Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soot PCF: pore condensation and freezing framework for soot aggregates
Claudia Marcolli
CORRESPONDING AUTHOR
Institute for Atmospheric
and Climate Science, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Fabian Mahrt
Department of Chemistry, University of British Columbia, 2036 Main
Mall, Vancouver, BC, V6T 1Z1, Canada
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232
Villigen, Switzerland
Bernd Kärcher
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR Oberpfaffenhofen), 82234 Weßling, Germany
Related authors
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3230, https://doi.org/10.5194/egusphere-2024-3230, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed the ability of silver iodide particles to form ice crystals in naturally-occurring liquid clouds below 0 °C and found that ≈0.1−1 % of particles nucleate ice, with a negative dependence on temperature. Contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments and which also helps to inform future cloud seeding projects.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Robert O. David, Jonas Fahrni, Claudia Marcolli, Fabian Mahrt, Dominik Brühwiler, and Zamin A. Kanji
Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, https://doi.org/10.5194/acp-20-9419-2020, 2020
Short summary
Short summary
Ice crystal formation plays an important role in controlling the Earth's climate. However, the mechanisms responsible for ice formation in the atmosphere are still uncertain. Here we use surrogates for atmospherically relevant porous particles to determine the role of pore diameter and wettability on the ability of porous particles to nucleate ice in the atmosphere. Our results are consistent with the pore condensation and freeing mechanism.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Claudia Marcolli
Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, https://doi.org/10.5194/acp-20-3209-2020, 2020
Short summary
Short summary
Pore condensation and freezing (PCF) is an ice nucleation mechanism explaining ice formation at low ice supersaturation. It is assumed that liquid water condenses in pores of solid aerosol particles below water saturation followed by ice nucleation within the pores. This study discusses conditions of pore filling, homogeneous ice nucleation within the volume of porewater, and growth of ice out of the pores, taking the effect of negative pressure within pores below water saturation into account.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ulrich K. Krieger, Franziska Siegrist, Claudia Marcolli, Eva U. Emanuelsson, Freya M. Gøbel, Merete Bilde, Aleksandra Marsh, Jonathan P. Reid, Andrew J. Huisman, Ilona Riipinen, Noora Hyttinen, Nanna Myllys, Theo Kurtén, Thomas Bannan, Carl J. Percival, and David Topping
Atmos. Meas. Tech., 11, 49–63, https://doi.org/10.5194/amt-11-49-2018, https://doi.org/10.5194/amt-11-49-2018, 2018
Short summary
Short summary
Vapor pressures of low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique, which is generally reported to be smaller than a factor of 2. We determined saturation vapor pressures for the homologous series of polyethylene glycols ranging in vapor pressure at 298 K from 1E−7 Pa to 5E−2 Pa as a reference set.
Lisa Stirnweis, Claudia Marcolli, Josef Dommen, Peter Barmet, Carla Frege, Stephen M. Platt, Emily A. Bruns, Manuel Krapf, Jay G. Slowik, Robert Wolf, Andre S. H. Prévôt, Urs Baltensperger, and Imad El-Haddad
Atmos. Chem. Phys., 17, 5035–5061, https://doi.org/10.5194/acp-17-5035-2017, https://doi.org/10.5194/acp-17-5035-2017, 2017
Lukas Kaufmann, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, https://doi.org/10.5194/acp-17-3525-2017, 2017
Short summary
Short summary
To improve the understanding of heterogeneous ice nucleation, we have subjected different ice nuclei to repeated freezing cycles and evaluated the freezing temperatures with different parameterizations of classical nucleation theory. It was found that two fit parameters were necessary to describe the temperature dependence of the nucleation rate.
Claudia Marcolli
Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, https://doi.org/10.5194/acp-17-1595-2017, 2017
Short summary
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Lukas Kaufmann, Claudia Marcolli, Julian Hofer, Valeria Pinti, Christopher R. Hoyle, and Thomas Peter
Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, https://doi.org/10.5194/acp-16-11177-2016, 2016
Short summary
Short summary
We investigated dust samples from dust source regions all over the globe with respect to their ice nucleation activity and their mineralogical composition. Stones of reference minerals were milled and investigated the same way as the natural dust samples. We found that the mineralogical composition is a major determinant of ice nucleation ability. Natural samples consist of mixtures of minerals with remarkably similar ice nucleation ability.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary
Short summary
Silver iodide is one of the best-investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Nevertheless, many open questions remain. This paper gives an overview of silver iodide as an ice nucleus and tries to identify the factors that influence the ice nucleation ability of silver iodide.
Lindsay Renbaum-Wolff, Mijung Song, Claudia Marcolli, Yue Zhang, Pengfei F. Liu, James W. Grayson, Franz M. Geiger, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, https://doi.org/10.5194/acp-16-7969-2016, 2016
B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 15, 13759–13776, https://doi.org/10.5194/acp-15-13759-2015, https://doi.org/10.5194/acp-15-13759-2015, 2015
Short summary
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
D. M. Lienhard, A. J. Huisman, U. K. Krieger, Y. Rudich, C. Marcolli, B. P. Luo, D. L. Bones, J. P. Reid, A. T. Lambe, M. R. Canagaratna, P. Davidovits, T. B. Onasch, D. R. Worsnop, S. S. Steimer, T. Koop, and T. Peter
Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, https://doi.org/10.5194/acp-15-13599-2015, 2015
Short summary
Short summary
New data of water diffusivity in secondary organic aerosol (SOA) material and organic/inorganic model mixtures is presented over an extensive temperature range. Our data suggest that water diffusion in SOA is sufficiently fast so that it is unlikely to have significant consequences on the direct climatic effect under tropospheric conditions. Glass formation in SOA is unlikely to restrict homogeneous ice nucleation.
E. Hammer, N. Bukowiecki, B. P. Luo, U. Lohmann, C. Marcolli, E. Weingartner, U. Baltensperger, and C. R. Hoyle
Atmos. Chem. Phys., 15, 10309–10323, https://doi.org/10.5194/acp-15-10309-2015, https://doi.org/10.5194/acp-15-10309-2015, 2015
Short summary
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
G. Ganbavale, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, https://doi.org/10.5194/acp-15-447-2015, 2015
Short summary
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
G. Ganbavale, C. Marcolli, U. K. Krieger, A. Zuend, G. Stratmann, and T. Peter
Atmos. Chem. Phys., 14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, https://doi.org/10.5194/acp-14-9993-2014, 2014
C. Marcolli
Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, https://doi.org/10.5194/acp-14-2071-2014, 2014
A. J. Huisman, U. K. Krieger, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 13, 6647–6662, https://doi.org/10.5194/acp-13-6647-2013, https://doi.org/10.5194/acp-13-6647-2013, 2013
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3230, https://doi.org/10.5194/egusphere-2024-3230, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed the ability of silver iodide particles to form ice crystals in naturally-occurring liquid clouds below 0 °C and found that ≈0.1−1 % of particles nucleate ice, with a negative dependence on temperature. Contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments and which also helps to inform future cloud seeding projects.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023, https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Robert O. David, Jonas Fahrni, Claudia Marcolli, Fabian Mahrt, Dominik Brühwiler, and Zamin A. Kanji
Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, https://doi.org/10.5194/acp-20-9419-2020, 2020
Short summary
Short summary
Ice crystal formation plays an important role in controlling the Earth's climate. However, the mechanisms responsible for ice formation in the atmosphere are still uncertain. Here we use surrogates for atmospherically relevant porous particles to determine the role of pore diameter and wettability on the ability of porous particles to nucleate ice in the atmosphere. Our results are consistent with the pore condensation and freeing mechanism.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Claudia Marcolli
Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, https://doi.org/10.5194/acp-20-3209-2020, 2020
Short summary
Short summary
Pore condensation and freezing (PCF) is an ice nucleation mechanism explaining ice formation at low ice supersaturation. It is assumed that liquid water condenses in pores of solid aerosol particles below water saturation followed by ice nucleation within the pores. This study discusses conditions of pore filling, homogeneous ice nucleation within the volume of porewater, and growth of ice out of the pores, taking the effect of negative pressure within pores below water saturation into account.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Fabian Mahrt, Jörg Wieder, Remo Dietlicher, Helen R. Smith, Chris Stopford, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 3183–3208, https://doi.org/10.5194/amt-12-3183-2019, https://doi.org/10.5194/amt-12-3183-2019, 2019
Short summary
Short summary
A new instrument, the High Speed Particle Phase Discriminator (PPD-HS), is presented, with the goal of quantifying liquid and ice fraction in conditions relevant for mixed-phase clouds. PPD-HS captures the near-forward spatial intensity distribution of scattered light on a single particle basis. Symmetry analysis of the scattering pattern is used to determine the shape of the particles, with cloud droplets and ice crystals producing symmetrical and asymmetrical scattering patterns, respectively.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ulrich K. Krieger, Franziska Siegrist, Claudia Marcolli, Eva U. Emanuelsson, Freya M. Gøbel, Merete Bilde, Aleksandra Marsh, Jonathan P. Reid, Andrew J. Huisman, Ilona Riipinen, Noora Hyttinen, Nanna Myllys, Theo Kurtén, Thomas Bannan, Carl J. Percival, and David Topping
Atmos. Meas. Tech., 11, 49–63, https://doi.org/10.5194/amt-11-49-2018, https://doi.org/10.5194/amt-11-49-2018, 2018
Short summary
Short summary
Vapor pressures of low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique, which is generally reported to be smaller than a factor of 2. We determined saturation vapor pressures for the homologous series of polyethylene glycols ranging in vapor pressure at 298 K from 1E−7 Pa to 5E−2 Pa as a reference set.
Lisa Stirnweis, Claudia Marcolli, Josef Dommen, Peter Barmet, Carla Frege, Stephen M. Platt, Emily A. Bruns, Manuel Krapf, Jay G. Slowik, Robert Wolf, Andre S. H. Prévôt, Urs Baltensperger, and Imad El-Haddad
Atmos. Chem. Phys., 17, 5035–5061, https://doi.org/10.5194/acp-17-5035-2017, https://doi.org/10.5194/acp-17-5035-2017, 2017
Lukas Kaufmann, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, https://doi.org/10.5194/acp-17-3525-2017, 2017
Short summary
Short summary
To improve the understanding of heterogeneous ice nucleation, we have subjected different ice nuclei to repeated freezing cycles and evaluated the freezing temperatures with different parameterizations of classical nucleation theory. It was found that two fit parameters were necessary to describe the temperature dependence of the nucleation rate.
Claudia Marcolli
Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, https://doi.org/10.5194/acp-17-1595-2017, 2017
Short summary
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Lukas Kaufmann, Claudia Marcolli, Julian Hofer, Valeria Pinti, Christopher R. Hoyle, and Thomas Peter
Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, https://doi.org/10.5194/acp-16-11177-2016, 2016
Short summary
Short summary
We investigated dust samples from dust source regions all over the globe with respect to their ice nucleation activity and their mineralogical composition. Stones of reference minerals were milled and investigated the same way as the natural dust samples. We found that the mineralogical composition is a major determinant of ice nucleation ability. Natural samples consist of mixtures of minerals with remarkably similar ice nucleation ability.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary
Short summary
Silver iodide is one of the best-investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Nevertheless, many open questions remain. This paper gives an overview of silver iodide as an ice nucleus and tries to identify the factors that influence the ice nucleation ability of silver iodide.
Lindsay Renbaum-Wolff, Mijung Song, Claudia Marcolli, Yue Zhang, Pengfei F. Liu, James W. Grayson, Franz M. Geiger, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, https://doi.org/10.5194/acp-16-7969-2016, 2016
B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 15, 13759–13776, https://doi.org/10.5194/acp-15-13759-2015, https://doi.org/10.5194/acp-15-13759-2015, 2015
Short summary
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
D. M. Lienhard, A. J. Huisman, U. K. Krieger, Y. Rudich, C. Marcolli, B. P. Luo, D. L. Bones, J. P. Reid, A. T. Lambe, M. R. Canagaratna, P. Davidovits, T. B. Onasch, D. R. Worsnop, S. S. Steimer, T. Koop, and T. Peter
Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, https://doi.org/10.5194/acp-15-13599-2015, 2015
Short summary
Short summary
New data of water diffusivity in secondary organic aerosol (SOA) material and organic/inorganic model mixtures is presented over an extensive temperature range. Our data suggest that water diffusion in SOA is sufficiently fast so that it is unlikely to have significant consequences on the direct climatic effect under tropospheric conditions. Glass formation in SOA is unlikely to restrict homogeneous ice nucleation.
E. Hammer, N. Bukowiecki, B. P. Luo, U. Lohmann, C. Marcolli, E. Weingartner, U. Baltensperger, and C. R. Hoyle
Atmos. Chem. Phys., 15, 10309–10323, https://doi.org/10.5194/acp-15-10309-2015, https://doi.org/10.5194/acp-15-10309-2015, 2015
Short summary
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
G. Ganbavale, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, https://doi.org/10.5194/acp-15-447-2015, 2015
Short summary
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
G. Ganbavale, C. Marcolli, U. K. Krieger, A. Zuend, G. Stratmann, and T. Peter
Atmos. Chem. Phys., 14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, https://doi.org/10.5194/acp-14-9993-2014, 2014
M. Kuebbeler, U. Lohmann, J. Hendricks, and B. Kärcher
Atmos. Chem. Phys., 14, 3027–3046, https://doi.org/10.5194/acp-14-3027-2014, https://doi.org/10.5194/acp-14-3027-2014, 2014
C. Marcolli
Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, https://doi.org/10.5194/acp-14-2071-2014, 2014
A. J. Huisman, U. K. Krieger, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 13, 6647–6662, https://doi.org/10.5194/acp-13-6647-2013, https://doi.org/10.5194/acp-13-6647-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
The role of ascent timescale for WCB moisture transport into the UTLS
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
The impact of mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Potential impacts of marine fuel regulations on Arctic clouds and radiative feedbacks
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
The Impact of Aerosol on Cloud Water: A Heuristic Perspective
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Can pollen affect precipitation?
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Connection of Surface Snowfall Bias to Cloud Phase Bias – Satellite Observations, ERA5, and CMIP6
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
WRF-SBM Numerical Simulation of Aerosol Effects on Stratiform Warm Clouds in Jiangxi, China
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Cornelis Schwenk and Annette Miltenberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2402, https://doi.org/10.5194/egusphere-2024-2402, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast and slow rising air to see how moisture is (differently) transported. We find that for fast ascending air more ice particles reach higher into the atmosphere, and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2301, https://doi.org/10.5194/egusphere-2024-2301, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital to investigate cloud seeding impacts, but in many cases seeding signature is immersed in natural variability. In this study, the reflectivity change induced by glaciogenic seeding using different AgI concentrations is investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results are helpful in operational seeding decision making of the AgI amount dispersed.
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1989, https://doi.org/10.5194/egusphere-2024-1989, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability of simulating mid-level clouds in summer and winter. By combining observational data from two different field campaigns we show that both an increase in horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for the cloud representation.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1725, https://doi.org/10.5194/egusphere-2024-1725, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying out the foundation for so-called aerosol-cloud-climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1341, https://doi.org/10.5194/egusphere-2024-1341, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe INP concentrations from observations at Princess Elisabeth Station and other sites to the model. We assess how Antarctic clouds respond to INP concentration changes, validating results with cloud observations from the station. Our results show that aerosol-cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
EGUsphere, https://doi.org/10.5194/egusphere-2024-876, https://doi.org/10.5194/egusphere-2024-876, 2024
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollens can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Yi Li, Xiaoli Liu, and Hengjia Cai
EGUsphere, https://doi.org/10.5194/egusphere-2023-2644, https://doi.org/10.5194/egusphere-2023-2644, 2024
Short summary
Short summary
Different aerosol modes' influence on cloud processes remains controversial. As a result, we modified the aerosol spectrum and concentration to simulated a warm stratiform cloud process in Jiangxi, China by WRF-SBM scheme. Research shows that: different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024, https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Short summary
Climate model simulations still show a large range of effective climate sensitivity (ECS) with high uncertainties. An important contribution to ECS is cloud climate feedback. We investigate the representation of cloud physical and radiative properties from Coupled Model Intercomparison Project models grouped by ECS. We compare the simulated cloud properties of today’s climate from three ECS groups and quantify how the projected changes in cloud properties and cloud radiative effects differ.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Renaud Falga and Chien Wang
Atmos. Chem. Phys., 24, 631–647, https://doi.org/10.5194/acp-24-631-2024, https://doi.org/10.5194/acp-24-631-2024, 2024
Short summary
Short summary
The impact of urban land use on regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect led to a rainfall enhancement via the amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a nighttime storm.
Dario Sperber and Klaus Gierens
Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023, https://doi.org/10.5194/acp-23-15609-2023, 2023
Short summary
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Cited articles
Adachi, K., Chung, S. H., Friedrich, H., and Buseck, P. R.: Fractal
parameters of individual soot particles determined using electron
tomography: Implications for optical properties,
J. Geophys. Res.-Atmos., 112, D14202, https://doi.org/10.1029/2006jd008296, 2007.
Afrassiabian, Z., Leturia, M., Benali, M., Guessasma, M., and Saleh, K.: An
overview of the role of capillary condensation in wet caking of powders,
Chem. Eng. Res. Des., 110, 245–254, https://doi.org/10.1016/j.cherd.2016.03.020, 2016.
Alcala-Jornod, C., van den Bergh, H., and Rossi, M. J.: Reactivity of NO2 and H2O on soot generated in the laboratory: a diffusion tube study at ambient temperature, Phys. Chem. Chem. Phys., 2, 5584–5593,
https://doi.org/10.1039/B007235O, 2000.
Amann, C. A. and Siegla, D. C.: Diesel Particulates – What They Are and Why,
Aerosol Sci. Tech., 1, 73–101, https://doi.org/10.1080/02786828208958580, 1981.
Amaya, A. J. and Wyslouzil, B. E.: Ice nucleation rates near ∼ 225 K, J. Chem. Phys., 148, 084501, https://doi.org/10.1063/1.5019362, 2018.
Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet,
D., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous production of
nitrous acid on soot in polluted air masses, Nature, 395, 157–160,
https://doi.org/10.1038/25965, 1998.
Anderson, P. M., Guo, H. Q., and Sunderland, P. B.: Repeatability and
reproducibility of TEM soot primary particle size measurements and
comparison of automated methods, J. Aerosol Sci., 114, 317–326,
https://doi.org/10.1016/j.jaerosci.2017.10.002, 2017.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Atiku, F. A., Mitchell, E. J. S., Lea-Langton, A. R., Jones, J. M.,
Williams, A., and Bartle, K. D.: The Impact of Fuel Properties on the
Composition of Soot Produced by the Combustion of Residential Solid Fuels in
a Domestic Stove, Fuel Process. Technol., 151, 117–125,
https://doi.org/10.1016/j.fuproc.2016.05.032, 2016.
Baldelli, A., Trivanovic, U., and Rogak, S. N.: Electron tomography of soot
for validation of 2D image processing and observation of new structural
features, Aerosol Sci. Tech., 53, 575–582,
https://doi.org/10.1080/02786826.2019.1578860, 2019.
Bartell, L. S. and Chushak, Y. G.: Nucleation of Ice in Large Water
Clusters: Experiment and Simulation, in: Water in Confining Geometries,
edited by: Buch, V. and Devlin, J. P., Springer, Berlin,
Heidelberg, Germany, 399–424, https://doi.org/10.1007/978-3-662-05231-0_17, 2003.
Bérubé, K. A., Jones, T. P., Williamson, B. J., Winters, C., Morgan,
A. J., and Richards, R. J.: Physicochemical characterisation of diesel
exhaust particles: Factors for assessing biological activity, Atmos.
Environ., 33, 1599–1614, https://doi.org/10.1016/S1352-2310(98)00384-7, 1999.
Bescond, A., Yon, J., Ouf, F. X., Ferry, D., Delhaye, D., Gaffie, D.,
Coppalle, A., and Roze, C.: Automated Determination of Aggregate Primary
Particle Size Distribution by TEM Image Analysis: Application to Soot,
Aerosol Sci. Tech., 48, 831–841,
https://doi.org/10.1080/02786826.2014.932896, 2014.
Bhandari, J., China, S., Chandrakar, K. K., Kinney, G., Cantrell, W., Shaw,
R. A., Mazzoleni, L. R., Girotto, G., Sharma, N., Gorkowski, K., Gilardoni,
S., Decesari, S., Facchini, M. C., Zanca, N., Pavese, G., Esposito, F.,
Dubey, M. K., Aiken, A. C., Chakrabarty, R. K., Moosmüller, H., Onasch,
T. B., Zaveri, R. A., Scarnato, B. V., Fialho, P., and Mazzoleni, C.:
Extensive Soot Compaction by Cloud Processing from Laboratory and Field
Observations, Sci. Rep.-UK, 9, 11824,
https://doi.org/10.1038/s41598-019-48143-y, 2019.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bové, H., Bongaerts, E., Slenders, E., Bijnens, E. M., Saenen, N. D.,
Gyselaers, W., Eyken, P. V., Plusquin, M., Roeffaers, M. B. J., Ameloot, M.,
and Nawrot, T. S.: Ambient black carbon particles reach the fetal side of
human placenta, Nat. Commun., 10, 3866,
https://doi.org/10.1038/s41467-019-11654-3, 2019.
Brasil, A. M., Farias, T. L., and Carvalho, M. G.: A Recipe for image
characterization of fractal-like aggregates, J. Aerosol Sci., 30,
1379–1389, https://doi.org/10.1016/S0021-8502(99)00026-9, 1999.
Brasil, A. M., Farias, T. L., and Carvalho, M. G.: Evaluation of the Fractal
Properties of Cluster Cluster Aggregates, Aerosol Sci. Tech., 33,
440–454, https://doi.org/10.1080/02786820050204682, 2000.
Burtscher, H.: Physical characterization of particulate emissions from
diesel engines: a review, J. Aerosol Sci., 36, 896–932,
https://doi.org/10.1016/j.jaerosci.2004.12.001, 2005.
China, S., Kulkarni, G., Scarnato, B. V., Sharma, N., Pekour, M., Shilling,
J. E., Wilson, J., Zelenyuk, A., Chand, D., Liu, S., Aiken, A. C., Dubey,
M., Laskin, A., Zaveri, R. A., and Mazzoleni, C.: Morphology of diesel
soot residuals from supercooled water droplets and ice crystals:
implications for optical properties, Environ. Res. Lett., 10, 114010, https://doi.org/10.1088/1748-9326/10/11/114010,
2015.
Chou, C., Kanji, Z. A., Stetzer, O., Tritscher, T., Chirico, R., Heringa, M. F., Weingartner, E., Prévôt, A. S. H., Baltensperger, U., and Lohmann, U.: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles, Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, 2013.
Christenson, H. K.: Two-step crystal nucleation via capillary condensation,
Crystengcomm, 15, 2030–2039, https://doi.org/10.1039/c3ce26887j, 2013.
Clague, A. D. H., Donnet, J., Wang, T. K., and Peng, J. C. M.: A comparison
of diesel engine soot with carbon black, Carbon, 37, 1553–1565,
https://doi.org/10.1016/s0008-6223(99)00035-4, 1999.
Colbeck, I., Appleby, L., Hardman, E. J., and Harrison, R. M.: The optical
properties and morphology of cloud-processed carbonaceous smoke, J. Aerosol
Sci., 21, 527–538, https://doi.org/10.1016/0021-8502(90)90129-L, 1990.
Cortés, D., Morán, J., Liu, F., Escudero, F., Consalvi, J.-L., and
Fuentes, A.: Effect of Fuels and Oxygen Indices on the Morphology of Soot
Generated in Laminar Coflow Diffusion Flames, Energ. Fuel., 32,
11802–11813, https://doi.org/10.1021/acs.energyfuels.8b01301, 2018.
Crawford, I., Möhler, O., Schnaiter, M., Saathoff, H., Liu, D., McMeeking, G., Linke, C., Flynn, M., Bower, K. N., Connolly, P. J., Gallagher, M. W., and Coe, H.: Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements, Atmos. Chem. Phys., 11, 9549–9561, https://doi.org/10.5194/acp-11-9549-2011, 2011.
Cziczo, D. J. and Froyd, K. D.: Sampling the composition of cirrus ice
residuals, Atmos. Res., 142, 15–31,
https://doi.org/10.1016/j.atmosres.2013.06.012, 2014.
Cziczo, D. J., Thomson, D. S., Thompson, T. L., DeMott, P. J., and Murphy, D.
M.: Particle analysis by laser mass spectrometry (PALMS) studies of ice
nuclei and other low number density particles, Int. J. Mass Spectrom.,
258, 21–29, https://doi.org/10.1016/j.ijms.2006.05.013, 2006.
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M.
A., Smith, J. B., Twohy, C. H., and Murphy, D. M.: Clarifying the Dominant
Sources and Mechanisms of Cirrus Cloud Formation, Science, 340,
1320–1324, https://doi.org/10.1126/science.1234145, 2013.
Dastanpour, R. and Rogak, S. N.: Observations of a Correlation Between
Primary Particle and Aggregate Size for Soot Particles, Aerosol Sci. Tech., 48, 1043–1049, https://doi.org/10.1080/02786826.2014.955565, 2014.
Dastanpour, R., Boone, J. M., and Rogak, S. N.: Automated primary particle
sizing of nanoparticle aggregates by TEM image analysis, Powder Technol.,
295, 218–224, https://doi.org/10.1016/j.powtec.2016.03.027, 2016.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y. Q., Sirkin, Y. A. P.,
Molinero, V., Mahrt, F., Bruhwiler, D., Lohmann, U., and Kanji, Z. A.: Pore
condensation and freezing is responsible for ice formation below water
saturation for porous particles, P. Natl. Acad. Sci. USA, 116,
8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019.
David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The role of contact angle and pore width on pore condensation and freezing, Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, 2020.
de Gennes, P. G.: Wetting: statics and dynamics, Rev. Mod. Phys., 57,
827–863, https://doi.org/10.1103/RevModPhys.57.827, 1985.
Delhaye, D., Ouf, F.-X., Ferry, D., Ortega, I. K., Penanhoat, O., Peillon,
S., Salm, F., Vancassel, X., Focsa, C., Irimiea, C., Harivel, N., Perez, B.,
Quinton, E., Yon, J., and Gaffie, D.: The MERMOSE project: Characterization
of particulate matter emissions of a commercial aircraft engine, J. Aerosol
Sci., 105, 48–63, https://doi.org/10.1016/j.jaerosci.2016.11.018, 2017.
DeMott, P. J.: An Exploratory Study of Ice Nucleation by Soot Aerosols,
J. Appl. Meteorol., 29, 1072–1079,
https://doi.org/10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2, 1990.
DeMott, P. J., Chen, Y., Kreidenweis, S. M., Rogers, D. C., and Sherman, D.
E.: Ice formation by black carbon particles, Geophys. Res. Lett., 26,
2429–2432, https://doi.org/10.1029/1999GL900580, 1999.
DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
Diehl, K. and Mitra, S. K.: A laboratory study of the effects of a
kerosene-burner exhaust on ice nucleation and the evaporation rate of ice
crystals, Atmos. Environ., 32, 3145–3151,
https://doi.org/10.1016/s1352-2310(97)00467-6, 1998.
Ding, S., Zhao, D., He, C., Huang, M., He, H., Tian, P., Liu, Q., Bi, K.,
Yu, C., Pitt, J., Chen, Y., Ma, X., Chen, Y., Jia, X., Kong, S., Wu, J., Hu,
D., Hu, K., Ding, D., and Liu, D.: Observed Interactions Between Black Carbon
and Hydrometeor During Wet Scavenging in Mixed-Phase Clouds, Geophys. Res.
Lett., 46, 8453–8463, https://doi.org/10.1029/2019GL083171, 2019.
Dubinin, M. M.: Water-vapor adsorption and the microporous structures of
carbonaceous adsorbents, Carbon, 18, 355–364,
https://doi.org/10.1016/0008-6223(80)90007-x, 1980.
Dymarska, M., Murray, B. J., Sun, L. M., Eastwood, M. L., Knopf, D. A., and
Bertram, A. K.: Deposition ice nucleation on soot at temperatures relevant
for the lower troposphere, J. Geophys. Res.-Atmos., 111, D04204,
https://doi.org/10.1029/2005jd006627, 2006.
Farkas, L.: Keimbildungsgeschwindigkeit in übersättigten Dämpfen
(The speed of germinitive formation in over saturated vapours), Z. Phys. Chem.-Stoch. Ve., 125, 236–242, 1927.
Feng, J. and Rothstein, J. P.: Simulations of novel nanostructures formed by
capillary effects in lithography, J. Colloid Interf. Sci., 354,
386–395, https://doi.org/10.1016/j.jcis.2010.10.030, 2011.
Ferraro, G., Fratini, E., Rausa, R., Fiaschi, P., and Baglioni, P.:
Multiscale Characterization of Some Commercial Carbon Blacks and Diesel
Engine Soot, Energ. Fuel., 30, 9859–9866,
https://doi.org/10.1021/acs.energyfuels.6b01740, 2016.
Fisher, L. R., Gamble, R. A., and Middlehurst, J.: The Kelvin equation and
the capillary condensation of water, Nature, 290, 575–576,
https://doi.org/10.1038/290575a0, 1981.
Fletcher, N. H.: Ice crystal nucleation by aerosol particles,
Discuss. Faraday Soc., 30, 39–45, https://doi.org/10.1039/DF9603000039, 1960.
Fowkes, F. M. and Harkins, W. D.: The state of monolayers adsorbed at the
interface solid-aqueous solution, J. Am. Chem. Soc., 62, 3377–3386,
https://doi.org/10.1021/ja01869a029, 1940.
Friedman, B., Kulkarni, G., Beranek, J., Zelenyuk, A., Thornton, J. A., and
Cziczo, D. J.: Ice nucleation and droplet formation by bare and coated soot
particles, J. Geophys. Res.-Atmos., 116, D17203,
https://doi.org/10.1029/2011jd015999, 2011.
Fukuta, N.: Activation of Atmospheric Particles as Ice Nuclei in Cold and
Dry Air, J. Atmos. Sci., 23, 741–750,
https://doi.org/10.1175/1520-0469(1966)023<0741:aoapai>2.0.co;2, 1966.
Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
Gelman Constantin, J., Gianetti, M. M., Longinotti, M. P., and Corti, H. R.: The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies, Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, 2018.
Gettelman, A. and Chen, C.: The climate impact of aviation aerosols,
Geophys. Res. Lett., 40, 2785–2789, https://doi.org/10.1002/grl.50520, 2013.
Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate
impacts of ice nucleation, J. Geophys. Res.-Atmos., 117, D20201,
https://doi.org/10.1029/2012jd017950, 2012.
Gibbs, J. W.: On the equilibrium of heterogeneous substances, The Academy, New Haven, Connecticut, USA, pp. 108–248, 1875.
Gladkikh, M. and Bryant, S.: Prediction of interfacial areas during
imbibition in simple porous media, Adv. Water Resour., 26, 609–622,
https://doi.org/10.1016/S0309-1708(03)00034-4, 2003.
Gorbunov, B., Baklanov, A., Kakutkina, N., Toumi, R., and Windsor, H. L.: Ice
nucleation on soot particles, J. Aerosol Sci., 29, 1055–1056,
https://doi.org/10.1016/S0021-8502(98)90710-8, 1998.
Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H. L., and Toumi, R.: Ice
nucleation on soot particles, J. Aerosol Sci., 32, 199–215,
https://doi.org/10.1016/S0021-8502(00)00077-X, 2001.
Grishin, I., Thomson, K., Migliorini, F., and Sloan, J. J.: Application of
the Hough transform for the automatic determination of soot aggregate
morphology, Appl. Optics, 51, 610–620,
https://doi.org/10.1364/AO.51.000610, 2012.
Gysel, M., Nyeki, S., Weingartner, E., Baltensperger, U., Giebl, H.,
Hitzenberger, R., Petzold, A., and Wilson, C. W.: Properties of jet engine
combustion particles during the PartEmis experiment: Hygroscopicity at
subsaturated conditions, Geophys. Res. Lett., 30, 1566,
https://doi.org/10.1029/2003GL016896, 2003.
Hagen, D. E., Whitefield, P. D., and Schlager, H.: Particulate emissions in
the exhaust plume from commercial jet aircraft under cruise conditions, J. Geophys. Res.-Atmos., 101, 19551–19557, https://doi.org/10.1029/95JD03276, 1996.
Han, C., Liu, Y. C., Liu, C., Ma, J. Z., and He, H.: Influence of Combustion
Conditions on Hydrophilic Properties and Microstructure of Flame Soot,
J. Phys. Chem. A, 116, 4129–4136, https://doi.org/10.1021/jp301041w, 2012.
Harris, S. J. and Maricq, M. M.: Signature size distributions for diesel and
gasoline engine exhaust particulate matter, J. Aerosol Sci., 32,
749–764, https://doi.org/10.1016/S0021-8502(00)00111-7, 2001.
Harris, S. J. and Maricq, M. M.: The role of fragmentation in defining the
signature size distribution of diesel soot, J. Aerosol Sci., 33,
935–942, https://doi.org/10.1016/S0021-8502(02)00045-9, 2002.
Hendricks, J., Kärcher, B., Lohmann, U., and Ponater, M.: Do aircraft
black carbon emissions affect cirrus clouds on the global scale?, Geophys.
Res. Lett., 32, L12814, https://doi.org/10.1029/2005GL022740, 2005.
Herndon, S. C., Jayne, J. T., Lobo, P., Onasch, T. B., Fleming, G., Hagen,
D. E., Whitefield, P. D., and Miake-Lye, R. C.: Commercial Aircraft Engine
Emissions Characterization of in-Use Aircraft at Hartsfield-Jackson Atlanta
International Airport, Environ. Sci. Technol., 42, 1877–1883,
https://doi.org/10.1021/es072029+, 2008.
Hess, W. M. and McDonald, G. C.: Improved Particle Size Measurements on
Pigments for Rubber, Rubber Chem. Technol., 56, 892–917,
https://doi.org/10.5254/1.3538171, 1983.
Higuchi, K. and Fukuta, N.: Ice in capillaries of solid particles and its
effect on their nucleating ability, J. Atmos. Sci., 23, 187–190,
https://doi.org/10.1175/1520-0469(1966)023<0187:iitcos>2.0.co;2, 1966.
Hoard, J., Chafekar, T., Abarham, M., Schwader, R., Upplegger, S., and
Styles, D.: Large Particles in Modern Diesel Engine Exhaust, in: ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Piemonte, Italy, 6–9 May 2012, 521–530, https://doi.org/10.1115/ICES2012-81232, 2013.
Hoyle, C. R., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal
Number Densities in Cirrus Clouds, J. Atmos. Sci., 62, 2568–2579,
https://doi.org/10.1175/JAS3487.1, 2005.
Hruby, J., Vins, V., Mares, R., Hykl, J., and Kalova, J.: Surface Tension of
Supercooled Water: No Inflection Point down to −25 ∘C,
J. Phys. Chem. Lett., 5, 425–428, https://doi.org/10.1021/jz402571a, 2014.
Huang, J., Christ, J. A., Goltz, M. N., and Demond, A. H.: Modeling NAPL
dissolution from pendular rings in idealized porous media, Water Resour. Res., 51, 8182–8197, https://doi.org/10.1002/2015WR016924, 2015.
Huang, P. F., Turpin, B. J., Pipho, M. J., Kittelson, D. B., and McMurry, P.
H.: Effects of water condensation and evaporation on diesel
chain-agglomerate morphology, J. Aerosol Sci., 25, 447–459,
https://doi.org/10.1016/0021-8502(94)90063-9, 1994.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
ICAO Report: The World of Air Transport, Annual Report 2018,
available at: https://www.icao.int/annual-report-2018/Pages/default.aspx (last access: 23 April 2020), 2018.
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation theory
of homogeneous freezing of water: thermodynamic and kinetic parameters,
Phys. Chem. Chem. Phys., 17, 5514–5537,
https://doi.org/10.1039/C4CP04184D, 2015.
Ikhenazene, R., Pirim, C., Noble, J. A., Irimiea, C., Carpentier, Y.,
Ortega, I. K., Ouf, F.-X., Focsa, C., and Chazallon, B.: Ice Nucleation
Activities of Carbon-Bearing Materials in Deposition Mode: From Graphite to
Airplane Soot Surrogates, J. Phys. Chem. C, 124, 489–503,
https://doi.org/10.1021/acs.jpcc.9b08715, 2020.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697,
https://doi.org/10.1038/35055518, 2001.
Janssen, N. A. H., Gerlofs-Nijland, M., Lanki, T., Salonen, R. O., Cassee,
F., Hoek, G., Fischer, P., Brunekreef, B., and Krzyzanowski, M.: Health
Effects of Black Carbon, World Health Organization (WHO), Copenhagen, Denmark, available at: http://www.euro.who.int/pubre (last access: 14 April 2020), 2012.
Jantsch, E. and Koop, T.:
Cloud Activation via Formation of Water and Ice on Various Types of Porous Aerosol Particles, ACS Earth and Space Chemistry, 5, 604–617,
https://doi.org/10.1021/acsearthspacechem.0c00330, 2021.
Jensen, E. J., Lawson, R. P., Bergman, J. W., Pfister, L., Bui, T. P., and
Schmitt, C. G.: Physical processes controlling ice concentrations in
synoptically forced, midlatitude cirrus, J. Geophys. Res.-Atmos.,
118, 5348–5360, https://doi.org/10.1002/jgrd.50421, 2013.
Jensen, E. J., Kärcher, B., Ueyama, R., Pfister, L., Bui, T. V., Diskin,
G. S., DiGangi, J. P., Woods, S., Lawson, R. P., Froyd, K. D., and Murphy, D.
M.: Heterogeneous Ice Nucleation in the Tropical Tropopause Layer, J. Geophys. Res.-Atmos., 123, 12210–12227, https://doi.org/10.1029/2018JD028949, 2018.
Kanji, Z. A. and Abbatt, J. P. D.: Laboratory studies of ice formation via
deposition mode nucleation onto mineral dust and n-hexane soot samples, J. Geophys. Res.-Atmos., 111, D16204, https://doi.org/10.1029/2005jd006766, 2006.
Kanji, Z. A., DeMott, P. J., Möhler, O., and Abbatt, J. P. D.: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types, Atmos. Chem. Phys., 11, 31–41, https://doi.org/10.5194/acp-11-31-2011, 2011.
Kanji, Z. A., Welti, A., Corbin, J. C., and Mensah, A. A.: Black Carbon
Particles Do Not Matter for Immersion Mode Ice Nucleation, Geophys. Res.
Lett., 47, e2019GL086764, https://doi.org/10.1029/2019GL086764, 2020.
Kärcher, B.: Cirrus Clouds and Their Response to Anthropogenic
Activities, Curr. Clim. Change Rep., 3, 45–57,
https://doi.org/10.1007/s40641-017-0060-3, 2017.
Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nat.
Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kärcher, B.: Process-Based Simulation of Aerosol-Cloud Interactions in a
One-Dimensional Cirrus Model, J. Geophys. Res.-Atmos., 125,
e2019JD031847, https://doi.org/10.1029/2019JD031847, 2020.
Kärcher, B. and Lohmann, U.: A Parameterization of cirrus cloud
formation: Homogeneous freezing including effects of aerosol size, J. Geophys. Res.-Atmos., 107, 4698, https://doi.org/10.1029/2001JD001429, 2002.
Kärcher, B., Möhler, O., DeMott, P. J., Pechtl, S., and Yu, F.: Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7, 4203–4227, https://doi.org/10.5194/acp-7-4203-2007, 2007.
Kärcher, B., Mahrt, F., and Marcolli C.: Process-oriented analysis of aircraft soot-cirrus interactions constrains the climate impact of aviation, Nat. Comm. Earth Env., in press, 2021.
Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis,
T., Ntziachristos, L., Keskinen, J., and Rönkkö, T.: Exhaust
particles of modern gasoline vehicles: A laboratory and an on-road study,
Atmos. Environ., 97, 262–270,
https://doi.org/10.1016/j.atmosenv.2014.08.025, 2014.
Kelvin, W. T.: Baltimore lectures on molecular dynamics and the wave theory
of light, C. J. Clay and Sons, London, UK, Publication Agency of the
Johns Hopkins University, Baltimore, Maryland, USA,
available at: http://archive.org/details/baltimorelecture00kelviala (last access: 24 April 2020), 1904.
Kienast-Sjögren, E., Miltenberger, A. K., Luo, B. P., and Peter, T.: Sensitivities of Lagrangian modelling of mid-latitude cirrus clouds to trajectory data quality, Atmos. Chem. Phys., 15, 7429–7447, https://doi.org/10.5194/acp-15-7429-2015, 2015.
Kim, W., Kim, S. H., Lee, D. W., Lee, S., Lim, C. S., and Ryu, J. H.: Size
Analysis of Automobile Soot Particles Using Field-Flow Fractionation,
Environ. Sci. Technol., 35, 1005–1012, https://doi.org/10.1021/es001329n, 2001.
Kinsey, J. S., Dong, Y., Williams, D. C., and Logan, R.: Physical
characterization of the fine particle emissions from commercial aircraft
engines during the Aircraft Particle Emissions eXperiment (APEX) 1–3,
Atmos. Environ., 44, 2147–2156, https://doi.org/10.1016/j.atmosenv.2010.02.010, 2010.
Kireeva, E. D., Popovicheva, O. B., Persiantseva, N. M., Khokhlova, T. D.,
and Shonija, N. K.: Effect of black carbon particles on the efficiency of
water droplet freezing, Colloid J.+, 71, 353–359,
https://doi.org/10.1134/s1061933x09030090, 2009.
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A.,
Gerthsen, D., and Leisner, T.: Active sites in heterogeneous ice
nucleation – the example of K-rich feldspars, Science, 355, 367–371,
https://doi.org/10.1126/science.aai8034, 2016.
Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B.,
Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and
Shonija, N. K.: Cloud condensation nuclei and ice nucleation activity of
hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11,
7906–7920, https://doi.org/10.1039/b905334b, 2009.
Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Köylü, Ü. Ö. and Faeth, G. M.: Structure of overfire soot in
buoyant turbulent diffusion flames at long residence times, Combust. Flame,
89, 140–156, https://doi.org/10.1016/0010-2180(92)90024-J, 1992.
Köylü, Ü. Ö., Faeth, G. M., Farias, T. L., and Carvalho, M. G.: Fractal and projected structure properties of soot aggregates, Combust.
Flame, 100, 621–633, https://doi.org/10.1016/0010-2180(94)00147-k, 1995.
Kozbial, A., Zhou, F., Li, Z., Liu, H., and Li, L.: Are Graphitic Surfaces
Hydrophobic?, Accounts Chem. Res., 49, 2765–2773,
https://doi.org/10.1021/acs.accounts.6b00447, 2016.
Kulkarni, G., China, S., Liu, S., Nandasiri, M., Sharma, N., Wilson, J.,
Aiken, A. C., Chand, D., Laskin, A., Mazzoleni, C., Pekour, M., Shilling,
J., Shutthanandan, V., Zelenyuk, A., and Zaveri, R. A.: Ice nucleation
activity of diesel soot particles at cirrus relevant temperature conditions:
Effects of hydration, secondary organics coating, soot morphology, and
coagulation, Geophys. Res. Lett., 43, 3580–3588,
https://doi.org/10.1002/2016GL068707, 2016.
Laksmono, H., McQueen, T. A., Sellberg, J. A., Loh, N. D., Huang, C.,
Schlesinger, D., Sierra, R. G., Hampton, C. Y., Nordlund, D., Beye, M.,
Martin, A. V., Barty, A., Seibert, M. M., Messerschmidt, M., Williams, G.
J., Boutet, S., Amann-Winkel, K., Loerting, T., Pettersson, L. G. M., Bogan,
M. J., and Nilsson, A.: Anomalous Behavior of the Homogeneous Ice Nucleation
Rate in “No-Man's Land”, J. Phys. Chem. Lett., 6, 2826–2832,
https://doi.org/10.1021/acs.jpclett.5b01164, 2015.
Laplace, P. S., Bowditch, N., Bowditch, N. I., and Nathaniel, I.:
Mécanique céleste, Hillard, Gray, Little, and Wilkins, Boston, Massachussetts, USA, available at:
http://archive.org/details/mcaniquecles04laplrich (last access: 24 April 2020), 1829.
Laumbach, R. J. and Kipen, H. M.: Respiratory health effects of air
pollution: Update on biomass smoke and traffic pollution,
J. Allergy Clin. Immun., 129, 3–11, https://doi.org/10.1016/j.jaci.2011.11.021, 2012.
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 117834,
https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
Li, J., Posfai, M., Hobbs, P. V., and Buseck, P. R.: Individual aerosol
particles from biomass burning in southern Africa: 2, Compositions and aging
of inorganic particles, J. Geophys. Res.-Atmos., 108, 8484,
https://doi.org/10.1029/2002jd002310, 2003.
Liang, Y., Jen, C. N., Weber, R. J., Misztal, P. K., and Goldstein, A. H.: Chemical composition of PM2.5 in October 2017 Northern California wildfire plumes, Atmos. Chem. Phys., 21, 5719–5737, https://doi.org/10.5194/acp-21-5719-2021, 2021.
Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva,
Y., Dimopoulos Eggenschwiler, P., and Wang, J.: Electron Microscopic Study of
Soot Particulate Matter Emissions from Aircraft Turbine Engines,
Environ. Sci. Technol., 48, 10975–10983, https://doi.org/10.1021/es501809b, 2014.
Liati, A., Schreiber, D., Alpert, P. A., Liao, Y., Brem, B. T., Corral Arroyo, P., Hu, J., Jonsdottir, H. R., Ammann, M., and Dimopoulos Eggenschwiler, P.: Aircraft soot from conventional fuels and biofuels during
ground idle and climb-out conditions: Electron microscopy and X-ray
micro-spectroscopy, Environ. Pollut., 247, 658–667,
https://doi.org/10.1016/j.envpol.2019.01.078, 2019.
Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P.,
Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X.,
and Li, W.: Morphology, composition, and mixing state of primary particles
from combustion sources – crop residue, wood, and solid waste, Sci. Rep.-UK,
7, 5047, https://doi.org/10.1038/s41598-017-05357-2, 2017.
Lobo, P., Durdina, L., Smallwood, G. J., Rindlisbacher, T., Siegerist, F.,
Black, E. A., Yu, Z., Mensah, A. A., Hagen, D. E., Miake-Lye, R. C.,
Thomson, K. A., Brem, B. T., Corbin, J. C., Abegglen, M., Sierau, B.,
Whitefield, P. D., and Wang, J.: Measurement of Aircraft Engine Non-Volatile
PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation
Demonstration Experiment (A-PRIDE) 4 Campaign, Aerosol Sci. Tech., 49,
472–484, https://doi.org/10.1080/02786826.2015.1047012, 2015.
Lohmann, U.: A glaciation indirect aerosol effect caused by soot aerosols,
Geophys. Res. Lett., 29, 11-1–11-4,
https://doi.org/10.1029/2001GL014357, 2002.
Lohmann, U., Lüönd, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, edn. 1, Cambridge University Press,
Cambridge, UK, 2016.
Lohmann, U., Friebel, F., Kanji, Z. A., Mahrt, F., Mensah, A. A., and
Neubauer, D.: Future warming exacerbated by aged-soot effect on cloud
formation, Nat. Geosci., 13, 674–680,
https://doi.org/10.1038/s41561-020-0631-0, 2020.
Ma, X. F., Zangmeister, C. D., Gigault, J., Mulholland, G. W., and Zachariah,
M. R.: Soot aggregate restructuring during water processing, J. Aerosol
Sci., 66, 209–219, https://doi.org/10.1016/j.jaerosci.2013.08.001, 2013.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, 2018a.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, ETH Library [data set], https://doi.org/10.3929/ethz-b-000286409, 2018b.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O., Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, ETH Library [data set], https://doi.org/10.3929/ethz-b-000340269, 2019.
Mahrt, F., Alpert, P. A., Dou, J., Grönquist, P., Arroyo, P. C., Ammann,
M., Lohmann, U., and Kanji, Z. A.: Aging induced changes in ice nucleation
activity of combustion aerosol as determined by near edge X-ray absorption
fine structure (NEXAFS) spectroscopy, Environ. Sci.-Proc. Imp., 22, 895–907,
https://doi.org/10.1039/C9EM00525K, 2020a.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O.,
Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing
on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, J. Geophys. Res.-Atmos., 125, e2019JD030922,
https://doi.org/10.1029/2019JD030922, 2020b.
Mandelbrot, B. B.: Fractals: form, chance, and dimension, W. H. Freeman, San
Francisco, USA, 1977.
Manka, A., Pathak, H., Tanimura, S., Wölk, J., Strey, R., and Wyslouzil,
B. E.: Freezing water in no-man's land, Phys. Chem. Chem. Phys., 14,
4505–4516, https://doi.org/10.1039/C2CP23116F, 2012.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014.
Marcolli, C.: Ice nucleation triggered by negative pressure, Sci. Rep.-UK,
7, 16634, https://doi.org/10.1038/s41598-017-16787-3, 2017a.
Marcolli, C.: Pre-activation of aerosol particles by ice preserved in pores, Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, 2017b.
Marcolli, C.: Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice, Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, 2020.
Marhaba, I., Ferry, D., Laffon, C., Regier, T. Z., Ouf, F.-X., and Parent,
P.: Aircraft and MiniCAST soot at the nanoscale, Combust. Flame, 204,
278–289, https://doi.org/10.1016/j.combustflame.2019.03.018, 2019.
Martinez-Martin, D., Longuinhos, R., Izquierdo, J. G., Marele, A.,
Alexandre, S. S., Jaafar, M., Gómez-Rodríguez, J. M., Bañares,
L., Soler, J. M., and Gomez-Herrero, J.: Atmospheric contaminants on
graphitic surfaces, Carbon, 61, 33–39,
https://doi.org/10.1016/j.carbon.2013.04.056, 2013.
Masiol, M. and Harrison, R. M.: Aircraft engine exhaust emissions and other
airport-related contributions to ambient air pollution: A review, Atmos.
Environ., 95, 409–455, https://doi.org/10.1016/j.atmosenv.2014.05.070, 2014.
Mason, B. J.: The nature of ice-forming nuclei in the atmosphere,
Q. J. Roy. Meteor. Soc., 76, 59–74, https://doi.org/10.1002/qj.49707632707,
1950.
Mazaheri, M., Johnson, G. R., and Morawska, L.: Particle and Gaseous
Emissions from Commercial Aircraft at Each Stage of the Landing and Takeoff
Cycle, Environ. Sci. Technol., 43, 441–446,
https://doi.org/10.1021/es8013985, 2009.
McGraw, Z., Storelvmo, T., Samset, B., and Stjern, C. W.: Global radiative
impacts of black carbon acting as ice nucleating particles, Geophys. Res.
Lett., 47, e2020GL089056, https://doi.org/10.1029/2020GL089056, 2020.
Meakin, P.: Fractal aggregates, Adv. Colloid Interfac., 28, 249–331,
https://doi.org/10.1016/0001-8686(87)80016-7, 1987.
Megaridis, C. M. and Dobbins, R. A.: Morphological Description of
Flame-Generated Materials, Combust. Sci. Technol., 71, 95–109,
https://doi.org/10.1080/00102209008951626, 1990.
Miljevic, B., Surawski, N. C., Bostrom, T., and Ristovski, Z. D.:
Restructuring of carbonaceous particles upon exposure to organic and water
vapours, J. Aerosol Sci., 47, 48–57,
https://doi.org/10.1016/j.jaerosci.2011.12.005, 2012.
Möhler, O., Büttner, S., Linke, C., Schnaiter, M., Saathoff, H.,
Stetzer, O., Wagner, R., Krämer, M., Mangold, A., Ebert, V., and
Schurath, U.: Effect of sulfuric acid coating on heterogeneous ice
nucleation by soot aerosol particles, J. Geophys. Res.-Atmos.,
110, D11210, https://doi.org/10.1029/2004JD005169, 2005a.
Möhler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R., Mangold,
A., Kramer, M., and Schurath, U.: Ice nucleation on flame soot aerosol of
different organic carbon content, Meteorol. Z., 14, 477–484,
https://doi.org/10.1127/0941-2948/2005/0055, 2005b.
Moore, E. B., Allen, J. T., and Molinero, V.: Liquid-Ice Coexistence below
the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic
Nanopores, J. Phys. Chem. C, 116, 7507–7514,
https://doi.org/10.1021/jp3012409, 2012.
Moore, R. H., Shook, M., Beyersdorf, A., Corr, C., Herndon, S., Knighton, W.
B., Miake-Lye, R., Thornhill, K. L., Winstead, E. L., Yu, Z., Ziemba, L. D.,
and Anderson, B. E.: Influence of Jet Fuel Composition on Aircraft Engine
Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX,
and ACCESS Missions, Energ. Fuel., 29, 2591–2600,
https://doi.org/10.1021/ef502618w, 2015.
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim,
J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick,
J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
D., Shook, M., Slover, G., Voigt, C., White, R., Winstead, E., Yasky, R.,
Ziemba, L. D., Brown, A., Schlager, H., and Anderson, B. E.: Biofuel blending
reduces particle emissions from aircraft engines at cruise conditions,
Nature, 543, 411–415, https://doi.org/10.1038/nature21420, 2017.
Morcos, I.: Surface Tension of Stress-Annealed Pyrolytic Graphite, J. Chem.
Phys., 57, 1801–1802, https://doi.org/10.1063/1.1678482, 1972.
Morishige, K.: Influence of Pore Wall Hydrophobicity on Freezing and Melting
of Confined Water, J. Phys. Chem. C, 122, 5013–5019,
https://doi.org/10.1021/acs.jpcc.8b00538, 2018.
Mossop, S. C.: Sublimation Nuclei, P. Phys. Soc. Lond. B, 69,
161–164, https://doi.org/10.1088/0370-1301/69/2/305, 1956.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H.,
Christenson, H. K., and Murray, E. J.: Kinetics of the homogeneous freezing
of water, Phys. Chem. Chem. Phys., 12, 10380–10387,
https://doi.org/10.1039/C003297B, 2010.
Nenow, D. and Trayanov, A.: Thermodynamics of crystal surfaces with
quasi-liquid layer, J. Cryst. Growth, 79, 801–805,
https://doi.org/10.1016/0022-0248(86)90557-9, 1986.
Nichman, L., Wolf, M., Davidovits, P., Onasch, T. B., Zhang, Y., Worsnop, D. R., Bhandari, J., Mazzoleni, C., and Cziczo, D. J.: Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol, Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, 2019.
Ogren, J. A. and Charlson, R. J.: Elemental carbon in the atmosphere: cycle
and lifetime, Tellus B, 35, 241–254,
https://doi.org/10.3402/tellusb.v35i4.14612, 1983.
Oh, C. and Sorensen, C. M.: The Effect of Overlap between Monomers on the
Determination of Fractal Cluster Morphology, J. Colloid Interf. Sci.,
193, 17–25, https://doi.org/10.1006/jcis.1997.5046, 1997.
Okada, K., Ikegami, M., Uchino, O., Nikaidou, Y., Zaizen, Y., Tsutsumi, Y.,
and Makino, Y.: Extremely high proportions of soot particles in the upper
troposphere over Japan, Geophys. Res. Lett., 19, 921–924,
https://doi.org/10.1029/92GL00487, 1992.
Olfert, J. and Rogak, S.: Universal relations between soot effective density
and primary particle size for common combustion sources, Aerosol Sci. Tech., 53, 485–492, https://doi.org/10.1080/02786826.2019.1577949, 2019.
Olfert, J. S., Dickau, M., Momenimovahed, A., Saffaripour, M., Thomson, K.,
Smallwood, G., Stettler, M. E. J., Boies, A., Sevcenco, Y., Crayford, A., and
Johnson, M.: Effective density and volatility of particles sampled from a
helicopter gas turbine engine, Aerosol Sci. Tech., 51, 704–714,
https://doi.org/10.1080/02786826.2017.1292346, 2017.
Ouf, F. X., Yon, J., Ausset, P., Coppalle, A., and Maillé, M.: Influence
of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by
Transmission Electron Microscopy, Aerosol Sci. Tech., 44, 1005–1017,
https://doi.org/10.1080/02786826.2010.507228, 2010.
Ouf, F. X., Parent, P., Laffon, C., Marhaba, I., Ferry, D., Marcillaud, B.,
Antonsson, E., Benkoula, S., Liu, X. J., Nicolas, C., Robert, E., Patanen,
M., Barreda, F. A., Sublemontier, O., Coppalle, A., Yon, J., Miserque, F.,
Mostefaoui, T., Regier, T. Z., Mitchell, J. A., and Miron, C.: First
in-flight synchrotron X-ray absorption and photoemission study of carbon
soot nanoparticles, Sci. Rep.-UK, 6, 36495, https://doi.org/10.1038/srep36495,
2016.
Ouf, F.-X., Bourrous, S., Vallières, C., Yon, J., and Lintis, L.:
Specific surface area of combustion emitted particles: Impact of primary
particle diameter and organic content, J. Aerosol Sci., 137, 105436,
https://doi.org/10.1016/j.jaerosci.2019.105436, 2019.
Park, K., Kittelson, D. B., and McMurry, P. H.: Structural properties of
diesel exhaust particles measured by transmission electron microscopy (TEM):
Relationships to particle mass and mobility, Aerosol Sci. Tech., 38,
881–889, https://doi.org/10.1080/027868290505189, 2004.
Penner, J. E., Chen, Y., Wang, M., and Liu, X.: Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing, Atmos. Chem. Phys., 9, 879–896, https://doi.org/10.5194/acp-9-879-2009, 2009.
Penner, J. E., Zhou, C., Garnier, A., and Mitchell, D. L.: Anthropogenic
Aerosol Indirect Effects in Cirrus Clouds, J. Geophys. Res.-Atmos.,
123, 11652–11677, https://doi.org/10.1029/2018jd029204, 2018.
Persiantseva, N. M., Popovicheva, O. B., and Shonija, N. K.: Wetting and
hydration of insoluble soot particles in the upper troposphere,
J. Environ. Monitor., 6, 939–945, https://doi.org/10.1039/B407770A, 2004.
Petzold, A., Strom, J., Ohlsson, S., and Schroder, F. P.: Elemental
composition and morphology of ice-crystal residual particles in cirrus
clouds and contrails, Atmos. Res., 49, 21–34,
https://doi.org/10.1016/s0169-8095(97)00083-5, 1998.
Popovicheva, O., Kireeva, E., Persiantseva, N., Khokhlova, T., Shonija, N.,
Tishkova, V., and Demirdjian, B.: Effect of soot on immersion freezing of
water and possible atmospheric implications, Atmos. Res., 90,
326–337, https://doi.org/10.1016/j.atmosres.2008.08.004, 2008a.
Popovicheva, O., Persiantseva, N. M., Shonija, N. K., DeMott, P., Koehler,
K., Petters, M., Kreidenweis, S., Tishkova, V., Demirdjian, B., and Suzanne,
J.: Water interaction with hydrophobic and hydrophilic soot particles, Phys.
Chem. Chem. Phys., 10, 2332–2344, https://doi.org/10.1039/B718944N, 2008b.
Popovitcheva, O. B., Persiantseva, N. M., Trukhin, M. E., Rulev, G. B.,
Shonija, N. K., Buriko, Y. Y., Starik, A. M., Demirdjian, B., Ferry, D., and
Suzanne, J.: Experimental characterization of aircraft combustor soot:
Microstructure, surface area, porosity and water adsorption, Phys. Chem.
Chem. Phys., 2, 4421–4426, https://doi.org/10.1039/b004345l, 2000.
Posfai, M., Simonics, R., Li, J., Hobbs, P. V., and Buseck, P. R.: Individual
aerosol particles from biomass burning in southern Africa: 1. Compositions
and size distributions of carbonaceous particles, J. Geophys. Res.-Atmos., 108, 8483, https://doi.org/10.1029/2002jd002291, 2003.
Pruppacher, H. R. and Klett, D. J.: Microphysics of Clouds and
Precipitation, edn. 2, Kluwer Academic Publishers, Dordrecht, the
Netherlands, 1997.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.
Reddy, M. S. and Boucher, O.: Climate impact of black carbon emitted from
energy consumption in the world's regions, Geophys. Res. Lett., 34, L11802,
https://doi.org/10.1029/2006gl028904, 2007.
Rockne, K. J., Taghon, G. L., and Kosson, D. S.: Pore structure of soot
deposits from several combustion sources, Chemosphere, 41, 1125–1135,
https://doi.org/10.1016/S0045-6535(00)00040-0, 2000.
Roessler, D. M.: Diesel particle mass concentration by optical techniques,
Appl. Optics, 21, 4077–4086, https://doi.org/10.1364/AO.21.004077, 1982.
Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., and Wiedensohler, A.: Atmospheric number size distributions of soot particles and estimation of emission factors, Atmos. Chem. Phys., 6, 1021–1031, https://doi.org/10.5194/acp-6-1021-2006, 2006.
Samson, R. J., Mulholland, G. W., and Gentry, J. W.: Structural-analysis of
soot agglomerates, Langmuir, 3, 272–281,
https://doi.org/10.1021/la00074a022, 1987.
Schill, G. P., Jathar, S. H., Kodros, J. K., Levin, E. J. T., Galang, A. M.,
Friedman, B., Link, M. F., Farmer, D. K., Pierce, J. R., Kreidenweis, S. M.,
and DeMott, P. J.: Ice-nucleating particle emissions from photochemically
aged diesel and biodiesel exhaust, Geophys. Res. Lett., 43, 5524–5531,
https://doi.org/10.1002/2016gl069529, 2016.
Schill, G. P., DeMott, P. J., Emerson, E. W., Rauker, A. M. C., Kodros, J.
K., Suski, K. J., Hill, T. C. J., Levin, E. J. T., Pierce, J. R., Farmer, D.
K., and Kreidenweis, S. M.: The contribution of black carbon to global ice
nucleating particle concentrations relevant to mixed-phase clouds,
P. Natl. Acad. Sci. USA, 117, 22705–22711, https://doi.org/10.1073/pnas.2001674117, 2020a.
Schill, G. P., Froyd, K. D., Bian, H., Kupc, A., Williamson, C., Brock, C.
A., Ray, E., Hornbrook, R. S., Hills, A. J., Apel, E. C., Chin, M., Colarco,
P. R., and Murphy, D. M.: Widespread biomass burning smoke throughout the
remote troposphere, Nat. Geosci., 13, 422–427,
https://doi.org/10.1038/s41561-020-0586-1, 2020b.
Schmidt-Ott, A., Baltensperger, U., Gaggeler, H. W., and Jost, D. T.: Scaling
behavior of physical parameters describing agglomerates, J. Aerosol Sci.,
21, 711–717, https://doi.org/10.1016/0021-8502(90)90037-x, 1990.
Schrader, M. E.: Ultrahigh vacuum techniques in the measurement of contact
angles, IV. Water on graphite (0001), J. Phys. Chem., 79, 2508–2515,
https://doi.org/10.1021/j100590a013, 1975.
Shin, Y. J., Wang, Y., Huang, H., Kalon, G., Wee, A. T. S., Shen, Z.,
Bhatia, C. S., and Yang, H.: Surface-Energy Engineering of Graphene,
Langmuir, 26, 3798–3802, https://doi.org/10.1021/la100231u, 2010.
Smekens, A., Godoi, R. H. M., Berghmans, P., and Van Grieken, R.:
Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars
Using Diesel or Biodiesel, J. Atmos. Chem., 52, 45–62,
https://doi.org/10.1007/s10874-005-6903-7, 2005.
Son, S., Chen, L., Kang, Q., Derome, D., and Carmeliet, J.: Contact Angle
Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied
with the Pseudopotential Multiphase Lattice Boltzmann Model, Computation,
4, 12, https://doi.org/10.3390/computation4010012, 2016.
Sorensen, C. M.: The Mobility of Fractal Aggregates: A Review, Aerosol Sci. Tech., 45, 765–779, https://doi.org/10.1080/02786826.2011.560909, 2011.
Sorensen, C. M., Cai, J., and Lu, N.: Light-scattering measurements of
monomer size, monomers per aggregate, and fractal dimension for soot
aggregates in flames, Appl. Optics, 31, 6547–6557,
https://doi.org/10.1364/AO.31.006547, 1992.
Su, D. S., Müller, J.-O., Jentoft, R. E., Rothe, D., Jacob, E., and
Schlögl, R.: Fullerene-like soot from EuroIV diesel engine: consequences
for catalytic automotive pollution control, Top. Catal., 30, 241–245,
https://doi.org/10.1023/B:TOCA.0000029756.50941.02, 2004.
Sullivan, S. C., Lee, D., Oreopoulos, L., and Nenes, A.: Role of updraft
velocity in temporal variability of global cloud hydrometeor number, P. Natl. Acad. Sci. USA, 113, 5791–5796,
https://doi.org/10.1073/pnas.1514039113, 2016.
Thomson, W. F. R. S.: LX. On the equilibrium of vapour at a curved surface
of liquid, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 448–452, https://doi.org/10.1080/14786447108640606, 1871.
Twohy, C. H. and Gandrud, B. W.: Electron microscope analysis of residual
particles from aircraft contrails, Geophys. Res. Lett., 25, 1359–1362,
https://doi.org/10.1029/97gl03162, 1998.
Ullrich, R., Hoose, C., Möhler, O., Niemand, M., Wagner, R., Höhler,
K., Hiranuma, N., Saathoff, H., and Leisner, T.: A New Ice Nucleation Active
Site Parameterization for Desert Dust and Soot, J. Atmos. Sci., 74,
699–717, https://doi.org/10.1175/jas-d-16-0074.1, 2017.
Umo, N. S., Wagner, R., Ullrich, R., Kiselev, A., Saathoff, H., Weidler, P. G., Cziczo, D. J., Leisner, T., and Möhler, O.: Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores, Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, 2019.
Urso, M. E. D., Lawrence, C. J., and Adams, M. J.: Pendular, Funicular, and
Capillary Bridges: Results for Two Dimensions, J. Colloid Interf. Sci.,
220, 42–56, https://doi.org/10.1006/jcis.1999.6512, 1999.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vargaftik, N. B., Volkov, B. N., and Voljak, L. D.: International tables of
the surface-tension of water, J. Phys. Chem. Ref. Data, 12, 817–820,
1983.
Vergara-Temprado, J., Holden, M. A., Orton, T. R., O'Sullivan, D., Umo, N.
S., Browse, J., Reddington, C., Baeza-Romero, M. T., Jones, J. M.,
Lea-Langton, A., Williams, A., Carslaw, K. S., and Murray, B. J.: Is Black
Carbon an Unimportant Ice-Nucleating Particle in Mixed-Phase Clouds?, J. Geophys. Res.-Atmos., 123, 4273–4283,
https://doi.org/10.1002/2017JD027831, 2018.
Wagner, R., Kiselev, A., Möhler, O., Saathoff, H., and Steinke, I.: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism, Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, 2016.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory
survey, Elsevier Acad. Press, Amsterdam, the Netherlands, 2011.
Wang, M. and Penner, J. E.: Cirrus clouds in a global climate model with a statistical cirrus cloud scheme, Atmos. Chem. Phys., 10, 5449–5474, https://doi.org/10.5194/acp-10-5449-2010, 2010.
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R. H.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res.-Atmos., 119, 195–206, https://doi.org/10.1002/2013JD020824, 2014.
Wei, Y., Zhang, Q., and Thompson, J. E.: The Wetting Behavior of Fresh and
Aged Soot Studied through Contact Angle Measurements,
Atmospheric and Climate Sciences, 7, 11–22, https://doi.org/10.4236/acs.2017.71002, 2017.
Weingartner, E., Baltensperger, U., and Burtscher, H.: Growth and
Structural Change of Combustion Aerosols at High Relative Humidity, Environ.
Sci. Technol., 29, 2982–2986, https://doi.org/10.1021/es00012a014, 1995.
Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties
of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327,
https://doi.org/10.1016/S1352-2310(97)00023-X, 1997.
Welti, A., Kanji, Z. A., Lüönd, F., Stetzer, O., and Lohmann, U.:
Exploring the Mechanisms of Ice Nucleation on Kaolinite: From Deposition
Nucleation to Condensation Freezing, J. Atmos. Sci., 71, 16–36,
https://doi.org/10.1175/jas-d-12-0252.1, 2014.
Wentzel, M., Gorzawski, H., Naumann, K. H., Saathoff, H., and Weinbruch, S.:
Transmission electron microscopical and aerosol dynamical characterization
of soot aerosols, J. Aerosol Sci., 34, 1347–1370,
https://doi.org/10.1016/S0021-8502(03)00360-4, 2003.
Westreich, P., Fortier, H., Flynn, S., Foster, S., and Dahn, J. R.: Exclusion
of Salt Solutions from Activated Carbon Pores and the Relationship to
Contact Angle on Graphite, J. Phys. Chem. C, 111, 3680–3684,
https://doi.org/10.1021/jp066800z, 2007.
Wettlaufer, J. S.: Crystal Growth, Surface Phase Transitions and
Thermomolecular Pressure, in: Ice Physics and the Natural Environment, edited
by: Wettlaufer, J. S., Dash, J. G., and Untersteiner, N., Springer,
Berlin, Heidelberg, Germany, 39–67, https://doi.org/10.1007/978-3-642-60030-2_4, 1999.
Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation,
Phys. Rev. B, 27, 5686–5697, https://doi.org/10.1103/PhysRevB.27.5686, 1983.
Yon, J., Bescond, A., and Liu, F.: On the radiative properties of soot
aggregates – Part 1: Necking and overlapping,
J. Quant. Spectrosc. Ra., 162, 197–206, https://doi.org/10.1016/j.jqsrt.2015.03.027, 2015.
Young, T.: An essay on the cohesion of fluids, Philos. T. R. Soc. Lond., 95, 65–87, https://doi.org/10.1098/rstl.1805.0005, 1805.
Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S.,
and Li, W.: Mixing State and Fractal Dimension of Soot Particles at a Remote
Site in the Southeastern Tibetan Plateau, Environ. Sci. Technol., 53,
8227–8234, https://doi.org/10.1021/acs.est.9b01917, 2019.
Zaragoza, A., Conde, M. M., Espinosa, J. R., Valeriani, C., Vega, C., and
Sanz, E.: Competition between ices Ih and Ic in homogeneous water freezing,
J. Chem. Phys., 143, 134504, https://doi.org/10.1063/1.4931987, 2015.
Zelenay, V., Monge, M. E., D'Anna, B., George, C., Styler, S. A.,
Huthwelker, T., and Ammann, M.: Increased steady state uptake of ozone on
soot due to UV/Vis radiation, J. Geophys. Res.-Atmos., 116, D11301,
https://doi.org/10.1029/2010jd015500, 2011.
Zhang, C., Zhang, Y., Wolf, M. J., Nichman, L., Shen, C., Onasch, T. B., Chen, L., and Cziczo, D. J.: The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime, Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020, 2020.
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X.,
Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic
pollution, Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4, 2019.
Zhou, C. and Penner, J. E.: Aircraft soot indirect effect on large-scale
cirrus clouds: Is the indirect forcing by aircraft soot positive or
negative?, J. Geophys. Res.-Atmos., 119, 11303–11320,
https://doi.org/10.1002/2014JD021914, 2014.
Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and
Laskin, A.: Hydrophilic properties of aged soot, Geophys. Res. Lett.,
32, L01807, https://doi.org/10.1029/2004GL021496, 2005.
Short summary
Pores are aerosol particle features that trigger ice nucleation, as they take up water by capillary condensation below water saturation that freezes at low temperatures. The pore ice can then grow into macroscopic ice crystals making up cirrus clouds. Here, we investigate the pores in soot aggregates responsible for pore condensation and freezing (PCF). Moreover, we present a framework to parameterize soot PCF that is able to predict the ice nucleation activity based on soot properties.
Pores are aerosol particle features that trigger ice nucleation, as they take up water by...
Altmetrics
Final-revised paper
Preprint