Articles | Volume 21, issue 21
Atmos. Chem. Phys., 21, 16093–16120, 2021
https://doi.org/10.5194/acp-21-16093-2021
Atmos. Chem. Phys., 21, 16093–16120, 2021
https://doi.org/10.5194/acp-21-16093-2021
Research article
02 Nov 2021
Research article | 02 Nov 2021

Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO2 in CESM2

Wendong Ge et al.

Related authors

First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022,https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020,https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: roles of organic and inorganic components
Minli Wang, Yiqun Chen, Heyun Fu, Xiaolei Qu, Bengang Li, Shu Tao, and Dongqiang Zhu
Atmos. Chem. Phys., 20, 7941–7954, https://doi.org/10.5194/acp-20-7941-2020,https://doi.org/10.5194/acp-20-7941-2020, 2020
Short summary
Do large-scale wind farms affect air quality forecast? Modeling evidence in Northern China
Si Li, Tao Huang, Jingyue Mo, Jixiang Li, Xiaodong Zhang, Jiao Du, Shu Tao, Junfeng Liu, Wanyanhan Jiang, Lulu Lian, Hong Gao, Xiaoxuan Mao, Yuan Zhao, and Jianmin Ma
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-991,https://doi.org/10.5194/acp-2019-991, 2020
Revised manuscript not accepted
Short summary
Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019,https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022,https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Amplified role of potential HONO sources in O3 formation in North China Plain during autumn haze aggravating processes
Jingwei Zhang, Chaofan Lian, Weigang Wang, Maofa Ge, Yitian Guo, Haiyan Ran, Yusheng Zhang, Feixue Zheng, Xiaolong Fan, Chao Yan, Kaspar R. Daellenbach, Yongchun Liu, Markku Kulmala, and Junling An
Atmos. Chem. Phys., 22, 3275–3302, https://doi.org/10.5194/acp-22-3275-2022,https://doi.org/10.5194/acp-22-3275-2022, 2022
Short summary
Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017
Lei Hu, Stephen A. Montzka, Fred Moore, Eric Hintsa, Geoff Dutton, M. Carolina Siso, Kirk Thoning, Robert W. Portmann, Kathryn McKain, Colm Sweeney, Isaac Vimont, David Nance, Bradley Hall, and Steven Wofsy
Atmos. Chem. Phys., 22, 2891–2907, https://doi.org/10.5194/acp-22-2891-2022,https://doi.org/10.5194/acp-22-2891-2022, 2022
Short summary
Surface ozone impacts on major crop production in China from 2010 to 2017
Dianyi Li, Drew Shindell, Dian Ding, Xiao Lu, Lin Zhang, and Yuqiang Zhang
Atmos. Chem. Phys., 22, 2625–2638, https://doi.org/10.5194/acp-22-2625-2022,https://doi.org/10.5194/acp-22-2625-2022, 2022
Short summary
Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China
Jing Cao, Shuping Situ, Yufang Hao, Shaodong Xie, and Lingyu Li
Atmos. Chem. Phys., 22, 2351–2364, https://doi.org/10.5194/acp-22-2351-2022,https://doi.org/10.5194/acp-22-2351-2022, 2022
Short summary

Cited articles

Acid Deposition Monitoring Network in East Asia: Data Report, Acid Deposition Monitoring Network in East Asia [data set], available at: https://monitoring.eanet.asia/document/public/index, last access: 2 November 2020. 
Adams, G. E. and Boag, J. W.: Spectroscopic studies of reactions of the OH radical, P. Chem. Soc. London, 1, 112–118, 1964. 
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget, J. Geophys. Res., 114, D02309, https://doi.org/10.1029/2008jd010486, 2009. 
Amels, P., Elias, H., Götz, U., Steinges, U., and Wannowius, K. J.: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, in: Heterogeneous and Liquid Phase Processes, edited by: Warneck, P., Transport and Chemical Transformation in Pollutants in the Troposphere, Springer, Berlin, 77–88, 1996. 
Au Yang, D., Bardoux, G., Assayag, N., Laskar, C., Widory, D., and Cartigny, P.: Atmospheric SO2 oxidation by NO2 plays no role in the mass independent sulfur isotope fractionation of urban aerosols, Atmos. Environ., 193, 109–117, https://doi.org/10.1016/j.atmosenv.2018.09.007, 2018. 
Download
Short summary
Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry greatly reduced SO2 overestimation. The biases in annual simulated SO2 concentrations (or mixing ratios) decreased by 46 %, 41 %, and 22 % in Europe, the USA, and China, respectively. Fe chemistry and HOx chemistry contributed more to SO2 oxidation than N chemistry. Higher concentrations of soluble Fe and higher pH values could further enhance the oxidation capacity.
Altmetrics
Final-revised paper
Preprint