Articles | Volume 21, issue 24
https://doi.org/10.5194/acp-21-18707-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-18707-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Three years of size-resolved eddy-covariance particle number flux measurements in an urban environment
Agnes Straaten
CORRESPONDING AUTHOR
Institute of Geoecology, Technische Universität Braunschweig,
Braunschweig, 38106, Germany
Stephan Weber
Institute of Geoecology, Technische Universität Braunschweig,
Braunschweig, 38106, Germany
Related authors
No articles found.
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev., 18, 5329–5349, https://doi.org/10.5194/gmd-18-5329-2025, https://doi.org/10.5194/gmd-18-5329-2025, 2025
Short summary
Short summary
The greening of cities is recommended to limit the effects of climate change. In particular, green roofs can provide numerous environmental benefits, such as urban cooling, water retention, and carbon sequestration. The aim of this research is to develop a new module for calculating green roof CO2 fluxes within a model that can already simulate hydrological and thermal processes of such roofs. The calibration and evaluation of this module take advantage of long-term experimental data.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
Cited articles
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance. A Practical
Guide to Measurement and Data Analysis, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-2351-1, 2012.
Bäfver, L. S., Leckner, B., Tullin, C., and Berntsen, M.: Particle emissions
from pellets stoves and modern and old-type wood stoves, Biomass Bioenerg.,
35, 3648–3655, https://doi.org/10.1016/j.biombioe.2011.05.027, 2011.
Baldocchi, D.: Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future, Glob. Change
Biol., 9, 479–492, 2003.
Burba, G. and Anderson, D.: A brief practical Guide to Eddy Covariance Flux Measurements, Principles and workflow examples for scientific and industrial applications, LI-COR Biosciences, Lincoln, Nebraska, USA, 2010.
Buzorius, G.: Cut-Off Sizes and Time Constants of the CPC TSI 3010 Operating
at 1–3 lpm Flow Rates, Aerosol Sci. Tech., 35, 577–585, https://doi.org/10.1080/02786820121505, 2001.
Buzorius, G., Rannik, Ü., Mäkelä, J. M., Vesala, T., and Kulmala,
M.: Vertical aerosol particle fluxes measured by eddy covariance technique
using condensational particle counter, J. Aerosol Sci., 29, 157–171,
https://doi.org/10.1016/S0021-8502(97)00458-8, 1998.
Buzorius, G., Rannik, Ü., Mäkelä, J. M., Keronen, P., Vesala,
T., and Kulmala, M.: Vertical aerosol fluxes measured by the eddy covariance
method and deposition of nucleation mode particles above a Scots pine forest
in southern Finland, J. Geophys. Res., 105, 19905–19916, https://doi.org/10.1029/2000JD900108, 2000.
Conte, M., Donateo, A., and Contini, D.: Characterisation of particle size
distributions and corresponding size-segregated turbulent fluxes
simultaneously with CO2 exchange in an urban area, Sci. Total Environ.,
622–623, 1067–1078, https://doi.org/10.1016/j.scitotenv.2017.12.040, 2018.
Contini, D., Donateo, A., Elefante, C., Grasso, F. M.: Analysis of particles
and carbon dioxide concentrations and fluxes in an urban area. Correlation
with traffic rate and local micrometeorology, Atmos. Environ., 46,
25–35, https://doi.org/10.1016/j.atmosenv.2011.10.039, 2012.
Damay, P. E., Maro, D., Coppalle, A., Lamaud, E., Connan, O., Hébert,
D., Talbaut, M., and Irvine, M.: Size-resolved eddy covariance measurements of
fine particle vertical fluxes, J. Aerosol Sci., 40, 1050–1058, https://doi.org/10.1016/j.jaerosci.2009.09.010, 2009.
Deventer, M. J., Griessbaum, F., and Klemm, O.: Size-resolved flux measurement
of sub-micrometer particles over an urban area, Metz, 22, 729–737, https://doi.org/10.1127/0941-2948/2013/0441, 2013.
Deventer, M. J., El-Madany, T., Griessbaum, F., and Klemm, O.: One-year
measurement of size-resolved particle fluxes in an urban area, Tellus B, 67, 25531, https://doi.org/10.3402/tellusb.v67.25531, 2015.
Deventer, M. J., Heyden, L. von der, Lamprecht, C., Graus, M., Karl, T., and
Held, A.: Aerosol particles during the Innsbruck Air Quality Study (INNAQS),
Fluxes of nucleation to accumulation mode particles in relation to selective
urban tracers, Atmos. Environ., 190, 376–388, https://doi.org/10.1016/j.atmosenv.2018.04.043, 2018.
Dorsey, J. R., Nemitz, E., Gallagher, M. W., Fowler, D., Williams, P. I.,
Bower, K. N., and Beswick, K. M.: Direct measurements and parameterisation of
aerosol flux, concentration and emission velocity above a city, Atmos.
Environ., 36, 791–800, https://doi.org/10.1016/S1352-2310(01)00526-X, 2002.
Farmer, D. K., Boedicker, E. K., and DeBolt, H. M.: Dry Deposition of
Atmospheric Aerosols. Approaches, Observations, and Mechanisms, Annu. Rev.
Phys. Chem., 72, 375–397, https://doi.org/10.1146/annurev-physchem-090519-034936,
2021.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res., 106, 3503–3509, https://doi.org/10.1029/2000JD900731, 2001.
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-Field Data Quality Control, in: Handbook of Micrometeorology, edited
by: Lee, X., Massman, W., and Law, B., Atmos. Ocean. Sci. Lib., 29, Springer,
Dordrecht, https://doi.org/10.1007/1-4020-2265-4_9,
2004.
Geoportal Berlin: Biotoptypen (Umweltatlas), license “dl-de/by-2-0”, available at:
https://fbinter.stadt-berlin.de/fb/berlin/service_intern.jsp?id=s_fb_berlinbtk@senstadt&type=WFS (last access: 20 May 2021), 2014.
Geoportal Berlin: ALKIS Berlin Gebäude, license “dl-de/by-2-0”, available at: https://fbinter.stadt-berlin.de/fb/berlin/service_intern.jsp?id=s_wfs_alkis_gebaeudeflaechen@senstadt&type=WFS, last access: 20 May 2021.
Gerling, L., Löschau, G., Wiedensohler, A., and Weber, S.: Statistical
modelling of roadside and urban background ultrafine and accumulation mode
particle number concentrations using generalized additive models, Sci. Total
Environ., 703, 134570, https://doi.org/10.1016/j.scitotenv.2019.134570, 2020.
Gioli, B., Toscano, P., Zaldei, A., Fratini, G., and Miglietta, F.: CO2, CH4 and
Particles Flux Measurements in Florence, Italy, Enrgy. Proced., 40, 537–544,
https://doi.org/10.1016/j.egypro.2013.08.062, 2013.
Harrison, R. M., Dall'Osto, M., Beddows, D. C. S., Thorpe, A. J., Bloss, W. J., Allan, J. D., Coe, H., Dorsey, J. R., Gallagher, M., Martin, C., Whitehead, J., Williams, P. I., Jones, R. L., Langridge, J. M., Benton, A. K., Ball, S. M., Langford, B., Hewitt, C. N., Davison, B., Martin, D., Petersson, K. F., Henshaw, S. J., White, I. R., Shallcross, D. E., Barlow, J. F., Dunbar, T., Davies, F., Nemitz, E., Phillips, G. J., Helfter, C., Di Marco, C. F., and Smith, S.: Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions, Atmos. Chem. Phys., 12, 3065–3114, https://doi.org/10.5194/acp-12-3065-2012, 2012.
HEI Review Panel on Ultrafine Particles: Understanding the Health Effects of Ambient Ultrafine Particles, HEI Perspectives 3, Health Effects Institute, Boston, MA, available at: https://www.healtheffects.org/system/files/Perspectives3.pdf (last access: 20 December 2021), 2013.
Heyden, L. von der, Deventer, M. J., Graus, M., Karl, T., Lamprecht, C., and
Held, A.: Aerosol particles during the Innsbruck Air Quality Study (INNAQS),
The impact of transient fluxes on total aerosol number exchange, Atmos.
Environ., 190, 389–400, https://doi.org/10.1016/j.atmosenv.2018.07.041, 2018.
Hinds, W. C.: Aerosol technology, Properties, behavior, and measurement of
airborne particles, 2nd Edn., Wiley, New York, 1999.
Horst, T. W.: A simple formula for attenuation of eddy fluxes measured with
first-order-response scalar sensors, Bound. Lay.-Meteorol., 82,
219–233, https://doi.org/10.1023/A:1000229130034, 1997.
Järvi, L., Rannik, Ü., Mammarella, I., Sogachev, A., Aalto, P. P., Keronen, P., Siivola, E., Kulmala, M., and Vesala, T.: Annual particle flux observations over a heterogeneous urban area, Atmos. Chem. Phys., 9, 7847–7856, https://doi.org/10.5194/acp-9-7847-2009, 2009.
Johnson, T., Caldow, R., Pöcher, A., Mirme, A., and Kittelson, D.: An Engine
Exhaust Particle Sizer Spectrometer for Transient Emission Particle
Measurements, Conference: 9th Diesel Engine Emissions Reduction (DEER)
Workshop 2003, Newport, RI (US), 24–28 August 2003.
Johnson, T., Caldow, R., Pöcher, A., Mirme, A., and Kittelson, D.: A New Electrical Mobility Particle Sizer Spectrometer for Engine Exhaust Particle Measurements, SAE Technical Paper Series 2004-01-1341, SEA International, USA, ISBN 0-7680-1319-4, 2004.
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy. Meteor. Soc., 98, 563–589, https://doi.org/10.1002/qj.49709841707, 1972.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kraftfahrt-Bundesamt: Anzahl der Personenkraftwagen mit Elektroantrieb im
Bundesland Berlin im Zeitraum der Jahre 2012 bis 2020, available at:
https://de.statista.com/statistik/daten/studie/709212/umfrage/personenkraftwagen-mit-elektroantrieb-in-berlin/,
last access: 21 July 2021.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M.,
Harrison, R. M., Norford, L., and Britter, R.: Ultrafine particles in cities,
Environ. Int., 66, 1–10, https://doi.org/10.1016/j.envint.2014.01.013, 2014.
Kurppa, M., Nordbo, A., Haapanala, S., and Järvi, L.: Effect of seasonal
variability and land use on particle number and CO2 exchange in Helsinki,
Finland, Urban Clim., 13, 94–109, https://doi.org/10.1016/j.uclim.2015.07.006, 2015.
Longley, I. D., Gallagher, M. W., Dorsey, J. R., Flynn, M., Allan, J. D.,
Alfarra, M. R., and Inglis, D.: A case study of aerosol (4.6 nm < Dp < 10 µm) number and mass size distribution measurements in a
busy street canyon in Manchester, UK, Atmos. Environ., 37,
1563–1571, https://doi.org/10.1016/S1352-2310(03)00010-4, 2003.
Longley, I. D., Gallagher, M. W., Dorsey, J. R., and Flynn, M.: A case-study of
fine particle concentrations and fluxes measured in a busy street canyon in
Manchester, UK, Atmos. Environ., 38, 3595–3603, https://doi.org/10.1016/j.atmosenv.2004.03.040, 2004.
Mårtensson, E. M., Nilsson, E. D., Buzorius, G., and Johansson, C.: Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment, Atmos. Chem. Phys., 6, 769–785, https://doi.org/10.5194/acp-6-769-2006, 2006.
Martin, C. L., Longley, I. D., Dorsey, J. R., Thomas, R. M., Gallagher, M.
W., and Nemitz, E.: Ultrafine particle fluxes above four major European cities,
Atmos. Environ., 43, 4714–4721, https://doi.org/10.1016/j.atmosenv.2008.10.009, 2009.
Meyer-Kornblum, A., Gerling, L., and Weber, S.: Gap-filling Fast Electrical
Mobility Spectrometer Measurements of Particle Number Size Distributions for
Eddy Covariance Application, Aerosol Air Qual. Res., 19, 2721–2731,
https://doi.org/10.4209/aaqr.2019.06.0291, 2019.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, Detrending,
and Filtering of Eddy Covariance Time Series, in: Handbook of
Micrometeorology, edited by: Lee, X., Massman, W., and Law, B., Atmos. Ocean.
Sci. Lib., 29, Springer, Dordrecht, 2004.
Moncrieff, J. B., Massheder, J. M., Bruin, H. de, Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system
to measure surface fluxes of momentum, sensible heat, water vapour and
carbon dioxide, J. Hydrol., 188–189, 589–611, 1997.
Morawska, L., Ristovski, Z., Jayaratne, E. R., Keogh, D. U., and Ling, X.:
Ambient nano and ultrafine particles from motor vehicle emissions.
Characteristics, ambient processing and implications on human exposure,
Atmos. Environ., 42, 8113–8138, https://doi.org/10.1016/j.atmosenv.2008.07.050, 2008.
Nemitz, E., Fowler, D., Dorsey, J. R., Theobald, M. R., McDonald, A. D.,
Bower, K. N., Beswick, K. M., Williams, P. I., and Gallagher, M. W.: Direct
measurements of size-segregated particle fluxes above a city, J. Aerosol
Sci., 31, 116–117, https://doi.org/10.1016/S0021-8502(00)90123-X, 2000.
Nemmar, A., Hoet, P. H. M., Vanquickenborne, B., Dinsdale, D., Thomeer, M.,
Hoylaerts, M. F., Vanbilloen, H., Mortelmans, L., and Nemery, B.: Passage of
Inhaled Particles Into the Blood Circulation in Humans, Circulation, 105, 411–414, https://doi.org/10.1161/hc0402.104118, 2002.
Oberdörster, G., Gelein, R. M., Ferin, J., and Weiss, B.: Association of
particulate air pollution and acute mortality. Involvement of ultrafine
particles?, Inhal. Toxicol., 7, 111–124, https://doi.org/10.3109/08958379509014275, 1995.
Ripamonti, G., Järvi, L., Mølgaard, B., Hussein, T., Nordbo, A., and
Hämeri, K.: The effect of local sources on aerosol particle number size
distribution, concentrations and fluxes in Helsinki, Finland, Tellus B, 65, 19786, https://doi.org/10.3402/tellusb.v65i0.19786, 2013.
Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo,
R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S., Saukko, E.,
Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä,
J., Nousiainen, P., Kousa, A., and Dal Maso, M.: Traffic is a major source of
atmospheric nanocluster aerosol, P. Natl. Acad. Sci. USA, 114,
7549–7554, https://doi.org/10.1073/pnas.1700830114, 2017.
Saylor, R. D., Baker, B. D., Lee, P., Tong, D., Pan, L., and Hicks, B. B.: The
particle dry deposition component of total deposition from air quality
models. Right, wrong or uncertain?, Tellus B, 71,
1–22, https://doi.org/10.1080/16000889.2018.1550324, 2019.
Scherer, D., Ament, F., Emeis, S., Fehrenbach, U., Leitl, B., Scherber, K.,
Schneider, C., and Vogt, U.: Three-Dimensional Observation of Atmospheric
Processes in Cities, Metz, 28, 121–138, https://doi.org/10.1127/metz/2019/0911,
2019.
Schmidt, A. and Klemm, O.: Direct determination of highly size-resolved turbulent particle fluxes with the disjunct eddy covariance method and a 12 – stage electrical low pressure impactor, Atmos. Chem. Phys., 8, 7405–7417, https://doi.org/10.5194/acp-8-7405-2008, 2008.
Schraufnagel, D. E.: The health effects of ultrafine particles, Exp. Mol.
Med., 52, 311–317, https://doi.org/10.1038/s12276-020-0403-3, 2020.
Straaten, A. and Weber, S.: Three years of size-resolved eddy-covariance
particle number flux measurements in Berlin, Germany, Publication server of Technische Universtität Braunschweig [data set], https://doi.org/10.24355/dbbs.084-202107221337-0, 2021.
Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, Ü.,
Dal Maso, M., Kulmala, M., and Vesala, T.: Long-term measurements of surface
fluxes above a Scots pine forest in Hyytiälä, southern Finland,
1996–2001, Boreal Environ. Res., 8, 287–301, 2003.
Tie, X., Wu, D., and Brasseur, G.: Lung cancer mortality and exposure to
atmospheric aerosol particles in Guangzhou, China, Atmos. Environ., 43, 2375–2377, https://doi.org/10.1016/j.atmosenv.2009.01.036, 2009.
Tsang, H., Kwok, R., and Miguel, A. H.: Pedestrian Exposure to Ultrafine
Particles in Hong Kong Under Heavy Traffic Conditions, Aerosol Air Qual.
Res., 8, 19–27, 2008.
TSI, Inc.: Engine Exhaust Particle Sizer (EEPSTM) Spectrometer Model 3090/3090AK, Operation and Service Manual, TSI Incorporated, Minnesota, USA, 2015.
Umweltatlas Berlin: Verkehrsmengen DTV 2014 (Umweltatlas), license
“dl-de/by-2-0”, available at:
https://fbinter.stadt-berlin.de/fb/berlin/service_intern.jsp?id=wfs_07_01verkmeng2014@senstadt&type=WFS (last access: 20 May 2021), 2017.
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for Tower
and Aircraft Data, J. Atmos. Ocean. Tech., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Vogt, M., Nilsson, E. D., Ahlm, L., Mårtensson, E. M., and Johansson, C.:
Seasonal and diurnal cycles of 0.25–2.5 µm aerosol fluxes over urban
Stockholm, Sweden, Tellus B, 63, 935–951, https://doi.org/10.1111/j.1600-0889.2011.00551.x, 2011a.
Vogt, M., Nilsson, E. D., Ahlm, L., Mårtensson, E. M., Struthers, H., and
Johansson, C.: Traffic aerosol emission velocity derived from direct flux
measurements over urban Stockholm, Sweden, Atmos. Environ., 45,
5725–5731, https://doi.org/10.1016/j.atmosenv.2011.07.026, 2011b.
Weber, S., Kordowski, K., and Kuttler, W.: Variability of particle number
concentration and particle size dynamics in an urban street canyon under
different meteorological conditions, Sci. Total Environ., 449, 102–114,
https://doi.org/10.1016/j.scitotenv.2013.01.044, 2013.
Wiedensohler, A, Wehner, B., and Birmili, W.: Aerosol Number Concentrations and
Size Distributions at Mountain-Rural, Urban-Influenced Rural, and
Urban-Background Sites in Germany, J. Aerosol Med., 15, 237–243, 2002.
Zhu, Y., Eiguren-Fernandez, A., Hinds, W. C., and Miguel, A. H.: In-cabin
commuter exposure to ultrafine particles on Los Angeles freeways, Environ.
Sci. Technol., 41, 2138–2145, https://doi.org/10.1021/es0618797, 2007.
Short summary
Cities show high concentrations of ultrafine particles due to multiple emission sources such as traffic and industry. To analyse turbulent urban surface–atmosphere exchange of particles, we quantified multi-annual size-resolved particle number fluxes in Berlin, Germany. The site was a net source of particles with a dominant contribution of traffic-related emission, especially very small particles < 30 nm. Particle fluxes clearly varied as a function of anthropogenic activity and urban land use.
Cities show high concentrations of ultrafine particles due to multiple emission sources such as...
Altmetrics
Final-revised paper
Preprint