Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soot PCF: pore condensation and freezing framework for soot aggregates
Claudia Marcolli
CORRESPONDING AUTHOR
Institute for Atmospheric
and Climate Science, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Fabian Mahrt
Department of Chemistry, University of British Columbia, 2036 Main
Mall, Vancouver, BC, V6T 1Z1, Canada
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232
Villigen, Switzerland
Bernd Kärcher
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR Oberpfaffenhofen), 82234 Weßling, Germany
Related authors
Nadia Shardt, Florin N. Isenrich, Julia Nette, Christopher Dreimol, Ning Ma, Zamin A. Kanji, Andrew J. deMello, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2958, https://doi.org/10.5194/egusphere-2025-2958, 2025
Short summary
Short summary
In the atmosphere, minerals suspended in cloud droplets promote the formation of ice. We investigated ice formation in the presence of pure and binary mixtures of common minerals using a microfluidic device. The mineral with the best ability to initiate ice formation alone (that is, at the highest temperature) typically determined when ice formed in the binary mixture.
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025, https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary
Short summary
We analyzed the ability of silver iodide particles (a commonly used cloud-seeding agent) to form ice crystals in naturally occurring liquid clouds at −5 to −8 °C and found that only ≈ 0.1 %−1 % of particles nucleate ice, with a negative dependence on temperature. By contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments, which also helps to inform future cloud-seeding projects.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025, https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Short summary
We model the cloud condensation nuclei (CCN) activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants, and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updraughts.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Nadia Shardt, Florin N. Isenrich, Julia Nette, Christopher Dreimol, Ning Ma, Zamin A. Kanji, Andrew J. deMello, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2958, https://doi.org/10.5194/egusphere-2025-2958, 2025
Short summary
Short summary
In the atmosphere, minerals suspended in cloud droplets promote the formation of ice. We investigated ice formation in the presence of pure and binary mixtures of common minerals using a microfluidic device. The mineral with the best ability to initiate ice formation alone (that is, at the highest temperature) typically determined when ice formed in the binary mixture.
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025, https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary
Short summary
We analyzed the ability of silver iodide particles (a commonly used cloud-seeding agent) to form ice crystals in naturally occurring liquid clouds at −5 to −8 °C and found that only ≈ 0.1 %−1 % of particles nucleate ice, with a negative dependence on temperature. By contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments, which also helps to inform future cloud-seeding projects.
Joel Ponsonby, Roger Teoh, Bernd Kärcher, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1717, https://doi.org/10.5194/egusphere-2025-1717, 2025
Short summary
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact comparable to that of aviation’s CO2 emissions. We show that emissions of volatile particulate matter – from fuel sulphur, unburned fuel, and lubrication oil – can increase the number of ice particles formed within a contrail, and therefore have an important role in the climate impacts of aviation. This has implications for emissions regulation and climate mitigation strategies.
Kai Lyu, Xiaohong Liu, and Bernd Kärcher
EGUsphere, https://doi.org/10.5194/egusphere-2024-4144, https://doi.org/10.5194/egusphere-2024-4144, 2025
Short summary
Short summary
Two nucleation schemes are used to study ice nucleation, focusing on three ice sources: mountains, turbulence and anvils. Ice from mountains is concentrated in mid- and high-latitudes, while ice from turbulence and anvils is more common in low and mid-latitudes. Both schemes simulate orographic cirrus clouds, with mountain ice as the dominant source. The schemes differ in how they handle ice source competition, causing turbulence and anvils to influence clouds differently.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025, https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Short summary
We model the cloud condensation nuclei (CCN) activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants, and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updraughts.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023, https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Cited articles
Adachi, K., Chung, S. H., Friedrich, H., and Buseck, P. R.: Fractal
parameters of individual soot particles determined using electron
tomography: Implications for optical properties,
J. Geophys. Res.-Atmos., 112, D14202, https://doi.org/10.1029/2006jd008296, 2007.
Afrassiabian, Z., Leturia, M., Benali, M., Guessasma, M., and Saleh, K.: An
overview of the role of capillary condensation in wet caking of powders,
Chem. Eng. Res. Des., 110, 245–254, https://doi.org/10.1016/j.cherd.2016.03.020, 2016.
Alcala-Jornod, C., van den Bergh, H., and Rossi, M. J.: Reactivity of NO2 and H2O on soot generated in the laboratory: a diffusion tube study at ambient temperature, Phys. Chem. Chem. Phys., 2, 5584–5593,
https://doi.org/10.1039/B007235O, 2000.
Amann, C. A. and Siegla, D. C.: Diesel Particulates – What They Are and Why,
Aerosol Sci. Tech., 1, 73–101, https://doi.org/10.1080/02786828208958580, 1981.
Amaya, A. J. and Wyslouzil, B. E.: Ice nucleation rates near ∼ 225 K, J. Chem. Phys., 148, 084501, https://doi.org/10.1063/1.5019362, 2018.
Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet,
D., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous production of
nitrous acid on soot in polluted air masses, Nature, 395, 157–160,
https://doi.org/10.1038/25965, 1998.
Anderson, P. M., Guo, H. Q., and Sunderland, P. B.: Repeatability and
reproducibility of TEM soot primary particle size measurements and
comparison of automated methods, J. Aerosol Sci., 114, 317–326,
https://doi.org/10.1016/j.jaerosci.2017.10.002, 2017.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Atiku, F. A., Mitchell, E. J. S., Lea-Langton, A. R., Jones, J. M.,
Williams, A., and Bartle, K. D.: The Impact of Fuel Properties on the
Composition of Soot Produced by the Combustion of Residential Solid Fuels in
a Domestic Stove, Fuel Process. Technol., 151, 117–125,
https://doi.org/10.1016/j.fuproc.2016.05.032, 2016.
Baldelli, A., Trivanovic, U., and Rogak, S. N.: Electron tomography of soot
for validation of 2D image processing and observation of new structural
features, Aerosol Sci. Tech., 53, 575–582,
https://doi.org/10.1080/02786826.2019.1578860, 2019.
Bartell, L. S. and Chushak, Y. G.: Nucleation of Ice in Large Water
Clusters: Experiment and Simulation, in: Water in Confining Geometries,
edited by: Buch, V. and Devlin, J. P., Springer, Berlin,
Heidelberg, Germany, 399–424, https://doi.org/10.1007/978-3-662-05231-0_17, 2003.
Bérubé, K. A., Jones, T. P., Williamson, B. J., Winters, C., Morgan,
A. J., and Richards, R. J.: Physicochemical characterisation of diesel
exhaust particles: Factors for assessing biological activity, Atmos.
Environ., 33, 1599–1614, https://doi.org/10.1016/S1352-2310(98)00384-7, 1999.
Bescond, A., Yon, J., Ouf, F. X., Ferry, D., Delhaye, D., Gaffie, D.,
Coppalle, A., and Roze, C.: Automated Determination of Aggregate Primary
Particle Size Distribution by TEM Image Analysis: Application to Soot,
Aerosol Sci. Tech., 48, 831–841,
https://doi.org/10.1080/02786826.2014.932896, 2014.
Bhandari, J., China, S., Chandrakar, K. K., Kinney, G., Cantrell, W., Shaw,
R. A., Mazzoleni, L. R., Girotto, G., Sharma, N., Gorkowski, K., Gilardoni,
S., Decesari, S., Facchini, M. C., Zanca, N., Pavese, G., Esposito, F.,
Dubey, M. K., Aiken, A. C., Chakrabarty, R. K., Moosmüller, H., Onasch,
T. B., Zaveri, R. A., Scarnato, B. V., Fialho, P., and Mazzoleni, C.:
Extensive Soot Compaction by Cloud Processing from Laboratory and Field
Observations, Sci. Rep.-UK, 9, 11824,
https://doi.org/10.1038/s41598-019-48143-y, 2019.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bové, H., Bongaerts, E., Slenders, E., Bijnens, E. M., Saenen, N. D.,
Gyselaers, W., Eyken, P. V., Plusquin, M., Roeffaers, M. B. J., Ameloot, M.,
and Nawrot, T. S.: Ambient black carbon particles reach the fetal side of
human placenta, Nat. Commun., 10, 3866,
https://doi.org/10.1038/s41467-019-11654-3, 2019.
Brasil, A. M., Farias, T. L., and Carvalho, M. G.: A Recipe for image
characterization of fractal-like aggregates, J. Aerosol Sci., 30,
1379–1389, https://doi.org/10.1016/S0021-8502(99)00026-9, 1999.
Brasil, A. M., Farias, T. L., and Carvalho, M. G.: Evaluation of the Fractal
Properties of Cluster Cluster Aggregates, Aerosol Sci. Tech., 33,
440–454, https://doi.org/10.1080/02786820050204682, 2000.
Burtscher, H.: Physical characterization of particulate emissions from
diesel engines: a review, J. Aerosol Sci., 36, 896–932,
https://doi.org/10.1016/j.jaerosci.2004.12.001, 2005.
China, S., Kulkarni, G., Scarnato, B. V., Sharma, N., Pekour, M., Shilling,
J. E., Wilson, J., Zelenyuk, A., Chand, D., Liu, S., Aiken, A. C., Dubey,
M., Laskin, A., Zaveri, R. A., and Mazzoleni, C.: Morphology of diesel
soot residuals from supercooled water droplets and ice crystals:
implications for optical properties, Environ. Res. Lett., 10, 114010, https://doi.org/10.1088/1748-9326/10/11/114010,
2015.
Chou, C., Kanji, Z. A., Stetzer, O., Tritscher, T., Chirico, R., Heringa, M. F., Weingartner, E., Prévôt, A. S. H., Baltensperger, U., and Lohmann, U.: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles, Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, 2013.
Christenson, H. K.: Two-step crystal nucleation via capillary condensation,
Crystengcomm, 15, 2030–2039, https://doi.org/10.1039/c3ce26887j, 2013.
Clague, A. D. H., Donnet, J., Wang, T. K., and Peng, J. C. M.: A comparison
of diesel engine soot with carbon black, Carbon, 37, 1553–1565,
https://doi.org/10.1016/s0008-6223(99)00035-4, 1999.
Colbeck, I., Appleby, L., Hardman, E. J., and Harrison, R. M.: The optical
properties and morphology of cloud-processed carbonaceous smoke, J. Aerosol
Sci., 21, 527–538, https://doi.org/10.1016/0021-8502(90)90129-L, 1990.
Cortés, D., Morán, J., Liu, F., Escudero, F., Consalvi, J.-L., and
Fuentes, A.: Effect of Fuels and Oxygen Indices on the Morphology of Soot
Generated in Laminar Coflow Diffusion Flames, Energ. Fuel., 32,
11802–11813, https://doi.org/10.1021/acs.energyfuels.8b01301, 2018.
Crawford, I., Möhler, O., Schnaiter, M., Saathoff, H., Liu, D., McMeeking, G., Linke, C., Flynn, M., Bower, K. N., Connolly, P. J., Gallagher, M. W., and Coe, H.: Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements, Atmos. Chem. Phys., 11, 9549–9561, https://doi.org/10.5194/acp-11-9549-2011, 2011.
Cziczo, D. J. and Froyd, K. D.: Sampling the composition of cirrus ice
residuals, Atmos. Res., 142, 15–31,
https://doi.org/10.1016/j.atmosres.2013.06.012, 2014.
Cziczo, D. J., Thomson, D. S., Thompson, T. L., DeMott, P. J., and Murphy, D.
M.: Particle analysis by laser mass spectrometry (PALMS) studies of ice
nuclei and other low number density particles, Int. J. Mass Spectrom.,
258, 21–29, https://doi.org/10.1016/j.ijms.2006.05.013, 2006.
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M.
A., Smith, J. B., Twohy, C. H., and Murphy, D. M.: Clarifying the Dominant
Sources and Mechanisms of Cirrus Cloud Formation, Science, 340,
1320–1324, https://doi.org/10.1126/science.1234145, 2013.
Dastanpour, R. and Rogak, S. N.: Observations of a Correlation Between
Primary Particle and Aggregate Size for Soot Particles, Aerosol Sci. Tech., 48, 1043–1049, https://doi.org/10.1080/02786826.2014.955565, 2014.
Dastanpour, R., Boone, J. M., and Rogak, S. N.: Automated primary particle
sizing of nanoparticle aggregates by TEM image analysis, Powder Technol.,
295, 218–224, https://doi.org/10.1016/j.powtec.2016.03.027, 2016.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y. Q., Sirkin, Y. A. P.,
Molinero, V., Mahrt, F., Bruhwiler, D., Lohmann, U., and Kanji, Z. A.: Pore
condensation and freezing is responsible for ice formation below water
saturation for porous particles, P. Natl. Acad. Sci. USA, 116,
8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019.
David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The role of contact angle and pore width on pore condensation and freezing, Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, 2020.
de Gennes, P. G.: Wetting: statics and dynamics, Rev. Mod. Phys., 57,
827–863, https://doi.org/10.1103/RevModPhys.57.827, 1985.
Delhaye, D., Ouf, F.-X., Ferry, D., Ortega, I. K., Penanhoat, O., Peillon,
S., Salm, F., Vancassel, X., Focsa, C., Irimiea, C., Harivel, N., Perez, B.,
Quinton, E., Yon, J., and Gaffie, D.: The MERMOSE project: Characterization
of particulate matter emissions of a commercial aircraft engine, J. Aerosol
Sci., 105, 48–63, https://doi.org/10.1016/j.jaerosci.2016.11.018, 2017.
DeMott, P. J.: An Exploratory Study of Ice Nucleation by Soot Aerosols,
J. Appl. Meteorol., 29, 1072–1079,
https://doi.org/10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2, 1990.
DeMott, P. J., Chen, Y., Kreidenweis, S. M., Rogers, D. C., and Sherman, D.
E.: Ice formation by black carbon particles, Geophys. Res. Lett., 26,
2429–2432, https://doi.org/10.1029/1999GL900580, 1999.
DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
Diehl, K. and Mitra, S. K.: A laboratory study of the effects of a
kerosene-burner exhaust on ice nucleation and the evaporation rate of ice
crystals, Atmos. Environ., 32, 3145–3151,
https://doi.org/10.1016/s1352-2310(97)00467-6, 1998.
Ding, S., Zhao, D., He, C., Huang, M., He, H., Tian, P., Liu, Q., Bi, K.,
Yu, C., Pitt, J., Chen, Y., Ma, X., Chen, Y., Jia, X., Kong, S., Wu, J., Hu,
D., Hu, K., Ding, D., and Liu, D.: Observed Interactions Between Black Carbon
and Hydrometeor During Wet Scavenging in Mixed-Phase Clouds, Geophys. Res.
Lett., 46, 8453–8463, https://doi.org/10.1029/2019GL083171, 2019.
Dubinin, M. M.: Water-vapor adsorption and the microporous structures of
carbonaceous adsorbents, Carbon, 18, 355–364,
https://doi.org/10.1016/0008-6223(80)90007-x, 1980.
Dymarska, M., Murray, B. J., Sun, L. M., Eastwood, M. L., Knopf, D. A., and
Bertram, A. K.: Deposition ice nucleation on soot at temperatures relevant
for the lower troposphere, J. Geophys. Res.-Atmos., 111, D04204,
https://doi.org/10.1029/2005jd006627, 2006.
Farkas, L.: Keimbildungsgeschwindigkeit in übersättigten Dämpfen
(The speed of germinitive formation in over saturated vapours), Z. Phys. Chem.-Stoch. Ve., 125, 236–242, 1927.
Feng, J. and Rothstein, J. P.: Simulations of novel nanostructures formed by
capillary effects in lithography, J. Colloid Interf. Sci., 354,
386–395, https://doi.org/10.1016/j.jcis.2010.10.030, 2011.
Ferraro, G., Fratini, E., Rausa, R., Fiaschi, P., and Baglioni, P.:
Multiscale Characterization of Some Commercial Carbon Blacks and Diesel
Engine Soot, Energ. Fuel., 30, 9859–9866,
https://doi.org/10.1021/acs.energyfuels.6b01740, 2016.
Fisher, L. R., Gamble, R. A., and Middlehurst, J.: The Kelvin equation and
the capillary condensation of water, Nature, 290, 575–576,
https://doi.org/10.1038/290575a0, 1981.
Fletcher, N. H.: Ice crystal nucleation by aerosol particles,
Discuss. Faraday Soc., 30, 39–45, https://doi.org/10.1039/DF9603000039, 1960.
Fowkes, F. M. and Harkins, W. D.: The state of monolayers adsorbed at the
interface solid-aqueous solution, J. Am. Chem. Soc., 62, 3377–3386,
https://doi.org/10.1021/ja01869a029, 1940.
Friedman, B., Kulkarni, G., Beranek, J., Zelenyuk, A., Thornton, J. A., and
Cziczo, D. J.: Ice nucleation and droplet formation by bare and coated soot
particles, J. Geophys. Res.-Atmos., 116, D17203,
https://doi.org/10.1029/2011jd015999, 2011.
Fukuta, N.: Activation of Atmospheric Particles as Ice Nuclei in Cold and
Dry Air, J. Atmos. Sci., 23, 741–750,
https://doi.org/10.1175/1520-0469(1966)023<0741:aoapai>2.0.co;2, 1966.
Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
Gelman Constantin, J., Gianetti, M. M., Longinotti, M. P., and Corti, H. R.: The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies, Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, 2018.
Gettelman, A. and Chen, C.: The climate impact of aviation aerosols,
Geophys. Res. Lett., 40, 2785–2789, https://doi.org/10.1002/grl.50520, 2013.
Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate
impacts of ice nucleation, J. Geophys. Res.-Atmos., 117, D20201,
https://doi.org/10.1029/2012jd017950, 2012.
Gibbs, J. W.: On the equilibrium of heterogeneous substances, The Academy, New Haven, Connecticut, USA, pp. 108–248, 1875.
Gladkikh, M. and Bryant, S.: Prediction of interfacial areas during
imbibition in simple porous media, Adv. Water Resour., 26, 609–622,
https://doi.org/10.1016/S0309-1708(03)00034-4, 2003.
Gorbunov, B., Baklanov, A., Kakutkina, N., Toumi, R., and Windsor, H. L.: Ice
nucleation on soot particles, J. Aerosol Sci., 29, 1055–1056,
https://doi.org/10.1016/S0021-8502(98)90710-8, 1998.
Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H. L., and Toumi, R.: Ice
nucleation on soot particles, J. Aerosol Sci., 32, 199–215,
https://doi.org/10.1016/S0021-8502(00)00077-X, 2001.
Grishin, I., Thomson, K., Migliorini, F., and Sloan, J. J.: Application of
the Hough transform for the automatic determination of soot aggregate
morphology, Appl. Optics, 51, 610–620,
https://doi.org/10.1364/AO.51.000610, 2012.
Gysel, M., Nyeki, S., Weingartner, E., Baltensperger, U., Giebl, H.,
Hitzenberger, R., Petzold, A., and Wilson, C. W.: Properties of jet engine
combustion particles during the PartEmis experiment: Hygroscopicity at
subsaturated conditions, Geophys. Res. Lett., 30, 1566,
https://doi.org/10.1029/2003GL016896, 2003.
Hagen, D. E., Whitefield, P. D., and Schlager, H.: Particulate emissions in
the exhaust plume from commercial jet aircraft under cruise conditions, J. Geophys. Res.-Atmos., 101, 19551–19557, https://doi.org/10.1029/95JD03276, 1996.
Han, C., Liu, Y. C., Liu, C., Ma, J. Z., and He, H.: Influence of Combustion
Conditions on Hydrophilic Properties and Microstructure of Flame Soot,
J. Phys. Chem. A, 116, 4129–4136, https://doi.org/10.1021/jp301041w, 2012.
Harris, S. J. and Maricq, M. M.: Signature size distributions for diesel and
gasoline engine exhaust particulate matter, J. Aerosol Sci., 32,
749–764, https://doi.org/10.1016/S0021-8502(00)00111-7, 2001.
Harris, S. J. and Maricq, M. M.: The role of fragmentation in defining the
signature size distribution of diesel soot, J. Aerosol Sci., 33,
935–942, https://doi.org/10.1016/S0021-8502(02)00045-9, 2002.
Hendricks, J., Kärcher, B., Lohmann, U., and Ponater, M.: Do aircraft
black carbon emissions affect cirrus clouds on the global scale?, Geophys.
Res. Lett., 32, L12814, https://doi.org/10.1029/2005GL022740, 2005.
Herndon, S. C., Jayne, J. T., Lobo, P., Onasch, T. B., Fleming, G., Hagen,
D. E., Whitefield, P. D., and Miake-Lye, R. C.: Commercial Aircraft Engine
Emissions Characterization of in-Use Aircraft at Hartsfield-Jackson Atlanta
International Airport, Environ. Sci. Technol., 42, 1877–1883,
https://doi.org/10.1021/es072029+, 2008.
Hess, W. M. and McDonald, G. C.: Improved Particle Size Measurements on
Pigments for Rubber, Rubber Chem. Technol., 56, 892–917,
https://doi.org/10.5254/1.3538171, 1983.
Higuchi, K. and Fukuta, N.: Ice in capillaries of solid particles and its
effect on their nucleating ability, J. Atmos. Sci., 23, 187–190,
https://doi.org/10.1175/1520-0469(1966)023<0187:iitcos>2.0.co;2, 1966.
Hoard, J., Chafekar, T., Abarham, M., Schwader, R., Upplegger, S., and
Styles, D.: Large Particles in Modern Diesel Engine Exhaust, in: ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Piemonte, Italy, 6–9 May 2012, 521–530, https://doi.org/10.1115/ICES2012-81232, 2013.
Hoyle, C. R., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal
Number Densities in Cirrus Clouds, J. Atmos. Sci., 62, 2568–2579,
https://doi.org/10.1175/JAS3487.1, 2005.
Hruby, J., Vins, V., Mares, R., Hykl, J., and Kalova, J.: Surface Tension of
Supercooled Water: No Inflection Point down to −25 ∘C,
J. Phys. Chem. Lett., 5, 425–428, https://doi.org/10.1021/jz402571a, 2014.
Huang, J., Christ, J. A., Goltz, M. N., and Demond, A. H.: Modeling NAPL
dissolution from pendular rings in idealized porous media, Water Resour. Res., 51, 8182–8197, https://doi.org/10.1002/2015WR016924, 2015.
Huang, P. F., Turpin, B. J., Pipho, M. J., Kittelson, D. B., and McMurry, P.
H.: Effects of water condensation and evaporation on diesel
chain-agglomerate morphology, J. Aerosol Sci., 25, 447–459,
https://doi.org/10.1016/0021-8502(94)90063-9, 1994.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
ICAO Report: The World of Air Transport, Annual Report 2018,
available at: https://www.icao.int/annual-report-2018/Pages/default.aspx (last access: 23 April 2020), 2018.
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation theory
of homogeneous freezing of water: thermodynamic and kinetic parameters,
Phys. Chem. Chem. Phys., 17, 5514–5537,
https://doi.org/10.1039/C4CP04184D, 2015.
Ikhenazene, R., Pirim, C., Noble, J. A., Irimiea, C., Carpentier, Y.,
Ortega, I. K., Ouf, F.-X., Focsa, C., and Chazallon, B.: Ice Nucleation
Activities of Carbon-Bearing Materials in Deposition Mode: From Graphite to
Airplane Soot Surrogates, J. Phys. Chem. C, 124, 489–503,
https://doi.org/10.1021/acs.jpcc.9b08715, 2020.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697,
https://doi.org/10.1038/35055518, 2001.
Janssen, N. A. H., Gerlofs-Nijland, M., Lanki, T., Salonen, R. O., Cassee,
F., Hoek, G., Fischer, P., Brunekreef, B., and Krzyzanowski, M.: Health
Effects of Black Carbon, World Health Organization (WHO), Copenhagen, Denmark, available at: http://www.euro.who.int/pubre (last access: 14 April 2020), 2012.
Jantsch, E. and Koop, T.:
Cloud Activation via Formation of Water and Ice on Various Types of Porous Aerosol Particles, ACS Earth and Space Chemistry, 5, 604–617,
https://doi.org/10.1021/acsearthspacechem.0c00330, 2021.
Jensen, E. J., Lawson, R. P., Bergman, J. W., Pfister, L., Bui, T. P., and
Schmitt, C. G.: Physical processes controlling ice concentrations in
synoptically forced, midlatitude cirrus, J. Geophys. Res.-Atmos.,
118, 5348–5360, https://doi.org/10.1002/jgrd.50421, 2013.
Jensen, E. J., Kärcher, B., Ueyama, R., Pfister, L., Bui, T. V., Diskin,
G. S., DiGangi, J. P., Woods, S., Lawson, R. P., Froyd, K. D., and Murphy, D.
M.: Heterogeneous Ice Nucleation in the Tropical Tropopause Layer, J. Geophys. Res.-Atmos., 123, 12210–12227, https://doi.org/10.1029/2018JD028949, 2018.
Kanji, Z. A. and Abbatt, J. P. D.: Laboratory studies of ice formation via
deposition mode nucleation onto mineral dust and n-hexane soot samples, J. Geophys. Res.-Atmos., 111, D16204, https://doi.org/10.1029/2005jd006766, 2006.
Kanji, Z. A., DeMott, P. J., Möhler, O., and Abbatt, J. P. D.: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types, Atmos. Chem. Phys., 11, 31–41, https://doi.org/10.5194/acp-11-31-2011, 2011.
Kanji, Z. A., Welti, A., Corbin, J. C., and Mensah, A. A.: Black Carbon
Particles Do Not Matter for Immersion Mode Ice Nucleation, Geophys. Res.
Lett., 47, e2019GL086764, https://doi.org/10.1029/2019GL086764, 2020.
Kärcher, B.: Cirrus Clouds and Their Response to Anthropogenic
Activities, Curr. Clim. Change Rep., 3, 45–57,
https://doi.org/10.1007/s40641-017-0060-3, 2017.
Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nat.
Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kärcher, B.: Process-Based Simulation of Aerosol-Cloud Interactions in a
One-Dimensional Cirrus Model, J. Geophys. Res.-Atmos., 125,
e2019JD031847, https://doi.org/10.1029/2019JD031847, 2020.
Kärcher, B. and Lohmann, U.: A Parameterization of cirrus cloud
formation: Homogeneous freezing including effects of aerosol size, J. Geophys. Res.-Atmos., 107, 4698, https://doi.org/10.1029/2001JD001429, 2002.
Kärcher, B., Möhler, O., DeMott, P. J., Pechtl, S., and Yu, F.: Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7, 4203–4227, https://doi.org/10.5194/acp-7-4203-2007, 2007.
Kärcher, B., Mahrt, F., and Marcolli C.: Process-oriented analysis of aircraft soot-cirrus interactions constrains the climate impact of aviation, Nat. Comm. Earth Env., in press, 2021.
Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis,
T., Ntziachristos, L., Keskinen, J., and Rönkkö, T.: Exhaust
particles of modern gasoline vehicles: A laboratory and an on-road study,
Atmos. Environ., 97, 262–270,
https://doi.org/10.1016/j.atmosenv.2014.08.025, 2014.
Kelvin, W. T.: Baltimore lectures on molecular dynamics and the wave theory
of light, C. J. Clay and Sons, London, UK, Publication Agency of the
Johns Hopkins University, Baltimore, Maryland, USA,
available at: http://archive.org/details/baltimorelecture00kelviala (last access: 24 April 2020), 1904.
Kienast-Sjögren, E., Miltenberger, A. K., Luo, B. P., and Peter, T.: Sensitivities of Lagrangian modelling of mid-latitude cirrus clouds to trajectory data quality, Atmos. Chem. Phys., 15, 7429–7447, https://doi.org/10.5194/acp-15-7429-2015, 2015.
Kim, W., Kim, S. H., Lee, D. W., Lee, S., Lim, C. S., and Ryu, J. H.: Size
Analysis of Automobile Soot Particles Using Field-Flow Fractionation,
Environ. Sci. Technol., 35, 1005–1012, https://doi.org/10.1021/es001329n, 2001.
Kinsey, J. S., Dong, Y., Williams, D. C., and Logan, R.: Physical
characterization of the fine particle emissions from commercial aircraft
engines during the Aircraft Particle Emissions eXperiment (APEX) 1–3,
Atmos. Environ., 44, 2147–2156, https://doi.org/10.1016/j.atmosenv.2010.02.010, 2010.
Kireeva, E. D., Popovicheva, O. B., Persiantseva, N. M., Khokhlova, T. D.,
and Shonija, N. K.: Effect of black carbon particles on the efficiency of
water droplet freezing, Colloid J.+, 71, 353–359,
https://doi.org/10.1134/s1061933x09030090, 2009.
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A.,
Gerthsen, D., and Leisner, T.: Active sites in heterogeneous ice
nucleation – the example of K-rich feldspars, Science, 355, 367–371,
https://doi.org/10.1126/science.aai8034, 2016.
Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B.,
Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and
Shonija, N. K.: Cloud condensation nuclei and ice nucleation activity of
hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11,
7906–7920, https://doi.org/10.1039/b905334b, 2009.
Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Köylü, Ü. Ö. and Faeth, G. M.: Structure of overfire soot in
buoyant turbulent diffusion flames at long residence times, Combust. Flame,
89, 140–156, https://doi.org/10.1016/0010-2180(92)90024-J, 1992.
Köylü, Ü. Ö., Faeth, G. M., Farias, T. L., and Carvalho, M. G.: Fractal and projected structure properties of soot aggregates, Combust.
Flame, 100, 621–633, https://doi.org/10.1016/0010-2180(94)00147-k, 1995.
Kozbial, A., Zhou, F., Li, Z., Liu, H., and Li, L.: Are Graphitic Surfaces
Hydrophobic?, Accounts Chem. Res., 49, 2765–2773,
https://doi.org/10.1021/acs.accounts.6b00447, 2016.
Kulkarni, G., China, S., Liu, S., Nandasiri, M., Sharma, N., Wilson, J.,
Aiken, A. C., Chand, D., Laskin, A., Mazzoleni, C., Pekour, M., Shilling,
J., Shutthanandan, V., Zelenyuk, A., and Zaveri, R. A.: Ice nucleation
activity of diesel soot particles at cirrus relevant temperature conditions:
Effects of hydration, secondary organics coating, soot morphology, and
coagulation, Geophys. Res. Lett., 43, 3580–3588,
https://doi.org/10.1002/2016GL068707, 2016.
Laksmono, H., McQueen, T. A., Sellberg, J. A., Loh, N. D., Huang, C.,
Schlesinger, D., Sierra, R. G., Hampton, C. Y., Nordlund, D., Beye, M.,
Martin, A. V., Barty, A., Seibert, M. M., Messerschmidt, M., Williams, G.
J., Boutet, S., Amann-Winkel, K., Loerting, T., Pettersson, L. G. M., Bogan,
M. J., and Nilsson, A.: Anomalous Behavior of the Homogeneous Ice Nucleation
Rate in “No-Man's Land”, J. Phys. Chem. Lett., 6, 2826–2832,
https://doi.org/10.1021/acs.jpclett.5b01164, 2015.
Laplace, P. S., Bowditch, N., Bowditch, N. I., and Nathaniel, I.:
Mécanique céleste, Hillard, Gray, Little, and Wilkins, Boston, Massachussetts, USA, available at:
http://archive.org/details/mcaniquecles04laplrich (last access: 24 April 2020), 1829.
Laumbach, R. J. and Kipen, H. M.: Respiratory health effects of air
pollution: Update on biomass smoke and traffic pollution,
J. Allergy Clin. Immun., 129, 3–11, https://doi.org/10.1016/j.jaci.2011.11.021, 2012.
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 117834,
https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
Li, J., Posfai, M., Hobbs, P. V., and Buseck, P. R.: Individual aerosol
particles from biomass burning in southern Africa: 2, Compositions and aging
of inorganic particles, J. Geophys. Res.-Atmos., 108, 8484,
https://doi.org/10.1029/2002jd002310, 2003.
Liang, Y., Jen, C. N., Weber, R. J., Misztal, P. K., and Goldstein, A. H.: Chemical composition of PM2.5 in October 2017 Northern California wildfire plumes, Atmos. Chem. Phys., 21, 5719–5737, https://doi.org/10.5194/acp-21-5719-2021, 2021.
Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva,
Y., Dimopoulos Eggenschwiler, P., and Wang, J.: Electron Microscopic Study of
Soot Particulate Matter Emissions from Aircraft Turbine Engines,
Environ. Sci. Technol., 48, 10975–10983, https://doi.org/10.1021/es501809b, 2014.
Liati, A., Schreiber, D., Alpert, P. A., Liao, Y., Brem, B. T., Corral Arroyo, P., Hu, J., Jonsdottir, H. R., Ammann, M., and Dimopoulos Eggenschwiler, P.: Aircraft soot from conventional fuels and biofuels during
ground idle and climb-out conditions: Electron microscopy and X-ray
micro-spectroscopy, Environ. Pollut., 247, 658–667,
https://doi.org/10.1016/j.envpol.2019.01.078, 2019.
Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P.,
Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X.,
and Li, W.: Morphology, composition, and mixing state of primary particles
from combustion sources – crop residue, wood, and solid waste, Sci. Rep.-UK,
7, 5047, https://doi.org/10.1038/s41598-017-05357-2, 2017.
Lobo, P., Durdina, L., Smallwood, G. J., Rindlisbacher, T., Siegerist, F.,
Black, E. A., Yu, Z., Mensah, A. A., Hagen, D. E., Miake-Lye, R. C.,
Thomson, K. A., Brem, B. T., Corbin, J. C., Abegglen, M., Sierau, B.,
Whitefield, P. D., and Wang, J.: Measurement of Aircraft Engine Non-Volatile
PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation
Demonstration Experiment (A-PRIDE) 4 Campaign, Aerosol Sci. Tech., 49,
472–484, https://doi.org/10.1080/02786826.2015.1047012, 2015.
Lohmann, U.: A glaciation indirect aerosol effect caused by soot aerosols,
Geophys. Res. Lett., 29, 11-1–11-4,
https://doi.org/10.1029/2001GL014357, 2002.
Lohmann, U., Lüönd, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, edn. 1, Cambridge University Press,
Cambridge, UK, 2016.
Lohmann, U., Friebel, F., Kanji, Z. A., Mahrt, F., Mensah, A. A., and
Neubauer, D.: Future warming exacerbated by aged-soot effect on cloud
formation, Nat. Geosci., 13, 674–680,
https://doi.org/10.1038/s41561-020-0631-0, 2020.
Ma, X. F., Zangmeister, C. D., Gigault, J., Mulholland, G. W., and Zachariah,
M. R.: Soot aggregate restructuring during water processing, J. Aerosol
Sci., 66, 209–219, https://doi.org/10.1016/j.jaerosci.2013.08.001, 2013.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, 2018a.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, ETH Library [data set], https://doi.org/10.3929/ethz-b-000286409, 2018b.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O., Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, ETH Library [data set], https://doi.org/10.3929/ethz-b-000340269, 2019.
Mahrt, F., Alpert, P. A., Dou, J., Grönquist, P., Arroyo, P. C., Ammann,
M., Lohmann, U., and Kanji, Z. A.: Aging induced changes in ice nucleation
activity of combustion aerosol as determined by near edge X-ray absorption
fine structure (NEXAFS) spectroscopy, Environ. Sci.-Proc. Imp., 22, 895–907,
https://doi.org/10.1039/C9EM00525K, 2020a.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O.,
Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing
on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, J. Geophys. Res.-Atmos., 125, e2019JD030922,
https://doi.org/10.1029/2019JD030922, 2020b.
Mandelbrot, B. B.: Fractals: form, chance, and dimension, W. H. Freeman, San
Francisco, USA, 1977.
Manka, A., Pathak, H., Tanimura, S., Wölk, J., Strey, R., and Wyslouzil,
B. E.: Freezing water in no-man's land, Phys. Chem. Chem. Phys., 14,
4505–4516, https://doi.org/10.1039/C2CP23116F, 2012.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014.
Marcolli, C.: Ice nucleation triggered by negative pressure, Sci. Rep.-UK,
7, 16634, https://doi.org/10.1038/s41598-017-16787-3, 2017a.
Marcolli, C.: Pre-activation of aerosol particles by ice preserved in pores, Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, 2017b.
Marcolli, C.: Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice, Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, 2020.
Marhaba, I., Ferry, D., Laffon, C., Regier, T. Z., Ouf, F.-X., and Parent,
P.: Aircraft and MiniCAST soot at the nanoscale, Combust. Flame, 204,
278–289, https://doi.org/10.1016/j.combustflame.2019.03.018, 2019.
Martinez-Martin, D., Longuinhos, R., Izquierdo, J. G., Marele, A.,
Alexandre, S. S., Jaafar, M., Gómez-Rodríguez, J. M., Bañares,
L., Soler, J. M., and Gomez-Herrero, J.: Atmospheric contaminants on
graphitic surfaces, Carbon, 61, 33–39,
https://doi.org/10.1016/j.carbon.2013.04.056, 2013.
Masiol, M. and Harrison, R. M.: Aircraft engine exhaust emissions and other
airport-related contributions to ambient air pollution: A review, Atmos.
Environ., 95, 409–455, https://doi.org/10.1016/j.atmosenv.2014.05.070, 2014.
Mason, B. J.: The nature of ice-forming nuclei in the atmosphere,
Q. J. Roy. Meteor. Soc., 76, 59–74, https://doi.org/10.1002/qj.49707632707,
1950.
Mazaheri, M., Johnson, G. R., and Morawska, L.: Particle and Gaseous
Emissions from Commercial Aircraft at Each Stage of the Landing and Takeoff
Cycle, Environ. Sci. Technol., 43, 441–446,
https://doi.org/10.1021/es8013985, 2009.
McGraw, Z., Storelvmo, T., Samset, B., and Stjern, C. W.: Global radiative
impacts of black carbon acting as ice nucleating particles, Geophys. Res.
Lett., 47, e2020GL089056, https://doi.org/10.1029/2020GL089056, 2020.
Meakin, P.: Fractal aggregates, Adv. Colloid Interfac., 28, 249–331,
https://doi.org/10.1016/0001-8686(87)80016-7, 1987.
Megaridis, C. M. and Dobbins, R. A.: Morphological Description of
Flame-Generated Materials, Combust. Sci. Technol., 71, 95–109,
https://doi.org/10.1080/00102209008951626, 1990.
Miljevic, B., Surawski, N. C., Bostrom, T., and Ristovski, Z. D.:
Restructuring of carbonaceous particles upon exposure to organic and water
vapours, J. Aerosol Sci., 47, 48–57,
https://doi.org/10.1016/j.jaerosci.2011.12.005, 2012.
Möhler, O., Büttner, S., Linke, C., Schnaiter, M., Saathoff, H.,
Stetzer, O., Wagner, R., Krämer, M., Mangold, A., Ebert, V., and
Schurath, U.: Effect of sulfuric acid coating on heterogeneous ice
nucleation by soot aerosol particles, J. Geophys. Res.-Atmos.,
110, D11210, https://doi.org/10.1029/2004JD005169, 2005a.
Möhler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R., Mangold,
A., Kramer, M., and Schurath, U.: Ice nucleation on flame soot aerosol of
different organic carbon content, Meteorol. Z., 14, 477–484,
https://doi.org/10.1127/0941-2948/2005/0055, 2005b.
Moore, E. B., Allen, J. T., and Molinero, V.: Liquid-Ice Coexistence below
the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic
Nanopores, J. Phys. Chem. C, 116, 7507–7514,
https://doi.org/10.1021/jp3012409, 2012.
Moore, R. H., Shook, M., Beyersdorf, A., Corr, C., Herndon, S., Knighton, W.
B., Miake-Lye, R., Thornhill, K. L., Winstead, E. L., Yu, Z., Ziemba, L. D.,
and Anderson, B. E.: Influence of Jet Fuel Composition on Aircraft Engine
Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX,
and ACCESS Missions, Energ. Fuel., 29, 2591–2600,
https://doi.org/10.1021/ef502618w, 2015.
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim,
J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick,
J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
D., Shook, M., Slover, G., Voigt, C., White, R., Winstead, E., Yasky, R.,
Ziemba, L. D., Brown, A., Schlager, H., and Anderson, B. E.: Biofuel blending
reduces particle emissions from aircraft engines at cruise conditions,
Nature, 543, 411–415, https://doi.org/10.1038/nature21420, 2017.
Morcos, I.: Surface Tension of Stress-Annealed Pyrolytic Graphite, J. Chem.
Phys., 57, 1801–1802, https://doi.org/10.1063/1.1678482, 1972.
Morishige, K.: Influence of Pore Wall Hydrophobicity on Freezing and Melting
of Confined Water, J. Phys. Chem. C, 122, 5013–5019,
https://doi.org/10.1021/acs.jpcc.8b00538, 2018.
Mossop, S. C.: Sublimation Nuclei, P. Phys. Soc. Lond. B, 69,
161–164, https://doi.org/10.1088/0370-1301/69/2/305, 1956.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H.,
Christenson, H. K., and Murray, E. J.: Kinetics of the homogeneous freezing
of water, Phys. Chem. Chem. Phys., 12, 10380–10387,
https://doi.org/10.1039/C003297B, 2010.
Nenow, D. and Trayanov, A.: Thermodynamics of crystal surfaces with
quasi-liquid layer, J. Cryst. Growth, 79, 801–805,
https://doi.org/10.1016/0022-0248(86)90557-9, 1986.
Nichman, L., Wolf, M., Davidovits, P., Onasch, T. B., Zhang, Y., Worsnop, D. R., Bhandari, J., Mazzoleni, C., and Cziczo, D. J.: Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol, Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, 2019.
Ogren, J. A. and Charlson, R. J.: Elemental carbon in the atmosphere: cycle
and lifetime, Tellus B, 35, 241–254,
https://doi.org/10.3402/tellusb.v35i4.14612, 1983.
Oh, C. and Sorensen, C. M.: The Effect of Overlap between Monomers on the
Determination of Fractal Cluster Morphology, J. Colloid Interf. Sci.,
193, 17–25, https://doi.org/10.1006/jcis.1997.5046, 1997.
Okada, K., Ikegami, M., Uchino, O., Nikaidou, Y., Zaizen, Y., Tsutsumi, Y.,
and Makino, Y.: Extremely high proportions of soot particles in the upper
troposphere over Japan, Geophys. Res. Lett., 19, 921–924,
https://doi.org/10.1029/92GL00487, 1992.
Olfert, J. and Rogak, S.: Universal relations between soot effective density
and primary particle size for common combustion sources, Aerosol Sci. Tech., 53, 485–492, https://doi.org/10.1080/02786826.2019.1577949, 2019.
Olfert, J. S., Dickau, M., Momenimovahed, A., Saffaripour, M., Thomson, K.,
Smallwood, G., Stettler, M. E. J., Boies, A., Sevcenco, Y., Crayford, A., and
Johnson, M.: Effective density and volatility of particles sampled from a
helicopter gas turbine engine, Aerosol Sci. Tech., 51, 704–714,
https://doi.org/10.1080/02786826.2017.1292346, 2017.
Ouf, F. X., Yon, J., Ausset, P., Coppalle, A., and Maillé, M.: Influence
of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by
Transmission Electron Microscopy, Aerosol Sci. Tech., 44, 1005–1017,
https://doi.org/10.1080/02786826.2010.507228, 2010.
Ouf, F. X., Parent, P., Laffon, C., Marhaba, I., Ferry, D., Marcillaud, B.,
Antonsson, E., Benkoula, S., Liu, X. J., Nicolas, C., Robert, E., Patanen,
M., Barreda, F. A., Sublemontier, O., Coppalle, A., Yon, J., Miserque, F.,
Mostefaoui, T., Regier, T. Z., Mitchell, J. A., and Miron, C.: First
in-flight synchrotron X-ray absorption and photoemission study of carbon
soot nanoparticles, Sci. Rep.-UK, 6, 36495, https://doi.org/10.1038/srep36495,
2016.
Ouf, F.-X., Bourrous, S., Vallières, C., Yon, J., and Lintis, L.:
Specific surface area of combustion emitted particles: Impact of primary
particle diameter and organic content, J. Aerosol Sci., 137, 105436,
https://doi.org/10.1016/j.jaerosci.2019.105436, 2019.
Park, K., Kittelson, D. B., and McMurry, P. H.: Structural properties of
diesel exhaust particles measured by transmission electron microscopy (TEM):
Relationships to particle mass and mobility, Aerosol Sci. Tech., 38,
881–889, https://doi.org/10.1080/027868290505189, 2004.
Penner, J. E., Chen, Y., Wang, M., and Liu, X.: Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing, Atmos. Chem. Phys., 9, 879–896, https://doi.org/10.5194/acp-9-879-2009, 2009.
Penner, J. E., Zhou, C., Garnier, A., and Mitchell, D. L.: Anthropogenic
Aerosol Indirect Effects in Cirrus Clouds, J. Geophys. Res.-Atmos.,
123, 11652–11677, https://doi.org/10.1029/2018jd029204, 2018.
Persiantseva, N. M., Popovicheva, O. B., and Shonija, N. K.: Wetting and
hydration of insoluble soot particles in the upper troposphere,
J. Environ. Monitor., 6, 939–945, https://doi.org/10.1039/B407770A, 2004.
Petzold, A., Strom, J., Ohlsson, S., and Schroder, F. P.: Elemental
composition and morphology of ice-crystal residual particles in cirrus
clouds and contrails, Atmos. Res., 49, 21–34,
https://doi.org/10.1016/s0169-8095(97)00083-5, 1998.
Popovicheva, O., Kireeva, E., Persiantseva, N., Khokhlova, T., Shonija, N.,
Tishkova, V., and Demirdjian, B.: Effect of soot on immersion freezing of
water and possible atmospheric implications, Atmos. Res., 90,
326–337, https://doi.org/10.1016/j.atmosres.2008.08.004, 2008a.
Popovicheva, O., Persiantseva, N. M., Shonija, N. K., DeMott, P., Koehler,
K., Petters, M., Kreidenweis, S., Tishkova, V., Demirdjian, B., and Suzanne,
J.: Water interaction with hydrophobic and hydrophilic soot particles, Phys.
Chem. Chem. Phys., 10, 2332–2344, https://doi.org/10.1039/B718944N, 2008b.
Popovitcheva, O. B., Persiantseva, N. M., Trukhin, M. E., Rulev, G. B.,
Shonija, N. K., Buriko, Y. Y., Starik, A. M., Demirdjian, B., Ferry, D., and
Suzanne, J.: Experimental characterization of aircraft combustor soot:
Microstructure, surface area, porosity and water adsorption, Phys. Chem.
Chem. Phys., 2, 4421–4426, https://doi.org/10.1039/b004345l, 2000.
Posfai, M., Simonics, R., Li, J., Hobbs, P. V., and Buseck, P. R.: Individual
aerosol particles from biomass burning in southern Africa: 1. Compositions
and size distributions of carbonaceous particles, J. Geophys. Res.-Atmos., 108, 8483, https://doi.org/10.1029/2002jd002291, 2003.
Pruppacher, H. R. and Klett, D. J.: Microphysics of Clouds and
Precipitation, edn. 2, Kluwer Academic Publishers, Dordrecht, the
Netherlands, 1997.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.
Reddy, M. S. and Boucher, O.: Climate impact of black carbon emitted from
energy consumption in the world's regions, Geophys. Res. Lett., 34, L11802,
https://doi.org/10.1029/2006gl028904, 2007.
Rockne, K. J., Taghon, G. L., and Kosson, D. S.: Pore structure of soot
deposits from several combustion sources, Chemosphere, 41, 1125–1135,
https://doi.org/10.1016/S0045-6535(00)00040-0, 2000.
Roessler, D. M.: Diesel particle mass concentration by optical techniques,
Appl. Optics, 21, 4077–4086, https://doi.org/10.1364/AO.21.004077, 1982.
Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., and Wiedensohler, A.: Atmospheric number size distributions of soot particles and estimation of emission factors, Atmos. Chem. Phys., 6, 1021–1031, https://doi.org/10.5194/acp-6-1021-2006, 2006.
Samson, R. J., Mulholland, G. W., and Gentry, J. W.: Structural-analysis of
soot agglomerates, Langmuir, 3, 272–281,
https://doi.org/10.1021/la00074a022, 1987.
Schill, G. P., Jathar, S. H., Kodros, J. K., Levin, E. J. T., Galang, A. M.,
Friedman, B., Link, M. F., Farmer, D. K., Pierce, J. R., Kreidenweis, S. M.,
and DeMott, P. J.: Ice-nucleating particle emissions from photochemically
aged diesel and biodiesel exhaust, Geophys. Res. Lett., 43, 5524–5531,
https://doi.org/10.1002/2016gl069529, 2016.
Schill, G. P., DeMott, P. J., Emerson, E. W., Rauker, A. M. C., Kodros, J.
K., Suski, K. J., Hill, T. C. J., Levin, E. J. T., Pierce, J. R., Farmer, D.
K., and Kreidenweis, S. M.: The contribution of black carbon to global ice
nucleating particle concentrations relevant to mixed-phase clouds,
P. Natl. Acad. Sci. USA, 117, 22705–22711, https://doi.org/10.1073/pnas.2001674117, 2020a.
Schill, G. P., Froyd, K. D., Bian, H., Kupc, A., Williamson, C., Brock, C.
A., Ray, E., Hornbrook, R. S., Hills, A. J., Apel, E. C., Chin, M., Colarco,
P. R., and Murphy, D. M.: Widespread biomass burning smoke throughout the
remote troposphere, Nat. Geosci., 13, 422–427,
https://doi.org/10.1038/s41561-020-0586-1, 2020b.
Schmidt-Ott, A., Baltensperger, U., Gaggeler, H. W., and Jost, D. T.: Scaling
behavior of physical parameters describing agglomerates, J. Aerosol Sci.,
21, 711–717, https://doi.org/10.1016/0021-8502(90)90037-x, 1990.
Schrader, M. E.: Ultrahigh vacuum techniques in the measurement of contact
angles, IV. Water on graphite (0001), J. Phys. Chem., 79, 2508–2515,
https://doi.org/10.1021/j100590a013, 1975.
Shin, Y. J., Wang, Y., Huang, H., Kalon, G., Wee, A. T. S., Shen, Z.,
Bhatia, C. S., and Yang, H.: Surface-Energy Engineering of Graphene,
Langmuir, 26, 3798–3802, https://doi.org/10.1021/la100231u, 2010.
Smekens, A., Godoi, R. H. M., Berghmans, P., and Van Grieken, R.:
Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars
Using Diesel or Biodiesel, J. Atmos. Chem., 52, 45–62,
https://doi.org/10.1007/s10874-005-6903-7, 2005.
Son, S., Chen, L., Kang, Q., Derome, D., and Carmeliet, J.: Contact Angle
Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied
with the Pseudopotential Multiphase Lattice Boltzmann Model, Computation,
4, 12, https://doi.org/10.3390/computation4010012, 2016.
Sorensen, C. M.: The Mobility of Fractal Aggregates: A Review, Aerosol Sci. Tech., 45, 765–779, https://doi.org/10.1080/02786826.2011.560909, 2011.
Sorensen, C. M., Cai, J., and Lu, N.: Light-scattering measurements of
monomer size, monomers per aggregate, and fractal dimension for soot
aggregates in flames, Appl. Optics, 31, 6547–6557,
https://doi.org/10.1364/AO.31.006547, 1992.
Su, D. S., Müller, J.-O., Jentoft, R. E., Rothe, D., Jacob, E., and
Schlögl, R.: Fullerene-like soot from EuroIV diesel engine: consequences
for catalytic automotive pollution control, Top. Catal., 30, 241–245,
https://doi.org/10.1023/B:TOCA.0000029756.50941.02, 2004.
Sullivan, S. C., Lee, D., Oreopoulos, L., and Nenes, A.: Role of updraft
velocity in temporal variability of global cloud hydrometeor number, P. Natl. Acad. Sci. USA, 113, 5791–5796,
https://doi.org/10.1073/pnas.1514039113, 2016.
Thomson, W. F. R. S.: LX. On the equilibrium of vapour at a curved surface
of liquid, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 448–452, https://doi.org/10.1080/14786447108640606, 1871.
Twohy, C. H. and Gandrud, B. W.: Electron microscope analysis of residual
particles from aircraft contrails, Geophys. Res. Lett., 25, 1359–1362,
https://doi.org/10.1029/97gl03162, 1998.
Ullrich, R., Hoose, C., Möhler, O., Niemand, M., Wagner, R., Höhler,
K., Hiranuma, N., Saathoff, H., and Leisner, T.: A New Ice Nucleation Active
Site Parameterization for Desert Dust and Soot, J. Atmos. Sci., 74,
699–717, https://doi.org/10.1175/jas-d-16-0074.1, 2017.
Umo, N. S., Wagner, R., Ullrich, R., Kiselev, A., Saathoff, H., Weidler, P. G., Cziczo, D. J., Leisner, T., and Möhler, O.: Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores, Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, 2019.
Urso, M. E. D., Lawrence, C. J., and Adams, M. J.: Pendular, Funicular, and
Capillary Bridges: Results for Two Dimensions, J. Colloid Interf. Sci.,
220, 42–56, https://doi.org/10.1006/jcis.1999.6512, 1999.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vargaftik, N. B., Volkov, B. N., and Voljak, L. D.: International tables of
the surface-tension of water, J. Phys. Chem. Ref. Data, 12, 817–820,
1983.
Vergara-Temprado, J., Holden, M. A., Orton, T. R., O'Sullivan, D., Umo, N.
S., Browse, J., Reddington, C., Baeza-Romero, M. T., Jones, J. M.,
Lea-Langton, A., Williams, A., Carslaw, K. S., and Murray, B. J.: Is Black
Carbon an Unimportant Ice-Nucleating Particle in Mixed-Phase Clouds?, J. Geophys. Res.-Atmos., 123, 4273–4283,
https://doi.org/10.1002/2017JD027831, 2018.
Wagner, R., Kiselev, A., Möhler, O., Saathoff, H., and Steinke, I.: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism, Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, 2016.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory
survey, Elsevier Acad. Press, Amsterdam, the Netherlands, 2011.
Wang, M. and Penner, J. E.: Cirrus clouds in a global climate model with a statistical cirrus cloud scheme, Atmos. Chem. Phys., 10, 5449–5474, https://doi.org/10.5194/acp-10-5449-2010, 2010.
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R. H.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res.-Atmos., 119, 195–206, https://doi.org/10.1002/2013JD020824, 2014.
Wei, Y., Zhang, Q., and Thompson, J. E.: The Wetting Behavior of Fresh and
Aged Soot Studied through Contact Angle Measurements,
Atmospheric and Climate Sciences, 7, 11–22, https://doi.org/10.4236/acs.2017.71002, 2017.
Weingartner, E., Baltensperger, U., and Burtscher, H.: Growth and
Structural Change of Combustion Aerosols at High Relative Humidity, Environ.
Sci. Technol., 29, 2982–2986, https://doi.org/10.1021/es00012a014, 1995.
Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties
of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327,
https://doi.org/10.1016/S1352-2310(97)00023-X, 1997.
Welti, A., Kanji, Z. A., Lüönd, F., Stetzer, O., and Lohmann, U.:
Exploring the Mechanisms of Ice Nucleation on Kaolinite: From Deposition
Nucleation to Condensation Freezing, J. Atmos. Sci., 71, 16–36,
https://doi.org/10.1175/jas-d-12-0252.1, 2014.
Wentzel, M., Gorzawski, H., Naumann, K. H., Saathoff, H., and Weinbruch, S.:
Transmission electron microscopical and aerosol dynamical characterization
of soot aerosols, J. Aerosol Sci., 34, 1347–1370,
https://doi.org/10.1016/S0021-8502(03)00360-4, 2003.
Westreich, P., Fortier, H., Flynn, S., Foster, S., and Dahn, J. R.: Exclusion
of Salt Solutions from Activated Carbon Pores and the Relationship to
Contact Angle on Graphite, J. Phys. Chem. C, 111, 3680–3684,
https://doi.org/10.1021/jp066800z, 2007.
Wettlaufer, J. S.: Crystal Growth, Surface Phase Transitions and
Thermomolecular Pressure, in: Ice Physics and the Natural Environment, edited
by: Wettlaufer, J. S., Dash, J. G., and Untersteiner, N., Springer,
Berlin, Heidelberg, Germany, 39–67, https://doi.org/10.1007/978-3-642-60030-2_4, 1999.
Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation,
Phys. Rev. B, 27, 5686–5697, https://doi.org/10.1103/PhysRevB.27.5686, 1983.
Yon, J., Bescond, A., and Liu, F.: On the radiative properties of soot
aggregates – Part 1: Necking and overlapping,
J. Quant. Spectrosc. Ra., 162, 197–206, https://doi.org/10.1016/j.jqsrt.2015.03.027, 2015.
Young, T.: An essay on the cohesion of fluids, Philos. T. R. Soc. Lond., 95, 65–87, https://doi.org/10.1098/rstl.1805.0005, 1805.
Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S.,
and Li, W.: Mixing State and Fractal Dimension of Soot Particles at a Remote
Site in the Southeastern Tibetan Plateau, Environ. Sci. Technol., 53,
8227–8234, https://doi.org/10.1021/acs.est.9b01917, 2019.
Zaragoza, A., Conde, M. M., Espinosa, J. R., Valeriani, C., Vega, C., and
Sanz, E.: Competition between ices Ih and Ic in homogeneous water freezing,
J. Chem. Phys., 143, 134504, https://doi.org/10.1063/1.4931987, 2015.
Zelenay, V., Monge, M. E., D'Anna, B., George, C., Styler, S. A.,
Huthwelker, T., and Ammann, M.: Increased steady state uptake of ozone on
soot due to UV/Vis radiation, J. Geophys. Res.-Atmos., 116, D11301,
https://doi.org/10.1029/2010jd015500, 2011.
Zhang, C., Zhang, Y., Wolf, M. J., Nichman, L., Shen, C., Onasch, T. B., Chen, L., and Cziczo, D. J.: The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime, Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020, 2020.
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X.,
Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic
pollution, Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4, 2019.
Zhou, C. and Penner, J. E.: Aircraft soot indirect effect on large-scale
cirrus clouds: Is the indirect forcing by aircraft soot positive or
negative?, J. Geophys. Res.-Atmos., 119, 11303–11320,
https://doi.org/10.1002/2014JD021914, 2014.
Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and
Laskin, A.: Hydrophilic properties of aged soot, Geophys. Res. Lett.,
32, L01807, https://doi.org/10.1029/2004GL021496, 2005.
Short summary
Pores are aerosol particle features that trigger ice nucleation, as they take up water by capillary condensation below water saturation that freezes at low temperatures. The pore ice can then grow into macroscopic ice crystals making up cirrus clouds. Here, we investigate the pores in soot aggregates responsible for pore condensation and freezing (PCF). Moreover, we present a framework to parameterize soot PCF that is able to predict the ice nucleation activity based on soot properties.
Pores are aerosol particle features that trigger ice nucleation, as they take up water by...
Altmetrics
Final-revised paper
Preprint