Articles | Volume 21, issue 21
https://doi.org/10.5194/acp-21-16093-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16093-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO2 in CESM2
Wendong Ge
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Junfeng Liu
CORRESPONDING AUTHOR
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Kan Yi
Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
Jiayu Xu
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yizhou Zhang
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xiurong Hu
College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Jianmin Ma
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xuejun Wang
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yi Wan
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Jianying Hu
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Zhaobin Zhang
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xilong Wang
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Shu Tao
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Related authors
No articles found.
Xiaodong Zhang, Yu Yan, Ning Zhang, Wenpeng Wang, Huabing Suo, Xiaohu Jian, Chao Wang, Haibo Ma, Hong Gao, Zhaoli Yang, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 25, 9669–9684, https://doi.org/10.5194/acp-25-9669-2025, https://doi.org/10.5194/acp-25-9669-2025, 2025
Short summary
Short summary
This study performed comprehensive sensitivity model simulations to explore the surface O3 responses to historical and projected climate change in Northwestern China (NW). Our results reveal that substantial wetting trends since the 21st century have mitigated O3 growth in this region, with the influence of wetting on O3 evolution outweighing the warming effect. These findings should be taken into account in future policymaking aimed at scientifically reducing O3 pollution in NW.
Jinghao Zhai, Yin Zhang, Pengfei Liu, Yujie Zhang, Antai Zhang, Yaling Zeng, Baohua Cai, Jingyi Zhang, Chunbo Xing, Honglong Yang, Xiaofei Wang, Jianhuai Ye, Chen Wang, Tzung-May Fu, Lei Zhu, Huizhong Shen, Shu Tao, and Xin Yang
Atmos. Chem. Phys., 25, 7959–7972, https://doi.org/10.5194/acp-25-7959-2025, https://doi.org/10.5194/acp-25-7959-2025, 2025
Short summary
Short summary
Our study shows that the optical properties of brown carbon depend on its source. Brown carbon from ozone pollution had the weakest light absorption but the strongest wavelength dependence, while biomass burning brown carbon showed the strongest absorption and the weakest wavelength dependence. Nitrogen-containing organic carbon compounds were identified as key light absorbers. These results improve understanding of brown carbon sources and help refine climate models.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Xiaohu Jian, Xiaodong Zhang, Xinrui Liu, Kaijie Chen, Tao Huang, Shu Tao, Junfeng Liu, Hong Gao, Yuan Zhao, Ruiyu Zhugu, and Jianmin Ma
Atmos. Chem. Phys., 25, 4251–4268, https://doi.org/10.5194/acp-25-4251-2025, https://doi.org/10.5194/acp-25-4251-2025, 2025
Short summary
Short summary
We implemented a new global land-use-change (LUC) dataset from 1982 to 2010 into a compact earth system model and carried out extensive multiple model scenario simulations. Our result reveals that the global radiative forcing (RF) induced by LUC driving surface albedo change is −0.12 W m−2, 20 % lower than the Intergovernmental Panel on Climate Change (IPCC), and vegetation changes play a key role in RF evolution, which provides an important reference for the assessment of earth energy balance.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023, https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Short summary
WRF-Chem modeling was conducted to assess impacts of Western Pacific Subtropical High Pressure (WPSH) on interannual fluctuations of O3 pollution in China. We find that, while precursor emissions dominated the long-term trend and magnitude of O3 from 1999 to 2017, WPSH determined interannual variation of summer O3. The response of O3 pollution to WPSH in major urban clusters depended on the proximity of these urban areas to WPSH. The results could help long-term O3 pollution mitigation planning.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023, https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Short summary
Lhasa is the largest city in the Tibetan Plateau, and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Cited articles
Acid Deposition Monitoring Network in East Asia: Data Report, Acid Deposition Monitoring Network in East Asia [data set], available at: https://monitoring.eanet.asia/document/public/index, last access: 2 November 2020.
Adams, G. E. and Boag, J. W.:
Spectroscopic studies of reactions of the OH radical,
P. Chem. Soc. London,
1, 112–118, 1964.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.:
Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget,
J. Geophys. Res.,
114, D02309, https://doi.org/10.1029/2008jd010486, 2009.
Amels, P., Elias, H., Götz, U., Steinges, U., and Wannowius, K. J.:
Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution,
in: Heterogeneous and Liquid Phase Processes,
edited by: Warneck, P.,
Transport and Chemical Transformation in Pollutants in the Troposphere,
Springer, Berlin, 77–88, 1996.
Au Yang, D., Bardoux, G., Assayag, N., Laskar, C., Widory, D., and Cartigny, P.:
Atmospheric SO2 oxidation by NO2 plays no role in the mass independent sulfur isotope fractionation of urban aerosols,
Atmos. Environ.,
193, 109–117, https://doi.org/10.1016/j.atmosenv.2018.09.007, 2018.
Bao, Z. C. and Barker, J. R.:
Temperature and ionic strength effects on some reactions involving sulfate radical [ ],
J. Phys. Chem.-US,
100, 9780–9787, 1996.
Bataineh, H., Pestovsky, O., and Bakac, A.:
pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction,
Chem. Sci.,
3, 1594–1599, https://doi.org/10.1039/c2sc20099f, 2012.
Behar, D., Czapski, G., and Duchovny, I.:
Carbonate Radical in Flash Photolysis and Pulse Radiolysis of Aqueous Carbonate Solutions,
J. Phys. Chem.-US,
74, 2206–2210, 1970.
Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Li, X., Huang, R., Li, Z., Long, X., Xing, L., Zhao, S., Tie, X., Prévôt, A. S. H., and Li, G.: Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study, Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017, 2017.
Beilke, S. and Gravenhorst, G.:
Heterogeneous SO2-oxidation in the droplet phase,
Atmos. Environ.,
12, 231–239, 1978.
Bell, N., Koch, D., and Shindell, D. T.:
Impacts of chemistry-aerosol coupling on tropospheric ozone and sulfate simulations in a general circulation model,
J. Geophys. Res.-Atmos.,
110, D14305, https://doi.org/10.1029/2004jd005538, 2005.
Benkelberg, H. J. and Warneck, P.:
Photodecomposition of Iron(III) Hydroxo and Sulfato Complexes in Aqueous-Solution – Wavelength Dependence of OH and Quantum Yields,
J. Phys. Chem.-US,
99, 5214–5221, https://doi.org/10.1021/j100014a049, 1995.
Betterton, E. A. and Hoffmann, M. R.:
Oxidation of Aqueous SO2 by Peroxymonosulfate,
J. Phys. Chem.-US,
92, 5962–5965, https://doi.org/10.1021/j100332a025, 1988.
Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B.:
Reactivity of HO2/ Radicals in Aqueous-Solution,
J. Phys. Chem. Ref. Data,
14, 1041–1100, https://doi.org/10.1063/1.555739, 1985.
Bongartz, A., Schweighoefer, S., Roose, C., and Schurath, U.:
The Mass Accommodation Coefficient of Ammonia on Water,
J. Atmos. Chem.,
20, 35–58, https://doi.org/10.1007/Bf01099917, 1995.
Boniface, J., Shi, Q., Li, Y. Q., Cheung, J. L., Rattigan, O. V., Davidovits, P., Worsnop, D. R., Jayne, J. T., and Kolb, C. E.:
Uptake of gas-phase SO2, H2S, and CO2 by aqueous solutions,
J. Phys. Chem. A,
104, 7502–7510, 2000.
Brandt, C. and Vaneldik, R.:
Transition-Metal-Catalyzed Oxidation of Sulfur(IV) Oxides – Atmospheric-Relevant Processes and Mechanisms,
Chem. Rev.,
95, 119–190, https://doi.org/10.1021/cr00033a006, 1995.
Bray, W. C. and Gorin, M. H.:
Ferryl ion, a compound of tetravalent iron,
J. Am. Chem. Soc.,
54, 2124–2125, https://doi.org/10.1021/ja01344a505, 1932.
Buchard, V., da Silva, A. M., Colarco, P., Krotkov, N., Dickerson, R. R., Stehr, J. W., Mount, G., Spinei, E., Arkinson, H. L., and He, H.: Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign, Atmos. Chem. Phys., 14, 1929–1941, https://doi.org/10.5194/acp-14-1929-2014, 2014.
Buhler, R. E., Staehelin, J., and Hoigne, J.:
Ozone Decomposition in Water Studied by Pulse-Radiolysis .1. HO2/ and HO3/ as Intermediates,
J. Phys. Chem.-US,
88, 2560–2564, 1984.
Buxton, G. V., Wood, N. D., and Dyster, S.:
Ionization-Constants Of OH and HO2 in Aqueous-Solution up to 200 ∘C. A Pulse–Radiolysis Study,
J. Chem. Soc. Faraday T.,
1, 1113–1121, https://doi.org/10.1039/f19888401113, 1988a.
Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.:
Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (OH/ ) in Aqueous-Solution,
J. Phys. Chem. Ref. Data,
17, 513–886, https://doi.org/10.1063/1.555805, 1988b.
Buxton, G. V., Malone, T. N., and Salmon, G. A.:
Pulse radiolysis study of the reaction of with HO2,
J. Chem. Soc. Faraday T.,
92, 1287–1289, https://doi.org/10.1039/ft9969201287, 1996a.
Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Woods, N. D.:
A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and gamma-radiolysis study,
Atmos. Environ.,
30, 2483–2493, https://doi.org/10.1016/1352-2310(95)00473-4, 1996b.
Buxton, G. V., Malone, T. N., and Salmon, G. A.:
Reaction of with Fe2+, Mn2+ and Cu2+ in aqueous solution,
J. Chem. Soc. Faraday T.,
93, 2893–2897, https://doi.org/10.1039/a701472d, 1997.
Buxton, G. V., Barlow, S., McGowan, S., Salmon, G. A., and Williams, J. E.:
The reaction of the radical with Fe(II) in acidic aqueous solution – A pulse radiolysis study,
Phys. Chem. Chem. Phys.,
1, 3111–3115, 1999.
CESM Working Groups of National Center for Atmospheric Research (NCAR): Community Earth System Model, available at: https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/chem/, CESM Working Groups of National Center for Atmospheric Research (NCAR) [code], last access: 16 December 2020.
CESM Working Groups of National Center for Atmospheric Research (NCAR): Title: Revision 36285: /trunk/inputdata/atm/cam/chem, available at: CESM Working Groups of National Center for Atmospheric Research, CESM Working Groups of National Center for Atmospheric Research (NCAR) [data set], last access: 31 December 2020.
Chameides, W. L.:
The photochemistry of a Remote Marine Straaatiform Cloud,
J. Geophys. Res.,
89, 4739–4755, 1984.
Chen, Y., Luo, X. S., Zhao, Z., Chen, Q., Wu, D., Sun, X., Wu, L., and Jin, L.:
Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals,
Ecotox. Environ. Safe.,
165, 505–509, https://doi.org/10.1016/j.ecoenv.2018.09.034, 2018.
Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B., Carmichael, G., Poschl, U., and Su, H.:
Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China,
Science Advances,
2, 1–11, ARTN e1601530 https://doi.org/10.1126/sciadv.1601530, 2016.
Chin, M. and Wine, P. H.:
A temperature-dependent competitive kinetics study of the aqueousphase reactions of OH radicals with formate, formic acid, acetate, acetic acid and hydrated formaldehyde,
in: Aquatic and Surface Photochemistry,
edited by: Helz, G. R., Zepp, R. G., and Crosby, D. G.,
Lewis Publishers, Boca Raton, 85–96, 1994.
China National Environmental Monitoring Center: Historical data of air quality in China, China National Environmental Monitoring Center [data set], available at: https://quotsoft.net/air/, last access: 22 December 2020.
Christensen, H. and Sehested, K.:
Pulse-Radiolysis at High-Temperatures and High-Pressures,
Radiat. Phys. Chem.,
18, 723–731, https://doi.org/10.1016/0146-5724(81)90195-3, 1981.
Christensen, H., Sehested, K., and Corfitzen, H.:
Reactions of Hydroxyl Radicals with Hydrogen-Peroxide at Ambient and Elevated-Temperatures,
J. Phys. Chem.-US,
86, 1588–1590, 1982.
Christensen, H., Sehested, K., and Bjergbakke, E.:
Radiolysis of reactor water: Reaction of hydroxyl radicals with superoxide ( ),
Water Chemistry of Nuclear Reactor Systems,
5, 141–144, 1989.
Clegg, S. L. and Brimblecombe, P.:
Solubility of volatile electolytes in multicomponent solutions with atmospheric applications,
ACS Sym. Ser.,
416, 58–73, 1990.
Conway, T. M., Hamilton, D. S., Shelley, R. U., Aguilar-Islas, A. M., Landing, W. M., Mahowald, N. M., and John, S. G.:
Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes,
Nat. Commun.,
10, 1–10, https://doi.org/10.1038/s41467-019-10457-w, 2019.
Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., and Grassian, V. H.:
Characterization and acid-mobilization study of iron-containing mineral dust source materials,
J. Geophys. Res.-Atmos.,
113, D05202, https://doi.org/10.1029/2007jd009332, 2008.
Damschen, D. E. and Martin, L. R.:
Aqueous Aerosol Oxidation of Nitrous-Acid by O2, O3 and H2O2,
Atmos. Environ.,
17, 2005–2011, 1983.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.:
The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy.,
12, 1–35, https://doi.org/10.1029/2019ms001916, 2020.
Data Engineering and Curation Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR): MERRA2 Global Atmosphere Forcing Data, available at: https://rda.ucar.edu/datasets/ds313.3/, Data Engineering and Curation Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research [data set], last access: 20 July 2020.
Davidovits, P., Hu, J. H., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.:
Entry of gas molecules into liquids,
Faraday Discuss.,
100, 65–81, https://doi.org/10.1039/fd9950000065, 1995.
De Laat, J. and Le, T. G.:
Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions,
Environ. Sci. Technol.,
39, 1811–1818, 2005.
de Meij, A., Krol, M., Dentener, F., Vignati, E., Cuvelier, C., and Thunis, P.: The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions, Atmos. Chem. Phys., 6, 4287–4309, https://doi.org/10.5194/acp-6-4287-2006, 2006.
Deguillaume, L., Leriche, M., and Chaumerliac, N.:
Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds,
Chemosphere,
60, 718–724, https://doi.org/10.1016/j.chemosphere.2005.03.052, 2005.
Edwards, J. O. and Mueller., J. J.:
The rates of oxidation of nitrite ion by several peroxides,
Inorg. Chem.,
1, 696–699, 1962.
Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, 2016.
EMEP: Convention on Long-range Transboundary Air Pollution (CLRTAP) programme, EMEP [data set], available at: https://www.emep.int/, last access: 8 August 2020.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz, R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R., Meinardi, S., and Pétron, G.:
The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy.,
12, 1–21, https://doi.org/10.1029/2019ms001882, 2020.
Ervens, B.:
Modeling the processing of aerosol and trace gases in clouds and fogs,
Chem. Rev.,
115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Exner, M.: Bildung und Reaktionen von Radikalen und Radikalanionen in wäßriger Phase, Diploma Thesis, Georg-August-University Göttingen, Göttingen, 1990.
Exner, M., Herrmann, H., and Zellner, R.:
Laser-Based Studies of Reactions of the Nitrate Radical in Aqueous-Solution,
Ber. Bunsen Phys. Chem.,
96, 470–477, https://doi.org/10.1002/bbpc.19920960347, 1992.
Exner, M., Herrmann, H., and Zellner, R.:
Rate Constants for the Reactions of the NO3 Radical with HCOOH/HCOO− and CH3COOH/CH3COO− in Aqueous-Solution between 278 and 328 K,
J. Atmos. Chem.,
18, 359–378, https://doi.org/10.1007/Bf00712451, 1994.
Faloona, I.:
Sulfur processing in the marine atmospheric boundary layer: A review and critical assessment of modeling uncertainties,
Atmos. Environ.,
43, 2841–2854, https://doi.org/10.1016/j.atmosenv.2009.02.043, 2009.
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020.
Fenton, H. J. H.:
LXXIII.—Oxidation of tartaric acid in presence of iron,
Journal of the Chemical Society Transactions,
65, 899–910, 1894.
Fischer, M. and Warneck, P.:
Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution,
J. Phys. Chem.-US,
100, 15111–15117, 1996.
Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel, A., Inness, A., Jones, L., Josse, B., Katragkou, E., Marecal, V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and Tsikerdekis, A.: Tropospheric chemistry in the Integrated Forecasting System of ECMWF, Geosci. Model Dev., 8, 975–1003, https://doi.org/10.5194/gmd-8-975-2015, 2015.
Gankanda, A., Coddens, E. M., Zhang, Y., Cwiertny, D. M., and Grassian, V. H.:
Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light,
Environ. Sci. Proc. Imp.,
18, 1484–1491, https://doi.org/10.1039/c6em00430j, 2016.
Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, K., and Liu, Y.:
Impact of China's Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China,
Sci. China Earth Sci.,
62, 1872–1884, https://doi.org/10.1007/s11430-018-9353-x, 2019.
George, C., Ponche, J. L., Mirabel, P., Behnke, W., Scheer, V., and Zetzsch, C.:
Study of the Uptake of N2O5 by Water and NaCl Solutions,
J. Phys. Chem.-US,
98, 8780–8784, https://doi.org/10.1021/j100086a031, 1994.
Georgiou, G. K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., and Lelieveld, J.: Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison, Atmos. Chem. Phys., 18, 1555–1571, https://doi.org/10.5194/acp-18-1555-2018, 2018.
Goto, D., Nakajima, T., Dai, T., Takemura, T., Kajino, M., Matsui, H., Takami, A., Hatakeyama, S., Sugimoto, N., Shimizu, A., and Ohara, T.:
An evaluation of simulated particulate sulfate over East Asia through global model intercomparison,
J. Geophys. Res.-Atmos.,
120, 6247–6270, https://doi.org/10.1002/2014jd021693, 2015.
Graedel, T. E. and Weschler, C. J.:
Chemistry within Aqueous Atmospheric Aerosols and Raindrops,
Rev. Geophys.,
19, 505–539, https://doi.org/10.1029/RG019i004p00505, 1981.
Guo, H., Weber, R. J., and Nenes, A.:
High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production,
Sci. Rep.-UK,
7, 12109, https://doi.org/10.1038/s41598-017-11704-0, 2017.
Guth, J., Josse, B., Marécal, V., Joly, M., and Hamer, P.: First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model, Geosci. Model Dev., 9, 137–160, https://doi.org/10.5194/gmd-9-137-2016, 2016.
Haber, F. and Weiss, J.:
The catalytic decomposition of hydrogen peroxide by iron salts,
P. R. Soc. London,
147, 332–351, https://doi.org/10.1098/rspa.1934.0221, 1934.
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.:
Measurement of OH and HO2 Radical Uptake Coefficients on Water and Sulfuric-Acid Surfaces,
J. Phys. Chem.-US,
96, 4979–4985, https://doi.org/10.1021/j100191a046, 1992.
Harned, H. S. and Owen, B. B.:
The Physical Chemistry of Electrolytic Solutions, 3rd edn.,
Reinhold, New York.1958.
Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A., Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S., Borrmann, S., Hoppe, P., and Herrmann, H.:
Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2,
Science,
340, 727–730, https://doi.org/10.1126/science.1230911, 2013.
He, G. and He, H.:
Water Promotes the Oxidation of SO2 by O2 over Carbonaceous Aerosols,
Environ. Sci. Technol.,
54, 7070–7077, https://doi.org/10.1021/acs.est.0c00021, 2020.
He, G., Ma, J., and He, H.:
Role of Carbonaceous Aerosols in Catalyzing Sulfate Formation,
ACS Catal.,
8, 3825–3832, https://doi.org/10.1021/acscatal.7b04195, 2018.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.:
Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days,
Sci. Rep.-UK,
4, 4172, https://doi.org/10.1038/srep04172, 2014.
He, J., Zhang, Y., Glotfelty, T., He, R., Bennartz, R., Rausch, J., and Sartelet, K.:
Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol–cloud interactions,
J. Adv. Model. Earth Sy.,
7, 110–141, https://doi.org/10.1002/2014ms000360, 2015a.
He, J., Zhang, Y., Tilmes, S., Emmons, L., Lamarque, J.-F., Glotfelty, T., Hodzic, A., and Vitt, F.: CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate, Geosci. Model Dev., 8, 3999–4025, https://doi.org/10.5194/gmd-8-3999-2015, 2015b.
Heal, M. R., Hibbs, L. R., Agius, R. M., and Beverland, I. J.:
Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK,
Atmos. Environ.,
39, 1417–1430, https://doi.org/10.1016/j.atmosenv.2004.11.026, 2005.
Hedegaard, G. B., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C., Hansen, K. M., and Stendel, M.: Impacts of climate change on air pollution levels in the Northern Hemisphere with special focus on Europe and the Arctic, Atmos. Chem. Phys., 8, 3337–3367, https://doi.org/10.5194/acp-8-3337-2008, 2008.
Herrmann, H. and Zellner, R.:
Reactions of NO3 radicals in aqueous solution,
in: N-Centered Radicals
John Wiley and Sons Ltd, 1998.
Herrmann, H., Exner, M., and Zellner, R.:
Reactivity Trends in Reactions of the Nitrate Radical (NO3) with Inorganic and Organic Cloudwater Constituents,
Geochim. Cosmochim. Ac.,
58, 3239–3244, https://doi.org/10.1016/0016-7037(94)90051-5, 1994.
Herrmann, H., Reese, A., and Zellner, R.:
Time-Resolved Uv/Vis Diode-Array Absorption-Spectroscopy of (x = 3, 4, 5) Radical-Anions in Aqueous-Solution, J Mol Struct, 348, 183–186, https://doi.org/10.1016/0022-2860(95)08619-7, 1995.
Herrmann, H., Jacobi, H. W., Raabe, G., Reese, A., and Zellner, R.:
Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry, Fresen J Anal Chem, 355, 343–344, 1996.
Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.:
CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,
J. Atmos. Chem.,
36, 231–284, https://doi.org/10.1023/A:1006318622743, 2000.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:
Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase,
Chem. Rev.,
115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hoffmann, M. R.:
On the Kinetics and Mechanism of Oxidation of Aquated Sulfur–Dioxide by Ozone,
Atmos. Environ.,
20, 1145–1154, https://doi.org/10.1016/0004-6981(86)90147-2, 1986.
Hoffman, M. R. and Calvert, J. G.:
Chemical transformation modules for Eulerian Acid Deposition Models,
U.S. Environ. Prot. Agency, Research Triangle Park, N.C., 1985.
Hoigne, J. and Bader, H.:
Rate Constants of Reactions of Ozone with Organic and Inorganic-Compounds in Water .2. Dissociating Organic-Compounds,
Water Res.,
17, 185–194, 1983a.
Hoigne, J. and Bader, H.:
Rate Constants of Reactions of Ozone with Organic and Inorganic-Compounds in Water .1. Non-Dissociating Organic-Compounds,
Water Res.,
17, 173–183, 1983b.
Hong, C., Zhang, Q., Zhang, Y., Tang, Y., Tong, D., and He, K.: Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects, Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, 2017.
Hsu, S.-C., Liu, S. C., Arimoto, R., Shiah, F.-K., Gong, G.-C., Huang, Y.-T., Kao, S.-J., Chen, J.-P., Lin, F.-J., Lin, C.-Y., Huang, J.-C., Tsai, F., and Lung, S.-C. C.:
Effects of acidic processing, transport history, and dust and sea salt loadings on the dissolution of iron from Asian dust,
J. Geophys. Res.,
115, D19313, https://doi.org/10.1029/2009jd013442, 2010.
Hsu, S.-C., Lin, F.-J., Liu, T.-H., Lin, S.-H., Kao, S.-J., Tseng, C.-M., and Huang, C.-H.:
Short time dissolution kinetics of refractory elements Fe, Al, and Ti in Asian outflow-impacted marine aerosols and implications,
Atmos. Environ.,
79, 93–100, https://doi.org/10.1016/j.atmosenv.2013.06.037, 2013.
Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., and Li, L.: Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 14311–14328, https://doi.org/10.5194/acp-19-14311-2019, 2019.
Huang, L. B., Cochran, R. E., Coddens, E. M., and Grassian, V. H.:
Formation of Organosulfur Compounds through Transition Metal Ion-Catalyzed Aqueous Phase Reactions,
Environ. Sci. Tech. Let.,
5, 315–321, https://doi.org/10.1021/acs.estlett.8b00225, 2018.
Huang, X., Song, Y., Zhao, C., Li, M., Zhu, T., Zhang, Q., and Zhang, X.:
Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China,
J. Geophys. Res.-Atmos.,
119, 14165–14179, https://doi.org/10.1002/2014jd022301, 2014.
Huie, R. E. and Clifton, C. L.:
Temperature-Dependence of the Rate Constants for Reactions of the Sulfate Radical, , with Anions,
J. Phys. Chem.-US,
94, 8561–8567, https://doi.org/10.1021/j100386a015, 1990.
Huie, R. E. and Neta, P.:
Rate Constants for Some Oxidations of S(IV) by Radicals in Aqueous-Solutions,
Atmos. Environ.,
21, 1743–1747, 1987.
Huie, R. E., Shoute, L. C. T., and Neta, P.:
Temperature-Dependence of the Rate Constants for Reactions of the Carbonate Radical with Organic and Inorganic Reductants,
Int. J. Chem. Kinet.,
23, 541–552, https://doi.org/10.1002/kin.550230606, 1991.
Hung, H. M., Hsu, M. N., and Hoffmann, M. R.:
Quantification of SO2 Oxidation on Interfacial Surfaces of Acidic Micro-Droplets: Implication for Ambient Sulfate Formation,
Environ. Sci. Technol.,
52, 9079–9086, https://doi.org/10.1021/acs.est.8b01391, 2018.
Im, U., Christensen, J. H., Geels, C., Hansen, K. M., Brandt, J., Solazzo, E., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liu, P., Nopmongcol, U., Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G., Yarwood, G., Hogrefe, C., and Galmarini, S.: Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3, Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, 2018.
Ingall, E., Feng, Y., Longo, A., Lai, B., Shelley, R., Landing, W., Morton, P., Nenes, A., Mihalopoulos, N., Violaki, K., Gao, Y., Sahai, S., and Castorina, E.:
Enhanced Iron Solubility at Low pH in Global Aerosols,
Atmosphere,
9, 201–207, https://doi.org/10.3390/atmos9050201, 2018.
Itahashi, S.:
Toward Synchronous Evaluation of Source Apportionments for Atmospheric Concentration and Deposition of Sulfate Aerosol Over East Asia,
J. Geophys. Res.-Atmos.,
123, 2927–2953, https://doi.org/10.1002/2017jd028110, 2018.
Itahashi, S., Yamaji, K., Chatani, S., and Hayami, H.:
Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway,
Atmosphere,
9, 132–148, https://doi.org/10.3390/atmos9040132, 2018.
Jacob, D. J.:
Chemistry of OH in Remote Clouds and Its Role in the Production of Formic-Acid and Peroxymonosulfate,
J. Geophys. Res.-Atmos.,
91, 9807–9826, https://doi.org/10.1029/JD091iD09p09807, 1986.
Jacob, D. J.:
Heterogeneous chemistry and tropospheric ozone,
Atmos. Environ.,
34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
Jacobsen, F., Holcman, J., and Sehested, K.:
Activation parameters of ferryl ion reactions in aqueous acid solutions,
Int. J. Chem. Kinet.,
29, 17–24, 1997.
Jacobsen, F., Holcman, J., and Sehested, K.:
Reactions of the ferryl ion with some compounds found in cloud water,
Int. J. Chem. Kinet.,
30, 215–221, 1998.
Jayson, G. G., Parsons, B. J., and Swallow, A. J.:
Oxidation of Ferrous Ions by Perhydroxyl Radicals,
J. Chem. Soc. Farad. T. 1,
69, 236–242, https://doi.org/10.1039/f19736900236, 1973.
Jo, Y.-J., Lee, H.-J., Jo, H.-Y., Woo, J.-H., Kim, Y., Lee, T., Heo, G., Park, S.-M., Jung, D., Park, J., and Kim, C.-H.:
Changes in inorganic aerosol compositions over the Yellow Sea area from impact of Chinese emissions mitigation,
Atmos. Res.,
240, 1–10, https://doi.org/10.1016/j.atmosres.2020.104948, 2020.
Kajino, M., Deushi, M., Maki, T., Oshima, N., Inomata, Y., Sato, K., Ohizumi, T., and Ueda, H.: Modeling wet deposition and concentration of inorganics over Northeast Asia with MRI-PM/c, Geosci. Model Dev., 5, 1363–1375, https://doi.org/10.5194/gmd-5-1363-2012, 2012.
Kan, H., Chen, R., and Tong, S.:
Ambient air pollution, climate change, and population health in China,
Environ. Int.,
42, 10–19, https://doi.org/10.1016/j.envint.2011.03.003, 2012.
Khan, I. and Brimblecombe, P.:
Henry's law constants of low molecular weight (< 130) organic acids,
J. Aerosol Sci.,
23, S897–S900, 1992.
Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U.:
Trace Gas-Exchange at the Air-Water-Interface – Measurements of Mass Accommodation Coefficients,
J. Atmos. Chem.,
10, 427–449, https://doi.org/10.1007/Bf00115784, 1990.
Kläning, U. K., Sehested, K., and Holcman, J.:
Standard Gibbs free energy of formation of the hydroxyl radical in aqueous solution: rate constants for the reaction + O3 ⇄ + ClO2,
J. Phys. Chem.,
89, 760–763, 1985.
Lakey, P. S., George, I. J., Baeza-Romero, M. T., Whalley, L. K., and Heard, D. E.:
Organics Substantially Reduce HO2 Uptake onto Aerosols Containing Transition Metal ions,
J. Phys. Chem. A,
120, 1421–1430, https://doi.org/10.1021/acs.jpca.5b06316, 2016.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lammel, G., Perner, D., and Warneck, P.:
Decomposition of Pernitric Acid in Aqueous-Solution,
J. Phys. Chem.-US,
94, 6141–6144, https://doi.org/10.1021/j100378a091, 1990.
Lee, Y. N.:
Atmospheric aqueous-phase reactions of nitrogen species,
in: Gas–Liquid Chemistry of Natural Waters,
Brookhaven National Laboratory, Brookhaven, NY, 20/21-20/10, 1984.
Lee, Y. N. and Lind, J. A.:
Kinetics of Aqueous-Phase Oxidation of Nitrogen(III) by Hydrogen-Peroxide,
J. Geophys. Res.-Atmos.,
91, 2793–2800, 1986.
Lee, Y. N. and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur(IV) by nitrogendioxide, in: Precipitation Scavenging, Dry Deposition and Resuspension, vol. 1, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn, W. G. N., Elsevier, New York, 1983.
Lelieveld, J. and Crutzen, P. J.:
The Role of Clouds in Tropospheric Photochemistry,
J. Atmos. Chem.,
12, 229–267, https://doi.org/10.1007/Bf00048075, 1991.
Lente, G. and Fabian, I.:
Kinetics and mechanism of the oxidation of sulfur(IV) by iron(III) at metal ion excess,
J. Chem. Soc. Dalton,
778–784, 2002.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, J., Chen, X., Wang, Z., Du, H., Yang, W., Sun, Y., Hu, B., Li, J., Wang, W., Wang, T., Fu, P., and Huang, H.:
Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia,
Sci. Total Environ.,
622–623, 1327–1342, https://doi.org/10.1016/j.scitotenv.2017.12.041, 2018.
Li, J., Zhang, Y. L., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.:
Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO2 Oxidation in Haze Episodes,
Environ. Sci. Technol.,
54, 2626–2634, https://doi.org/10.1021/acs.est.9b07150, 2020.
Li, L., Hoffmann, M. R., and Colussi, A. J.:
Role of Nitrogen Dioxide in the Production of Sulfate during Chinese Haze-Aerosol Episodes,
Environ. Sci. Technol.,
52, 2686–2693, https://doi.org/10.1021/acs.est.7b05222, 2018.
Liang, J. Y. and Jacobson, M. Z.:
A study of sulfur dioxide oxidation pathways over a range of liquid water contents, pH values, and temperatures,
J. Geophys. Res.-Atmos.,
104, 13749–13769, https://doi.org/10.1029/1999jd900097, 1999.
Lind, J. A. and Kok, G. L.:
Correction to 'Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide and peroxyacetic acid',
J. Geophys. Res.,
99, 21119, https://doi.org/10.1029/94JD01155, 1994.
Lind, J. A., Lazrus, A. L., and Kok, G. L.:
Aqueous Phase Oxidation of Sulfur(IV) by Hydrogen-Peroxide, Methylhydroperoxide, and Peroxyacetic Acid,
J. Geophys. Res.-Atmos.,
92, 4171–4177, https://doi.org/10.1029/JD092iD04p04171, 1987.
Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J., Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A. S., and da Silva, A. M.: A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, 2018.
Liu, J., Horowitz, L. W., Fan, S., Carlton, A. G., and Levy, H.:
Global in-cloud production of secondary organic aerosols: Implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3,
J. Geophys. Res.-Atmos.,
117, D15303, https://doi.org/10.1029/2012jd017838, 2012.
Liu, X., Penner, J. E., Das, B., Bergmann, D., Rodriguez, J. M., Strahan, S., Wang, M., and Feng, Y.:
Uncertainties in global aerosol simulations: Assessment using three meteorological data sets,
J. Geophys. Res.,
112, D11202, https://doi.org/10.1029/2006jd008216, 2007.
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012.
Logager, T., Holcman, J., Sehested, K., and Pedersen, T.:
Oxidation of Ferrous-Ions by Ozone in Acidic Solutions,
Inorg. Chem.,
31, 3523–3529, 1992.
Logager, T., Sehested, K., and Holcman, J.:
Rate Constants of the Equilibrium Reactions + HNO3 ⇄ + NO3 and + ⇄ + NO3,
Radiat. Phys. Chem.,
41, 539–543, https://doi.org/10.1016/0969-806x(93)90017-O, 1993.
Ma, J., Chu, B., Liu, J., Liu, Y., Zhang, H., and He, H.:
NOx promotion of SO2 conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing,
Environ. Pollut.,
233, 662–669, https://doi.org/10.1016/j.envpol.2017.10.103, 2018.
Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, https://doi.org/10.5194/acp-13-509-2013, 2013.
Mao, J., Fan, S., and Horowitz, L. W.:
Soluble Fe in Aerosols Sustained by Gaseous HO2 Uptake,
Environ. Sci. Tech. Let.,
4, 98–104, https://doi.org/10.1021/acs.estlett.7b00017, 2017.
Martin, L. R., Damschen, D. E., and Judeikis, H. S.: Sulfur Dioxide Oxidation Reactions in Aqueous Solution,
U.S. Environmental Protection Agency, Research Triangle Park, NC, 1981.
Martin, L. R., Hill, M. W., Tai, A. F., and Good, T. W.:
The Iron Catalyzed Oxidation of Sulfur(IV) in Aqueous-Solution – Differing Effects of Organics at High and Low pH,
J. Geophys. Res.-Atmos.,
96, 3085–3097, 1991.
Maruthamuthu, P. and Neta, P.:
Radiolytic Chain Decomposition of Peroxomonophosphoric and Peroxomonosulfuric Acids,
J. Phys. Chem.-US,
81, 937–940, 1977.
Maruthamuthu, P. and Neta, P.:
Phosphate Radicals – Spectra, Acid-Base Equilibria, and Reactions with Inorganic-Compounds,
J. Phys. Chem.-US,
82, 710–713, 1978.
Mathur, R.:
Multiscale Air Quality Simulation Platform (MAQSIP): Initial applications and performance for tropospheric ozone and particulate matter,
J. Geophys. Res.,
110, D13308, https://doi.org/10.1029/2004jd004918, 2005.
Matthijsen, J., Builtjes, P. J. H., and Sedlak, D. L.:
Cloud Model Experiments of the Effect of Iron and Copper on Tropospheric Ozone under Marine and Continental Conditions,
Meteorol. Atmos. Phys.,
57, 43–60, https://doi.org/10.1007/Bf01044153, 1995.
McArdle, J. V. and Hoffmann, M. R.:
Kinetics and Mechanism of the Oxidation of Aquated Sulfur-Dioxide by Hydrogen-Peroxide at Low Ph,
J. Phys. Chem.-US,
87, 5425–5429, 1983.
McDaniel, M. F. M., Ingall, E. D., Morton, P. L., Castorina, E., Weber, R. J., Shelley, R. U., Landing, W. M., Longo, A. F., Feng, Y., and Lai, B.:
Relationship between Atmospheric Aerosol Mineral Surface Area and Iron Solubility,
ACS Earth and Space Chemistry,
3, 2443–2451, https://doi.org/10.1021/acsearthspacechem.9b00152, 2019.
McElroy, W. J.:
An experimental study of the reactions of some salts of oxy-sulphur acids and reduced sulphur compounds with strong oxidants (O3, H2O2, and ),
Cent. Electr. Generating Board, Leatherhead, England, 1987.
McElroy, W. J. and Waygood, S. J.:
Kinetics of the Reactions of the Radical with , , H2O and Fe2+,
J. Chem. Soc. Faraday T.,
86, 2557–2564, https://doi.org/10.1039/ft9908602557, 1990.
Miller, C. J., Rose, A. L., and Waite, T. D.:
Hydroxyl Radical Production by H2O2-Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions,
Environ. Sci. Technol.,
47, 829–835, 2013.
Millero, F. J. and Sotolongo, S.:
The Oxidation of Fe(II) with H2O2 in Seawater,
Geochim. Cosmochim. Ac.,
53, 1867–1873, 1989.
Mirabel, P.: Investigations of the uptake rate of some atmospheric trace gases, RINOXA Final Report, 1996.
Moch, J. M., Dovrou, E., Mickley, L. J., Keutsch, F. N., Liu, Z., Wang, Y., Dombek, T. L., Kuwata, M., Budisulistiorini, S. H., Yang, L., Decesari, S., Paglione, M., Alexander, B., Shao, J., Munger, J. W., and Jacob, D. J.:
Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality,
J. Geophys. Res.-Atmos.,
125, e2020JD032706, https://doi.org/10.1029/2020JD032706, 2020.
Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Johnson, M. S., Meskhidze, N., Kok, J. F., Guieu, C., Baker, A. R., Jickells, T. D., Sarin, M. M., Bikkina, S., Shelley, R., Bowie, A., Perron, M. M. G., and Duce, R. A.: Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study, Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, 2018.
Olson, T. M. and Hoffmann, M. R.:
Hydroxyalkylsulfonate Formation – Its Role as a S(IV) Reservoir in Atmospheric Water Droplets,
Atmos. Environ.,
23, 985–997, https://doi.org/10.1016/0004-6981(89)90302-8, 1989.
Pandis, S. N. and Seinfeld, J. H.:
Sensitivity Analysis of a Chemical Mechanism for Aqueous-Phase Atmospheric Chemistry,
J. Geophys. Res.-Atmos.,
94, 1105–1126, 1989.
Pang, S. Y., Jiang, J., and Ma, J.:
Oxidation of Sulfoxides and Arsenic(III) in Corrosion of Nanoscale Zero Valent Iron by Oxygen: Evidence against Ferryl Ions (Fe(IV)) as Active Intermediates in Fenton Reaction,
Environ. Sci. Technol.,
45, 307–312, https://doi.org/10.1021/es102401d, 2011.
Park, J. Y. and Lee, Y. N.:
Solubility and Decomposition Kinetics of Nitrous-Acid in Aqueous-Solution,
J. Phys. Chem.-US,
92, 6294–6302, https://doi.org/10.1021/j100333a025, 1988.
Pikaev, A. K., Sibirska.Gk, Shirshov, E. M., Glazunov, P. Y., and Spitsyn, V. I.:
Pulse-Radiolysis of Concentrated Aqueous-Solutions of Nitric-Acid,
Dokl. Akad. Nauk. SSSR+,
215, 645–648, 1974.
Pöschl, U. and Shiraiwa, M.:
Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene,
Chem. Rev.,
115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015.
Pozzer, A., de Meij, A., Pringle, K. J., Tost, H., Doering, U. M., van Aardenne, J., and Lelieveld, J.: Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model, Atmos. Chem. Phys., 12, 961–987, https://doi.org/10.5194/acp-12-961-2012, 2012.
Quan, J., Liu, Q., Li, X., Gao, Y., Jia, X., Sheng, J., and Liu, Y.:
Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events,
Atmos. Environ.,
122, 306–312, https://doi.org/10.1016/j.atmosenv.2015.09.068, 2015.
Raabe, G.:
Eine laserphotolytische Studie zur Kinetik der Reaktionen des NO3-Radikals in wäßriger Lösung,
Cuvillier, Göttingen, Germany, 1996.
Redlich, O.:
The Dissociation of Strong Electrolytes,
Chem. Rev.,
39, 333–356, https://doi.org/10.1021/cr60123a005, 1946.
Reese, A., Herrmann, H., and Zellner, R.:
Kinetics and spectroscopy of organic peroxyl radicals (RO2) in aqueous solution,
in: Proceedings of Eurotrac Symposium '96 – Transport and Transformation of Pollutants in the Troposphere, 25–29 March 1996, Garmisch Partenkirchen, Germany, 1, 377–381, Accession Number WOS:A1997BH53U00067, 1997.
Rettich, T. R.:
Some photochemical reactions of aqueous nitric acid,
Diss. Abstr. Int. B,
38, 5968, 1978.
Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W.:
Reactive uptake of NO3 on pure water and ionic solutions,
J. Geophys. Res.-Atmos.,
101, 21023–21031, https://doi.org/10.1029/96jd01844, 1996.
Rush, J. D. and Bielski, B. H. J.:
Pulse Radiolytic Studies of the Reactions of HO2/ with Fe(II)/Fe(III) Ions – the Reactivity of HO2/ with Ferric Ions and Its Implication on the Occurrence of the Haber-Weiss Reaction,
J. Phys. Chem.-US,
89, 5062–5066, https://doi.org/10.1021/j100269a035, 1985.
Sander, R.:
Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry,
Max-Planck Institute of Chemistry, Mainz, Germany,
3, https://doi.org/10.1016/j.ecss.2012.02.006, 1999.
Santana-Casiano, J. M., Gonzaalez-Davila, M., and Millero, F. J.:
Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters,
Environ. Sci. Technol.,
39, 2073–2079, 2005.
Schmidt, K. H.:
Electrical conductivity techniques for studying the kinetics of radiation induced chemical reactions in aqueous solutions,
Int. J. Radiat. Phys. Ch.,
4, 439–468, 1972.
Sedwick, P. N., Sholkovitz, E. R., and Church, T. M.:
Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea,
Geochem. Geophy. Geosy.,
8, 1–21, https://doi.org/10.1029/2007gc001586, 2007.
Sehested, K., Rasmussen, O. L., and Fricke, H.:
Rate Constants of OH with HO2, and from Hydrogen Peroxide Formation in Pulse-Irradiated Oxygenated Water,
J. Phys. Chem.-US,
72, 626–631, 1968.
Sehested, K., Holcman, J., and Hart, E. J.:
Rate Constants and Products of the Reactions of , , and H with Ozone in Aqueous-Solutions,
J. Phys. Chem.-US,
87, 1951–1954, 1983.
Seinfeld, J. H. and Pandis, S. N.:
Atmospheric chemistry and physics: from air pollution to climate change,
John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2016.
Sha, T., Ma, X., Jia, H., Tian, R., Chang, Y., Cao, F., and Zhang, Y.:
Aerosol chemical component: Simulations with WRF-Chem and comparison with observations in Nanjing,
Atmos. Environ.,
218, 1–12, https://doi.org/10.1016/j.atmosenv.2019.116982, 2019.
Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, 2019.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
Shi, G., Xu, J., Shi, X., Liu, B., Bi, X., Xiao, Z., Chen, K., Wen, J., Dong, S., Tian, Y., Feng, Y., Yu, H., Song, S., Zhao, Q., Gao, J., and Russell, A. G.:
Aerosol pH Dynamics During Haze Periods in an Urban Environment in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and Secondary Aerosol Formation and Urban Environment,
J. Geophys. Res.-Atmos.,
124, 9730–9742, https://doi.org/10.1029/2018jd029976, 2019.
Shi, J., Guan, Y., Ito, A., Gao, H., Yao, X., Baker, A. R., and Zhang, D.:
High Production of Soluble Iron Promoted by Aerosol Acidification in Fog,
Geophys. Res. Lett., 47, 1–8, https://doi.org/10.1029/2019gl086124, 2020.
Sholkovitz, E. R., Sedwick, P. N., and Church, T. M.:
Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic,
Geochim. Cosmochim. Ac.,
73, 3981–4003, https://doi.org/10.1016/j.gca.2009.04.029, 2009.
Song, S., Ma, T., Zhang, Y., Shen, L., Liu, P., Li, K., Zhai, S., Zheng, H., Gao, M., Moch, J. M., Duan, F., He, K., and McElroy, M. B.: Global modeling of heterogeneous hydroxymethanesulfonate chemistry, Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, 2021.
Staehelin, J. and Hoigne, J.:
Decomposition of Ozone in Water – Rate of Initiation by Hydroxide Ions and Hydrogen-Peroxide,
Environ. Sci. Technol.,
16, 676–681, 1982.
Strehlow, H. and Wagner, I.:
Flash-Photolysis in Aqueous Nitrite Solutions,
Z. Phys. Chem. Neue Fol.,
132, 151–160, 1982.
Tan, J., Duan, J., Zhen, N., He, K., and Hao, J.:
Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing,
Atmos. Res.,
167, 24–33, https://doi.org/10.1016/j.atmosres.2015.06.015, 2016.
Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.:
Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical Oxidation and Implications for Secondary Organic Aerosol,
Environ. Sci. Technol.,
43, 8105–8112, 2009.
Tang, M., Cziczo, D. J., and Grassian, V. H.:
Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation,
Chem. Rev.,
116, 4205–4259, https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Tang, Y., Thorn, R. P., Mauldin, R. L., and Wine, P. H.:
Kinetics and Spectroscopy of the Radical in Aqueous-Solution,
J. Photoch. Photobio. A,
44, 243–258, https://doi.org/10.1016/1010-6030(88)80097-2, 1988.
Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China, Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, 2017.
Thomas, J. K.:
The rate constants for H atom reactions in aqueous solution,
J. Phys. Chem.,
67, 2593–2595, 1963.
Tilgner, A., Bräuer, P., Wolke, R., and Herrmann, H.:
Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i,
J. Atmos. Chem.,
70, 221–256, https://doi.org/10.1007/s10874-013-9267-4, 2013.
Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Kampf, C. J., Berkemeier, T., Brune, W. H., Poschl, U., and Shiraiwa, M.:
Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene,
Faraday Discuss.,
200, 251–270, https://doi.org/10.1039/c7fd00023e, 2017.
Treinin, A. and Hayon, E.:
Absorption Spectra and Reaction Kinetics of NO2, N2O3, and N2O4 in Aqueous Solution,
J. Am. Chem. Soc.,
92, 5821–5828, 1970.
United States Environmental Protection Agency: Pre-Generated Data Files, US EPA [data set], available at: https://aqs.epa.gov/aqsweb/airdata/download_files.html, last access: 19 July 2020.
Wagner, I., Strehlow, H., and Busse, G.:
Flash-Photolysis of Nitrate Ions in Aqueous-Solution,
Z. Phys. Chem. Neue Fol.,
123, 1–33, https://doi.org/10.1524/zpch.1980.123.1.001, 1980.
Walling, C. and Goosen, A.:
Mechanism of Ferric Ion Catalyzed Decomposition of Hydrogen-Peroxide – Effect of Organic Substrates,
J. Am. Chem. Soc.,
95, 2987–2991, https://doi.org/10.1021/ja00790a042, 1973.
Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang, D. D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J. R., Lee, H. C., Hwang, S., Liao, H., Martin, S. T., Zhang, Q., Chen, M., Sun, Y., Ge, X., and Jacob, D. J.:
Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze,
Nat. Commun.,
11, 2844, https://doi.org/10.1038/s41467-020-16683-x, 2020.
Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., and Tao, S.: Sources, transport and deposition of iron in the global atmosphere, Atmos. Chem. Phys., 15, 6247–6270, https://doi.org/10.5194/acp-15-6247-2015, 2015.
Warneck, P.:
The oxidation of sulfur(IV) by reaction with iron(III): a critical review and data analysis,
Phys. Chem. Chem. Phys.,
20, 4020–4037, https://doi.org/10.1039/c7cp07584g, 2018.
Warneck, P. and Wurzinger, C.:
Product Quantum Yields for the 305 nm Photodecomposition of in Aqueous-Solution,
J. Phys. Chem.-US,
92, 6278–6283, https://doi.org/10.1021/j100333a022, 1988.
Wei, Y., Chen, X., Chen, H., Li, J., Wang, Z., Yang, W., Ge, B., Du, H., Hao, J., Wang, W., Li, J., Sun, Y., and Huang, H.: IAP-AACM v1.0: a global to regional evaluation of the atmospheric chemistry model in CAS-ESM, Atmos. Chem. Phys., 19, 8269–8296, https://doi.org/10.5194/acp-19-8269-2019, 2019.
Weinsteinlloyd, J. and Schwartz, S. E.:
Low-Intensity Radiolysis Study of Free-Radical Reactions in Cloudwater – H2O2 Production and Destruction,
Environ. Sci. Technol.,
25, 791–800, https://doi.org/10.1021/es00016a027, 1991.
Welch, M. J., Lifton, J. F., and Seck, J. A.:
Tracer Studies with Radioactive Oxygen-15. Exchange between Carbon Dioxide and Water,
J. Phys. Chem.-US,
73, 3351–3356, https://doi.org/10.1021/j100844a033, 1969.
Wiegand, H. L., Orths, C. T., Kerpen, K., Lutze, H. V., and Schmidt, T. C.:
Investigation of the Iron-Peroxo Complex in the Fenton Reaction: Kinetic Indication, Decay Kinetics, and Hydroxyl Radical Yields,
Environ. Sci. Technol.,
51, 14321–14329, https://doi.org/10.1021/acs.est.7b03706, 2017.
Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D.:
Kinetics of Aqueous Phase Reactions of the Radical with Potential Importance in Cloud Chemistry,
J. Geophys. Res.-Atmos.,
94, 1085–1094, https://doi.org/10.1029/JD094iD01p01085, 1989.
Xie, X., Liu, X., Wang, H., and Wang, Z.:
Effects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions,
Atmosphere,
7, 1–12, https://doi.org/10.3390/atmos7080099, 2016.
Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., and Yu, J. Z.:
Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation,
Environ. Sci. Technol.,
50, 7325–7334, https://doi.org/10.1021/acs.est.6b00768, 2016.
Zellner, R., Exner, M., and Herrmann, H.:
Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K,
J. Atmos. Chem.,
10, 411–425, 1990.
Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A.: Formation and Reactions of Oxidants in the Aqueous Phase, in: Heterogeneous and Liquid Phase Processes, edited by: Warneck, P., Springer, Berlin, p. 146152, 1996.
Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., He, K., and Jiang, J.:
Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model,
Atmos. Environ.,
62, 228–242, https://doi.org/10.1016/j.atmosenv.2012.08.014, 2012.
Zhang, M., Liu, X., Diao, M., D'Alessandro, J. J., Wang, Y., Wu, C., Zhang, D., Wang, Z., and Xie, S.:
Impacts of Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of Arctic Mixed-Phase Clouds with NCAR CAM5,
J. Geophys. Res.-Atmos.,
124, 13071–13090, https://doi.org/10.1029/2019jd030502, 2019.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X., Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C. K., Gao, J., and McElroy, M. B.:
Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China,
Environ. Sci. Technol. Let.,
7, 632–638, https://doi.org/10.1021/acs.estlett.0c00368, 2020.
Ziajka, J., Beer, F., and Warneck, P.:
Iron-Catalyzed Oxidation of Bisulfite Aqueous-Solution – Evidence for a Free-Radical Chain Mechanism,
Atmos. Environ.,
28, 2549–2552, https://doi.org/10.1016/1352-2310(94)90405-7, 1994.
Short summary
Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry greatly reduced SO2 overestimation. The biases in annual simulated SO2 concentrations (or mixing ratios) decreased by 46 %, 41 %, and 22 % in Europe, the USA, and China, respectively. Fe chemistry and HOx chemistry contributed more to SO2 oxidation than N chemistry. Higher concentrations of soluble Fe and higher pH values could further enhance the oxidation capacity.
Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry...
Altmetrics
Final-revised paper
Preprint