Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of volcanic eruptions of different magnitude on stratospheric water vapor in the tropics
Clarissa Alicia Kroll
CORRESPONDING AUTHOR
Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
International Max Planck Research School on Earth System Modelling (IMPRS-ESM), Hamburg, Germany
Sally Dacie
Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
International Max Planck Research School on Earth System Modelling (IMPRS-ESM), Hamburg, Germany
Alon Azoulay
Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
now at: Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Hauke Schmidt
Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
Claudia Timmreck
Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2221, https://doi.org/10.5194/egusphere-2024-2221, 2024
Short summary
Short summary
Using a one-dimensional RCE model, we show that stratospheric aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises because sulfate aerosol, unlike CO2, absorbs mainly in spectral regions where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. This spectral masking also results in weaker radiative feedback when aerosol is present.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Preprint under review for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Abisha Mary Gnanaraj, Jiawei Bao, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2473, https://doi.org/10.5194/egusphere-2024-2473, 2024
Short summary
Short summary
We study how the Coriolis force, caused by a planet's rotation, affects the planet's energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we look at how different rotation rates change the amount of water vapor and clouds in the atmosphere, impacting the planet's climate. Our results show that slower rotations than Earth make the planet colder, while faster rotations make it warmer, reducing its habitability.
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2221, https://doi.org/10.5194/egusphere-2024-2221, 2024
Short summary
Short summary
Using a one-dimensional RCE model, we show that stratospheric aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises because sulfate aerosol, unlike CO2, absorbs mainly in spectral regions where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. This spectral masking also results in weaker radiative feedback when aerosol is present.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Evelien van Dijk, Ingar Mørkestøl Gundersen, Anna de Bode, Helge Høeg, Kjetil Loftsgarden, Frode Iversen, Claudia Timmreck, Johann Jungclaus, and Kirstin Krüger
Clim. Past, 19, 357–398, https://doi.org/10.5194/cp-19-357-2023, https://doi.org/10.5194/cp-19-357-2023, 2023
Short summary
Short summary
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by great societal changes. Here, we study the effect of the volcanic double event in 536 CE and 540 CE on climate and society in southern Norway. The combined climate and growing degree day models and high-resolution pollen and archaeological records reveal that the northern and western sites are vulnerable to crop failure with possible abandonment of farms, whereas the southeastern site is more resilient.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Mohammad M. Khabbazan, Marius Stankoweit, Elnaz Roshan, Hauke Schmidt, and Hermann Held
Earth Syst. Dynam., 12, 1529–1542, https://doi.org/10.5194/esd-12-1529-2021, https://doi.org/10.5194/esd-12-1529-2021, 2021
Short summary
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past, 17, 633–652, https://doi.org/10.5194/cp-17-633-2021, https://doi.org/10.5194/cp-17-633-2021, 2021
Short summary
Short summary
The 13 kyr BP Laacher See eruption impacted local environments, human communities and climate. We have simulated the evolution of its fine ash and sulfur cloud such that it reflects the empirically known ash distribution. In our models, the heating of the ash causes a mesocyclone which changes the dispersion of the cloud itself, resulting in enhanced transport to low latitudes. This may partially explain why no Laacher See ash has yet been found in Greenlandic ice cores.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Short summary
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This includes an extension of the model dynamics from a shallow to a deep atmosphere
and the implementation of upper-atmosphere physics parameterizations.
Idealized test cases and climate simulations are performed in order to evaluate this new configuration, named UA-ICON.
Ina Tegen, David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Isabelle Bey, Nick Schutgens, Philip Stier, Duncan Watson-Parris, Tanja Stanelle, Hauke Schmidt, Sebastian Rast, Harri Kokkola, Martin Schultz, Sabine Schroeder, Nikos Daskalakis, Stefan Barthel, Bernd Heinold, and Ulrike Lohmann
Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, https://doi.org/10.5194/gmd-12-1643-2019, 2019
Short summary
Short summary
We describe a new version of the aerosol–climate model ECHAM–HAM and show tests of the model performance by comparing different aspects of the aerosol distribution with different datasets. The updated version of HAM contains improved descriptions of aerosol processes, including updated emission fields and cloud processes. While there are regional deviations between the model and observations, the model performs well overall.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck
Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, https://doi.org/10.5194/esd-9-701-2018, 2018
Martin G. Schultz, Scarlet Stadtler, Sabine Schröder, Domenico Taraborrelli, Bruno Franco, Jonathan Krefting, Alexandra Henrot, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Colombe Siegenthaler-Le Drian, Sebastian Wahl, Harri Kokkola, Thomas Kühn, Sebastian Rast, Hauke Schmidt, Philip Stier, Doug Kinnison, Geoffrey S. Tyndall, John J. Orlando, and Catherine Wespes
Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, https://doi.org/10.5194/gmd-11-1695-2018, 2018
Short summary
Short summary
The chemistry–climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols. It thus allows for detailed investigations of chemical processes in the climate system. Evaluation of the model with various observational data yields good results, but the model has a tendency to produce too much OH in the tropics. This highlights the important interplay between atmospheric chemistry and dynamics.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Katharina Meraner and Hauke Schmidt
Atmos. Chem. Phys., 18, 1079–1089, https://doi.org/10.5194/acp-18-1079-2018, https://doi.org/10.5194/acp-18-1079-2018, 2018
Short summary
Short summary
Using a coupled Earth system model and radiative transfer modeling we show that the radiative forcing of a winter polar mesospheric ozone loss due to energetic particle precipitation is negligible. A climate impact of a mesospheric ozone loss as suggested by Andersson et al. (2014, Nature Communications) seems unlikely. A winter polar stratospheric ozone loss due to energetic particle precipitation leads to a small warming of the stratosphere, but only a few statistically significant changes.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Matthew Toohey, Bjorn Stevens, Hauke Schmidt, and Claudia Timmreck
Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, https://doi.org/10.5194/gmd-9-4049-2016, 2016
Short summary
Short summary
Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. The Easy Volcanic Aerosol (EVA) volcanic forcing generator provides a tool whereby the optical properties of volcanic aerosols can be included in climate model simulations in a self-consistent, complete, and flexible manner. EVA is based on satellite observations of the 1991 Pinatubo eruption but can be applied to any real or hypothetical eruption of interest.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering
The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions
Liyun Zhao, Yi Yang, Wei Cheng, Duoying Ji, and John C. Moore
Atmos. Chem. Phys., 17, 6547–6564, https://doi.org/10.5194/acp-17-6547-2017, https://doi.org/10.5194/acp-17-6547-2017, 2017
Short summary
Short summary
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of high-mountain Asia glaciers by about 50 % by 2069 relative to losses from RCP8.5. The reduction in mean precipitation expected for solar geoengineering is less important than the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering in 2069 leads to temperature rise of 1.3 °C and corresponding increase in glacier volume loss rate.
M. M. Joshi and G. S. Jones
Atmos. Chem. Phys., 9, 6109–6118, https://doi.org/10.5194/acp-9-6109-2009, https://doi.org/10.5194/acp-9-6109-2009, 2009
Cited articles
Angell, J. K.: Stratospheric warming due to Agung, El Chichón, and Pinatubo
taking into account the quasi-biennial oscillation, J. Geophys.
Res.-Atmos., 102, 9479–9485,
https://doi.org/10.1029/96JD03588, 1997. a
Azoulay, A., Schmidt, H., and Timmreck, C.: The Arctic polar vortex response to volcanic forcing of different strengths, J. Geophys. Res., submitted, further information available at: http://hdl.handle.net/21.11116/0000-0007-8B38-E (last access: 20 November 2020), 2021 (primary data available at: https://pure.mpg.de/pubman/item/item_3270673_8/component/file_3314921/JGR-D_Azoulay-2021.tar.gz?mode=download, last access: 13 September 2019). a, b, c, d
Bekki, S.: Oxidation of volcanic SO2: A sink for stratospheric OH and H2O,
Geophys. Res. Lett., 22, 913–916, https://doi.org/10.1029/95GL00534, 1995. a
Boucher, O., Kleinschmitt, C., and Myhre, G.: Quasi-Additivity of the Radiative
Effects of Marine Cloud Brightening and Stratospheric Sulfate Aerosol
Injection, Geophys. Res. Lett., 44, 11158–11165,
https://doi.org/10.1002/2017GL074647, 2017. a
Brewer, A. W.: Evidence for a world circulation provided by the measurements of
helium and water vapour distribution in the stratosphere, Q. J.
Roy. Meteor. Soc., 75, 351–363,
https://doi.org/10.1002/qj.49707532603, 1949. a
Case, P. A., Tsigaridis, K., and LeGrande, A. N.: The Effect of Stratospheric
Water Vapor in Large Volcanic Eruptions on Climate and Atmospheric
Composition, in: AGU Fall Meeting, San Fracisco, California, 14–18 December
2015, A51N-0270, AGU, available at:
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/79947 (last access: 13 September 2020),
2015. a
Dacie, S., Kluft, L., Schmidt, H., Stevens, B., Buehler, S. A., Nowack, P. J.,
Dietmüller, S., Abraham, N. L., and Birner, T.: A 1D RCE Study of Factors
Affecting the Tropical Tropopause Layer and Surface Climate, J.
Climate, 32, 6769–6782, https://doi.org/10.1175/JCLI-D-18-0778.1, 2019. a
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K. H.:
Stratospheric water vapor feedback, P. Natl. Acad.
Sci. USA, 110, 18087–18091,
https://doi.org/10.1073/pnas.1310344110, 2013. a
Diallo, M., Ploeger, F., Konopka, P., Birner, T., Müller, R., Riese, M.,
Garny, H., Legras, B., Ray, E., Berthet, G., and Jegou, F.: Significant
Contributions of Volcanic Aerosols to Decadal Changes in the Stratospheric
Circulation, Geophys. Res. Lett., 44, 10780–10791,
https://doi.org/10.1002/2017GL074662, 2017. a
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled
Model Intercomparison Project 5 (CMIP5) simulations of climate following
volcanic eruptions, J. Geophys. Res.-Atmos., 117,
D17105, https://doi.org/10.1029/2012JD017607, 2012. a
Fels, S. B., Mahlman, J., Schwarzkopf, M., and Sinclair, R.: Stratospheric
Sensitivity to Perturbations in Ozone and Carbon Dioxide: Radiative and
Dynamical Response, Journal of Atmospheric Sciences, 37, 2265–2297,
https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2, 1980. a
Forster, P. M., Richardson, T., Maycock, A. C., Christopher J. Smith, C. J.,
Samset, B. H., Myhre, G., Timothy Andrews, Timothy Pincus, R., and Schulz,
M.: Recommendations for diagnosing effective radiative forcing from climate
models for CMIP6, J. Geophys. Res.-Atmos., 121,
12460–12475, https://doi.org/10.1002/2016JD025320, 2016. a
Forster, P. M. d. F. and Shine, K. P.: Assessing the climate impact of trends
in stratospheric water vapor, Geophys. Res. Lett., 29, 10-1–10-4,
https://doi.org/10.1029/2001GL013909, 2002. a, b, c
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, 1606,
https://doi.org/10.1029/2008RG000267, 2009. a
Fueglistaler, S., Liu, Y. S., Flannaghan, T. J., Haynes, P. H., Dee, D. P.,
Read, W. J., Remsberg, E. E., Thomason, L. W., Hurst, D. F., Lanzante, J. R.,
and Bernath, P. F.: The relation between atmospheric humidity and temperature
trends for stratospheric water, J. Geophys. Res.-Atmos.,
118, 1052–1074, https://doi.org/10.1002/jgrd.50157, 2013. a, b, c
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013. a
Glaze, L. S., Baloga, S. M., and Wilson, L.: Transport of atmospheric water
vapor by volcanic eruption columns, J. Geophys. Res.-Atmos., 102, 6099–6108, https://doi.org/10.1029/96JD03125, 1997. a
Hall, T. M. and Waugh, D.: Tracer transport in the tropical stratosphere due to
vertical diffusion and horizontal mixing, Geophys. Res. Lett., 24,
1383–1386, https://doi.org/10.1029/97GL01289, 1997. a
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto,
V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E.,
Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J.,
Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas,
V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone,
P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and
Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005. a, b, c
Huang, Y., Wang, Y., and Huang, H.: Stratospheric Water Vapor Feedback
Disclosed by a Locking Experiment, Geophys. Res. Lett., 47,
e2020GL087987, https://doi.org/10.1029/2020GL087987, 2020. a
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth system model in
different CMIP5 experimental realizations, J. Adv. Model.
Earth Sy., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Kilian, M., Brinkop, S., and Jöckel, P.: Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere, Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020, 2020. a
Kluft, L. and Dacie, S.: atmtools/konrad: A radiative–convective equilibrium model for Python, Zenodo [data set], https://doi.org/10.5281/zenodo.2597967, 2019. a
Kluft, L., Dacie, S., Buehler, S. A., Schmidt, H., and Stevens, B.:
Re-Examining the First Climate Models: Climate Sensitivity of a Modern
Radiative–Convective Equilibrium Model, J. Climate, 32, 8111–8125,
https://doi.org/10.1175/JCLI-D-18-0774.1, 2019. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Miyaoka, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahshini, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Krishnamohan, K.-P. S.-P., Bala, G., Cao, L., Duan, L., and Caldeira, K.:
Climate system response to stratospheric sulfate aerosols: sensitivity to
altitude of aerosol layer, Earth Syst. Dynam., 10, 885–900,
https://doi.org/10.5194/esd-10-885-2019, 2019. a, b
Kroll, C. A.: Supplementary Material to “The impact of volcanic eruptions of different magnitude on stratospheric water vapour in the tropics”, available at: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3270686, last access: 20 November 2020. a
LeGrande, A. N., Tsigaridis, K., and Bauer, S. E.: Role of atmospheric
chemistry in the climate impacts of stratospheric volcanic injections, Nat.
Geosci., 9, 652–655, https://doi.org/10.1038/ngeo2771,
2016. a
Löffler, M., Brinkop, S., and Jöckel, P.: Impact of major volcanic eruptions on stratospheric water vapour, Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, 2016. a, b, c
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C.,
Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M.,
Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The
Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Sy., 11,
2050–2069, https://doi.org/10.1029/2019MS001639, 2019. a, b
Marshall, L., Schmidt, A., Toohey, M., Carslaw, K. S., Mann, G. W., Sigl, M., Khodri, M., Timmreck, C., Zanchettin, D., Ball, W. T., Bekki, S., Brooke, J. S. A., Dhomse, S., Johnson, C., Lamarque, J.-F., LeGrande, A. N., Mills, M. J., Niemeier, U., Pope, J. O., Poulain, V., Robock, A., Rozanov, E., Stenke, A., Sukhodolov, T., Tilmes, S., Tsigaridis, K., and Tummon, F.: Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, 2018. a
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Röske, F.: The
Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear
coordinates, Ocean Model., 5, 91–127,
https://doi.org/10.1016/S1463-5003(02)00015-X, 2003. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H.,
Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S.,
Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B.,
Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira,
S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp,
M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T.,
Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein,
L., Stemmler, I., Stevens, B., Storch, J.-S., Tian, F., Voigt, A., Vrese, P.,
Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments
in the MPI–M Earth System Model version 1.2 (MPI–ESM1.2) and Its Response
to Increasing CO2, J. Adv. Model. Earth Sy., 11,
998–1038, https://doi.org/10.1029/2018MS001400, 2019. a
Möbis, B. and Stevens, B.: Factors controlling the position of the
Intertropical Convergence Zone on an aquaplanet, J. Adv.
Model. Earth Sy., 4, https://doi.org/10.1029/2012MS000199, 2012. a
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C.,
Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell, J. M., and
Waters, J. W.: An atmospheric tape recorder: The imprint of tropical
tropopause temperatures on stratospheric water vapor, J. Geophys.
Res.-Atmos., 101, 3989–4006, https://doi.org/10.1029/95JD03422, 1996. a, b, c, d
Murcray, D. G., Murcray, F. J., Barker, D. B., and Mastenbrook, H. J.: Changes
in stratospheric water vapor associated with the mount St. Helens eruption,
Science (New York, N. Y.), 211, 823–824, https://doi.org/10.1126/science.211.4484.823,
1981. a
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J.
Roy. Meteor. Soc., 131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005. a, b, c
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D.,
Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic
and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel of Climate Change,
available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (last access: 10 June 2020),
2013. a
Oltmans, S., Voemel, H., Kley, D., Hofmann, K. P., and Rosenlof, K.: Increase
in stratospheric water vapor from balloon-borne, frostpoint hygrometer
measurements at Washington, DC and Boulder, Colorado, Geophys. Res.
Lett., 27, 3453–3456, 2000. a
Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S., and Nielsen, J. E.:
Understanding the Changes of Stratospheric Water Vapor in Coupled Chemistry
Climate Model Simulations, J. Atmos. Sci., 65, 3278–3291, https://doi.org/10.1175/2008JAS2696.1, 2008. a
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv.
Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S.,
Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Robrecht, S., Vogel, B., Grooß, J.-U., Rosenlof, K., Thornberry, T., Rollins, A., Krämer, M., Christensen, L., and Müller, R.: Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer, Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, 2019. a
Rosenlof, K. H.: Changes in water vapor and aerosols and their relation to
stratospheric ozone, C. R. Geosci., 350, 376–383,
https://doi.org/10.1016/j.crte.2018.06.014, 2018. a
Rosenlof, K. H., Oltmans, S. J., Kley, D., Russell, J. M., Chiou, E.-W., Chu,
W. P., Johnson, D. G., Kelly, K. K., Michelsen, H. A., Nedoluha, G. E.,
Remsberg, E. E., Toon, G. C., and McCormick, M. P.: Stratospheric water vapor
increases over the past half-century, Geophys. Res. Lett., 28,
1195–1198, https://doi.org/10.1029/2000GL012502, 2001. a
Santer, B. D., Sausen, R., Wigley, T. M. L., Boyle, J. S., AchutaRao, K.,
Doutriaux, C., Hansen, J. E., Meehl, G. A., Roeckner, E., Ruedy, R., Schmidt,
G., and Taylor, K. E.: Behavior of tropopause height and atmospheric
temperature in models, reanalyses, and observations: Decadal changes, J. Geophys. Res.-Atmos., 108, ACL 1-1–ACL 1-22,
https://doi.org/10.1029/2002JD002258, 2003. a
Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne, S., Krismer,
T., Stenchikov, G., Timmreck, C., Tomassini, L., and Walz, M.: Response of
the middle atmosphere to anthropogenic and natural forcings in the CMIP5
simulations with the Max Planck Institute Earth system model, J.
Adv. Model. Earth Sy., 5, 98–116, https://doi.org/10.1002/jame.20014,
2013. a, b
Schneck, R., Reick, C. H., and Raddatz, T.: Land contribution to natural CO2
variability on time scales of centuries, J. Adv. Model.
Earth Sy., 5, 354–365, https://doi.org/10.1002/jame.20029, 2013. a
Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433–8446, https://doi.org/10.5194/acp-11-8433-2011, 2011. a
Schwartz, M. J., Read, W. G., Santee, M. L., Livesey, N. J., Froidevaux, L.,
Lambert, A., and Manney, G. L.: Convectively injected water vapor in the
North American summer lowermost stratosphere, Geophys. Res. Lett.,
40, 2316–2321, https://doi.org/10.1002/grl.50421, 2013. a, b
Sioris, C. E., Malo, A., McLinden, C. A., and D'Amours, R.: Direct injection of
water vapor into the stratosphere by volcanic eruptions, Geophys. Res.
Lett., 43, 7694–7700, https://doi.org/10.1002/2016GL069918, 2016a.
a, b
Sioris, C. E., Zou, J., McElroy, C. T., Boone, C. D., Sheese, P. E., and Bernath, P. F.: Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions, Atmos. Chem. Phys., 16, 2207–2219, https://doi.org/10.5194/acp-16-2207-2016, 2016b. a
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., and Robock, A.: Global
cooling after the eruption of Mount Pinatubo: a test of climate feedback by
water vapor, Science (New York, N. Y.), 296, 727–730,
https://doi.org/10.1126/science.296.5568.727, 2002. a, b
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science (New York,
N. Y.), 327, 1219–1223, https://doi.org/10.1126/science.1182488, 2010. a, b
Stenchikov, G. L., Kirchner, I., Robock, A., Graf, H.-F., Antuña, J. C.,
Grainger, R. G., Lambert, A., and Thomason, L.: Radiative forcing from the
1991 Mount Pinatubo volcanic eruption, J. Geophys. Res.-Atmos., 103, 13837–13857, https://doi.org/10.1029/98JD00693, 1998. a
Stevens, B. and Bony, S.: Water in the atmosphere, Phys. Today, 66, 29–34,
https://doi.org/10.1063/PT.3.2009, 2013. a
Tao, M., Konopka, P., Ploeger, F., Yan, X., Wright, J. S., Diallo, M., Fueglistaler, S., and Riese, M.: Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products, Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, 2019. a, b, c, d, e, f, g, h
Tian, W., Chipperfield, M. P., and Lü, D.: Impact of increasing
stratospheric water vapor on ozone depletion and temperature change, Adv.
Atmos. Sci., 26, 423–437, https://doi.org/10.1007/s00376-009-0423-3, 2009. a
Timmreck, C., Mann, G. W., Aquila, V., Hommel, R., Lee, L. A., Schmidt, A., Brühl, C., Carn, S., Chin, M., Dhomse, S. S., Diehl, T., English, J. M., Mills, M. J., Neely, R., Sheng, J., Toohey, M., and Weisenstein, D.: The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018. a, b, c, d, e, f
Toohey, M., Stevens, B., Schmidt, H., and Timmreck, C.: Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations, Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, 2016. a
Wang, T., Zhang, Q., Kuilman, M., and Hannachi, A.: Response of stratospheric
water vapour to CO2 doubling in WACCM, Clim. Dynam., 54, 4877–4889,
https://doi.org/10.1007/s00382-020-05260-z, 2020. a
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as...
Altmetrics
Final-revised paper
Preprint