Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-16645-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16645-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
School of GeoSciences, The University of Edinburgh, Edinburgh, UK
Michael J. Schwartz
NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA
Michelle L. Santee
NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA
George P. Kablick III
Remote Sensing
Division, US Naval Research Lab, Washington DC, USA
Michael D. Fromm
Remote Sensing
Division, US Naval Research Lab, Washington DC, USA
Nathaniel J. Livesey
NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA
Related authors
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Norbert Glatthor, Thomas von Clarmann, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Gabriele P. Stiller, Bernd Funke, Maya Garcia-Comas, Manuel Lopez-Puertas, Oliver Kirner, and Michelle L. Santee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3352, https://doi.org/10.5194/egusphere-2025-3352, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a global climatology of MIPAS version 8 chlorine monoxide (ClO), retrieved from spaceborne observations between 2002 and 2012. Due to an improved retrieval setup, the high bias and poor vertical resolution of upper stratospheric ClO, which had affected the previous V5 data set, has been removed. Comparisons with ClO observations of the Microwave Limb Sounder generally show good agreement. Differences can be explained by simulations with an atmospheric chemistry model.
Nadia Smith, Michelle L. Santee, and Christopher D. Barnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1569, https://doi.org/10.5194/egusphere-2025-1569, 2025
Short summary
Short summary
Once Aura is decommissioned, the multi-decadal MLS record of stratospheric HNO3 will end. This paper presents the retrieval of HNO3 from nadir IR sounders, AIRS and CrIS. We show how the CLIMCAPS approach allows HNO3 to be reported as a partial stratospheric column that is largely independent of tropospheric noise and reflects the variation captured by MLS. This novel retrieval approach improves upon the status quo and lays the foundation for validation studies and product roll-out in future.
Paul Konopka, Felix Ploeger, Francesco D'Amato, Teresa Campos, Marc von Hobe, Shawn B. Honomichl, Peter Hoor, Laura L. Pan, Michelle L. Santee, Silvia Viciani, Kaley A. Walker, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1155, https://doi.org/10.5194/egusphere-2025-1155, 2025
Short summary
Short summary
We present an improved version of the Chemical Lagrangian Model of the Stratosphere (CLaMS-3.0), which better represents transport from the lower atmosphere to the upper troposphere and lower stratosphere. By refining grid resolution and improving convection representation, the model more accurately simulates carbon monoxide transport. Comparisons with satellite and in situ observations highlight its ability to capture seasonal variations and improve our understanding of atmospheric transport.
Louis Rivoire, Marianna Linz, Jessica L. Neu, Pu Lin, and Michelle L. Santee
Atmos. Chem. Phys., 25, 2269–2289, https://doi.org/10.5194/acp-25-2269-2025, https://doi.org/10.5194/acp-25-2269-2025, 2025
Short summary
Short summary
The recovery of the ozone hole since the 1987 Montreal Protocol has been observed in some regions but has yet to be seen globally. We ask how long it will take to witness a global recovery. Using a technique akin to flying a virtual satellite in a climate model, we find that the degree of confidence we place in the answer to this question is dramatically affected by errors in satellite observations.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
Atmos. Chem. Phys., 25, 597–624, https://doi.org/10.5194/acp-25-597-2025, https://doi.org/10.5194/acp-25-597-2025, 2025
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper-tropospheric O3 is well matched by model trends. We find that changes in modeled industrial CO surface emissions lead to better model agreement with observed slight decreases in upper-tropospheric CO.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Michael J. Prather, Lucien Froidevaux, and Nathaniel J. Livesey
Atmos. Chem. Phys., 23, 843–849, https://doi.org/10.5194/acp-23-843-2023, https://doi.org/10.5194/acp-23-843-2023, 2023
Short summary
Short summary
From satellite data for nitrous oxide (N2O), ozone and temperature, we calculate the monthly loss of N2O and find it is increasing faster than expected, resulting in a shorter lifetime, which reduces the impact of anthropogenic emissions. We identify the cause as enhanced vertical lofting of high-N2O air into the tropical middle stratosphere, where it is destroyed photochemically. Because global warming is due in part to N2O, this finding presents a new negative climate-chemistry feedback.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022, https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Short summary
We analyze satellite-derived distributions of chlorine monoxide (ClO) and hypochlorous acid (HOCl) in the upper atmosphere. For 2005–2020, from 50°S to 50°N and over ~30 to 45 km, ClO and HOCl decreased by −0.7 % and −0.4 % per year, respectively. A detailed model of chemistry and dynamics agrees with the results. These decreases confirm the effectiveness of the 1987 Montreal Protocol, which limited emissions of chlorine- and bromine-containing source gases, in order to protect the ozone layer.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021, https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Short summary
In this study we present an improved cloud detection scheme for the Microwave Limb Sounder, which is based on a feedforward artificial neural network. This new algorithm is shown not only to reliably detect high and mid-level convection containing even small amounts of cloud water but also to distinguish between high-reaching and mid-level to low convection.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
Short summary
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for 2005–2018 obtained from the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT instruments. The evaluation results demonstrate the capability of the reanalysis products to improve understanding of the processes controlling variations in atmospheric composition, including long-term changes in air quality and emissions.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a, b
Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018. a, b, c
Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET, Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, 2019. a
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle,
J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A.,
Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I.,
Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in
the Earth System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886,
2009. a
British Columbia Wildfire Service: Fire Perimeters – Historical,
available at: https://catalogue.data.gov.bc.ca/dataset/22c7cb44-1463-48f7-8e47-88857f207702 (last access: 29 June 2019), 2018. a
Das, S., Colarco, P. R., Oman, L. D., Taha, G., and Torres, O.: The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere, Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, 2021. a
Dowdy, A. J., Fromm, M. D., and McCarthy, N.: Pyrocumulonimbus lightning and
fire ignition on Black Saturday in southeast Australia, J. Geophys. Res.-Atmos., 122, 7342–7354, https://doi.org/10.1002/2017JD026577, 2017. a
FLEXPART: https://www.flexpart.eu/, last access: 15 October 2021. a
Fromm, M.: Interactive comment on “Transport of the 2017 Canadian wildfire
plume to the tropics and global stratosphere via the Asian monsoon
circulation” by Corinna Kloss et al., Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2019-204-SC1, 2019. a
Fromm, M. D., Kablick, G. P., Peterson, D. A., Kahn, R. A., Flower, V. J. B.,
and Seftor, C. J.: Quantifying the Source Term and Uniqueness of the August
12, 2017 Pacific Northwest PyroCb Event, J. Geophys. Res.-Atmos., 126, e2021JD034928, https://doi.org/10.1029/2021JD034928, 2021. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019. a, b
Jiang, J. H., Su, H., Pawson, S., Liu, H.-C., Read, W. G., Waters, J. W.,
Santee, M. L., Wu, D. L., Schwartz, M. J., Livesey, N. J., Lambert, A.,
Fuller, R. A., and Lee, J. N.: Five year (2004–2009) observations of upper
tropospheric water vapor and cloud ice from MLS and comparisons with
GEOS-5 analyses, J. Geophys. Res.-Atmos., 115,
D15103, https://doi.org/10.1029/2009JD013256, 2010. a
Kablick III, G. P., Allen, D. R., Fromm, M. D., and Nedoluha, G. E.:
Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones,
Geophys. Res. Lett., 47, e2020GL088101,
https://doi.org/10.1029/2020GL088101, 2020. a, b, c
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F.,
Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., and
Godin-Beekmann, S.: The 2019/20 Australian wildfires generated a persistent
smoke-charged vortex rising up to 35 km altitude, Commun. Earth Environ., 1,
22, https://doi.org/10.1038/s43247-020-00022-5, 2020. a, b, c, d
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Bucci, S., Khaykin, S., Jégou, F., Taha, G., Thomason, L. W., Barret, B., Le Flochmoen, E., von Hobe, M., Bossolasco, A., Bègue, N., and Legras, B.: Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation, Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, 2019. a, b, c
Lambert, A., Read, W., Livesey, N., Santee, M., Manney, G., Froidevaux, L., Wu,
D., Schwartz, M., Pumphrey, H., Jimenez, C., Nedoluha, G., Cofield, R.,
Cuddy, D., Daffer, W., Drouin, B., Fuller, R., Jarnot, R., Knosp, B.,
Pickett, H., Perun, V., Snyder, W., Stek, P., Thurstans, R., Wagner, P.,
Waters, J., Jucks, K., Toon, G., Stachnik, R., Bernath, P., Boone, C.,
Walker, K., Urban, J., Murtagh, D., Elkins, J., and Atlas, E.: Validation of
the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous
oxide measurements, J. Geophys. Res, 112, D24S35, https://doi.org/10.1029/2007JD008752,
2007. a
Lambert, A., Read, W., and Livesey, N.:
MLS/Aura Level 2 Water Vapor (H2O) Mixing Ratio
V004,
Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/Aura/MLS/DATA2009, 2015. a
Lestrelin, H., Legras, B., Podglajen, A., and Salihoglu, M.: Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017, Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, 2021. a, b, c, d, e, f
Livesey, N. J., Fromm, M. D., Waters, J. W., Manney, G. L., Santee, M. L., and
Read., W. G.: Enhancements in lower stratospheric CH3CN observed by
UARS MLS following boreal forest fires., J. Geophys. Res., 109, D06308,
https://doi.org/10.1029/2003JD004055, 2004. a
Livesey, N. J., Filipiak, M., Froidevaux, L., Read, W., Lambert, A., Santee,
M., Jiang, J., Pumphrey, H., Waters, J., Cofield, R., Cuddy, D., Daffer, W.,
Drouin, B., Fuller, R., Jarnot, R., Jiang, Y., Knosp, B., Li, Q., Perun, V.,
Schwartz, M., Snyder, W., Stek, P., Thurstans, R., Wagner, P., Avery, M.,
Browell, E., Cammas, J.-P., Christensen, L., Diskin, G., Gao, R.-S., Jost,
H.-J., Loewenstein, M., Lopez, J., Nedelec, P., Osterman, G., Sachse, G., and
Webster, C.: Validation of Aura Microwave Limb Sounder O3 and CO
observations in the upper troposphere and lower stratosphere, J. Geophys.
Res, 113, D15S02, https://doi.org/10.1029/2007JD008805, 2008. a
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Valle, L. M., Pumphrey, H. C., Santee, M. L., Schwartz, M. J.,
Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez, E., and Lay,
R. R.: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS)
Version 4.2x Level 2 and 3 data quality and description document., Tech. Rep.
JPL D-33509 Rev E, NASA Jet Propulsion Laboratory California Institute of
Technology, Pasadena, California, 91109-8099,
available at: http://mls.jpl.nasa.gov (last access: 15 October 2021), 2020. a, b, c, d, e, f
Loughman, R., Bhartia, P. K., Chen, Z., Xu, P., Nyaku, E., and Taha, G.: The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis, Atmos. Meas. Tech., 11, 2633–2651, https://doi.org/10.5194/amt-11-2633-2018, 2018. a
NASA, GES DISC: available at https://disc.gsfc.nasa.gov/, last access: 15 October 2021. a
NASA/LARC/SD/ASDC: SAGE III/ISS L2 Solar Event Species Profiles (Native) V051, NASA [data set],
https://doi.org/10.5067/ISS/SAGEIII/SOLAR_BINARY_L2-V5.1, 2017. a
National Centers for Environmental Prediction: NCEP FNL Operational Model
Global Tropospheric Analyses, continuing from July 1999, NCAR/UCAR Research Data Archive [data set], https://doi.org/10.5065/D6M043C6, 2000. a, b
NOAA: Comprehensive large array-data stewardship system (CLASS), available at: https://www.avl.class.noaa.gov/saa/products/welcome, last access: 8 November 2021. a
Peterson, D. A., Fromm, M. D., Solbrig, J. E., Hyer, E. J., Surratt, M. L., and
Campbell, J. R.: Detection and Inventory of Intense Pyroconvection in Western
North America using GOES-15 Daytime Infrared Data, J. Appl. Meteorol. Climatol., 56, 471–493, https://doi.org/10.1175/JAMC-D-16-0226.1,
2017. a
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick III,
G. P., Cossuth, J. H., and DeLand, M. T.: Wildfire-driven thunderstorms cause
a volcano-like stratospheric injection of smoke, Nature Partner Journal:
Climate and Atmospheric Science, 1, 30, https://doi.org/10.1038/s41612-018-0039-3,
2018. a, b, c, d, e, f, g, h, i, j
Pumphrey, H. C., Filipiak, M. J., Livesey, N. J., Schwartz, M. J., Boone, C.,
Walker, K. A., Bernath, P., Ricaud, P., Barret, B., Clerbaux, C., Jarnot,
R. F., Kovalenko, L. J., Manney, G. L., and Waters, J. W.: Validation of
middle-atmosphere carbon monoxide retrievals from MLS on Aura, J. Geophys. Res., 112, D24S38, https://doi.org/10.1029/2007JD008723, 2007. a
Pumphrey, H. C., Santee, M. L., Livesey, N. J., Schwartz, M. J., and Read, W. G.: Microwave Limb Sounder observations of biomass-burning products from the Australian bush fires of February 2009, Atmos. Chem. Phys., 11, 6285–6296, https://doi.org/10.5194/acp-11-6285-2011, 2011. a, b, c, d, e, f, g, h, i
Pumphrey, H. C., Read, W. G., Livesey, N. J., and Yang, K.: Observations of volcanic SO2 from MLS on Aura, Atmos. Meas. Tech., 8, 195–209, https://doi.org/10.5194/amt-8-195-2015, 2015. a
Pumphrey, H. C., Glatthor, N., Bernath, P. F., Boone, C. D., Hannigan, J. W., Ortega, I., Livesey, N. J., and Read, W. G.: MLS measurements of stratospheric hydrogen cyanide during the 2015–2016 El Niño event, Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, 2018. a, b
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and
Kasibhatla, P. S.: Global Fire Emissions Database, Version 4.1 (GFEDv4), Oak Ridge
National Laboratory DAAC
[data set], https://doi.org/10.3334/ORNLDAAC/1293, 2017. a
Reisner, J., D'Angelo, G., Koo, E., Even, W., Hecht, M., Hunke, E., Comeau, D.,
Bos, R., and Cooley, J.: Climate Impact of a Regional Nuclear Weapons
Exchange: An Improved Assessment Based On Detailed Source Calculations, J.
Geophys. Res.-Atmos., 123, 2752–2772, https://doi.org/10.1002/2017JD027331,
2018. a
Rinsland, C. P., Dufour, G., Boone, C. D., Bernath, P. F., Chiou, L.,
Pierre-Fran c. C., Turquety, S., and Clerbaux, C.: Satellite boreal
measurements over Alaska and Canada during June–July 2004: Simultaneous
measurements of upper tropospheric CO, C2H6, HCN, CH3Cl, CH4,
C2H2, CH3OH, HCOOH, OCS, and SF6 mixing ratios, Global
Biogeochem. Cy., 21, GB3008, https://doi.org/10.1029/2006GB002795, 2007. a
Robock, A., Oman, L., Stenchikov, G. L., Toon, O. B., Bardeen, C., and Turco, R. P.: Climatic consequences of regional nuclear conflicts, Atmos. Chem. Phys., 7, 2003–2012, https://doi.org/10.5194/acp-7-2003-2007, 2007. a, b
Santee, M., Livesey, N., Manney, G., Lambert, A., and Read, W.: Methyl chloride
from the Aura Microwave Limb Sounder: First global climatology and assessment
of variability in the upper troposphere and stratosphere, J. Geophys. Res.-Atmos., 118, 13532–13560, https://doi.org/10.1002/2013JD020235, 2013. a
Santee, M. L., Manney, G. L., Livesey, N. J., Schwartz, M. J., Neu, J. L., and
Read, W. G.: A comprehensive overview of the climatological composition of
the Asian summer monsoon anticyclone based on 10 years of Aura Microwave
Limb Sounder measurements, J. Geophys. Res.-Atmos.,
122, 5491–5514, https://doi.org/10.1002/2016JD026408, 2017. a
Schwartz, M., Pumphrey, H., Livesey, N., and
Read, W.:
MLS/Aura Level 2 Carbon Monoxide (CO) Mixing Ratio
V004,
Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/Aura/MLS/DATA2005, 2015. a
Schwartz, M. J., Pumphrey, H. C., Santee, M. L., Manney, G. L., Lambert, A.,
Livesey, N. J., Millán, L., Neu, J. L., Read, W. J., and Werner, F.:
Australian New Year's PyroCb impact on Stratospheric Composition,
Geophys. Res. Lett, 47, e2020GL090831, https://doi.org/10.1029/2020GL090831, 2020. a, b, c, d
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011. a
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro,
B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and
Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res,
108, 8149, https://doi.org/10.1029/2001JD000484, 2003. a
Stohl, A., Wotawa, G., Siebert, G., and Kromp-Kolb, H.: Interpolation errors in
wind fields as a function of spatial and temporal resolution and their impact
on different types of kinematic trajectories, J. Appl. Meteor., 34,
2149–2165, 1995. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P.,
Krotkov, N., Omar, A., and Ahn, C.: Stratospheric Injection of Massive Smoke
Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVR-EPIC,
CALIOP, and OMPS-LP Observations, J. Geophys. Res.-Atmos., 125,
e2020JD032579, https://doi.org/10.1029/2020JD032579, 2020. a
van Ravenzwaaij, D., Cassey, P., and Brown, S. D.: A simple introduction to
Markov Chain Monte–Carlo sampling, Psychon. Bull. Rev., 25, 143–154,
https://doi.org/10.3758/s13423-016-1015-8, 2018.
a
Waters, J. W., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W.,
Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G.,
Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D., Lay,
R., Loo, M., Perun, V., Schwartz, M., Stek, P., Thurstans, R., Boyles, M.,
Chandra, S., Chavez, M., Chen, G.-S., Chudasama, B., Dodge, R., Fuller, R.,
Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K.,
Miller, D., Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D.,
Snyder, W., Tope, M., Wagner, P., and Walch, M.: The Earth Observing System
Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote, 44, 1106–1121, 2006. a, b
Williams, A. P. and Abatzoglou, J. T.: Recent Advances and Remaining
Uncertainties in Resolving Past and Future Climate Effects on Global Fire
Activity, Curr. Clim. Change Rep., 2, 1–14, https://doi.org/10.1007/s40641-016-0031-0,
2016. a, b
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop,
D. A., Balch, J. K., and Lettenmaier, D. P.: Observed Impacts of
Anthropogenic Climate Change on Wildfire in California, Earth's Future, 7,
892–910, https://doi.org/10.1029/2019EF001210, 2019. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Technol., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W.,
Thornberry, T. D., Gao, R.-S., Davis, S. M., Wolf, E. T., de Gouw, J.,
Peterson, D. A., Fromm, M. D., and Robock, A.: Black carbon lofts wildfire
smoke high into the stratosphere to form a persistent plume, Science, 365,
587–590, https://doi.org/10.1126/science.aax1748, 2019. a, b, c
Zuev, V. V., Gerasimov, V. V., Nevzorov, A. V., and Savelieva, E. S.: Lidar observations of pyrocumulonimbus smoke plumes in the UTLS over Tomsk (Western Siberia, Russia) from 2000 to 2017, Atmos. Chem. Phys., 19, 3341–3356, https://doi.org/10.5194/acp-19-3341-2019, 2019. a, b
Short summary
Forest fires in British Columbia in August 2017 caused an unusual phenomonon: smoke and gases from the fires rose quickly to a height of 10 km. From there, the pollution continued to rise more slowly for many weeks, travelling around the world as it did so. In this paper, we describe how we used data from a satellite instrument to observe this polluted volume of air. The satellite has now been working for 16 years but has observed only three events of this type.
Forest fires in British Columbia in August 2017 caused an unusual phenomonon: smoke and gases...
Altmetrics
Final-revised paper
Preprint