., Li, X., Spencer, R. G. M., Brookes, J. D., and Jeppesen, E.:
Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau,
Environ. Sci. Technol.,
53, 12207–12217, https://doi.org/10.1021/acs.est.9b03348, 2019b.
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal...
Altmetrics
Final-revised paper
Preprint