Articles | Volume 21, issue 21
Atmos. Chem. Phys., 21, 16203–16217, 2021
https://doi.org/10.5194/acp-21-16203-2021
Atmos. Chem. Phys., 21, 16203–16217, 2021
https://doi.org/10.5194/acp-21-16203-2021
Research article
04 Nov 2021
Research article | 04 Nov 2021

Revisiting adiabatic fraction estimations in cumulus clouds: high-resolution simulations with a passive tracer

Eshkol Eytan et al.

Related authors

Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-316,https://doi.org/10.5194/acp-2022-316, 2022
Preprint under review for ACP
Short summary
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021,https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020,https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10717–10738, https://doi.org/10.5194/acp-19-10717-2019,https://doi.org/10.5194/acp-19-10717-2019, 2019
Short summary
Core and margin in warm convective clouds – Part 2: Aerosol effects on core properties
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10739–10755, https://doi.org/10.5194/acp-19-10739-2019,https://doi.org/10.5194/acp-19-10739-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary
Evaluation of modelled summertime convective storms using polarimetric radar observations
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022,https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022,https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Modeling impacts of ice-nucleating particles from marine aerosols on mixed-phase orographic clouds during 2015 ACAPEX field campaign
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022,https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008. a
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980. a
Bera, S.: Droplet spectral dispersion by lateral mixing process in continental deep cumulus clouds, J. Atmos. Sol.-Terr. Phy., 214, 105550, https://doi.org/10.1016/j.jastp.2021.105550, 2021. a, b
Bolton, D.: The computation of equivalent potential temperature, Mon. Weather Rev., 108, 1046–1053, 1980. a, b
Download
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Altmetrics
Final-revised paper
Preprint