Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Speciated atmospheric mercury at the Waliguan Global Atmosphere Watch station in the northeastern Tibetan Plateau: implication of dust-related sources for particulate bound mercury
Hui Zhang
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang,
550081, China
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang,
550081, China
CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences,
Xi'an, 710061, China
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
Beijing, 100085, China
Baoxin Li
China Global Atmosphere Watch Baseline Observatory, Qinghai
Meteorological Bureau, Xining, 810001, China
Peng Liu
China Global Atmosphere Watch Baseline Observatory, Qinghai
Meteorological Bureau, Xining, 810001, China
Guoqing Zhang
China Global Atmosphere Watch Baseline Observatory, Qinghai
Meteorological Bureau, Xining, 810001, China
Leiming Zhang
Air Quality Research Division, Science and Technology Branch,
Environment and Climate Change Canada, Toronto, M3H5T4, Canada
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang,
550081, China
CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences,
Xi'an, 710061, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Related authors
No articles found.
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
Atmos. Chem. Phys., 25, 8591–8611, https://doi.org/10.5194/acp-25-8591-2025, https://doi.org/10.5194/acp-25-8591-2025, 2025
Short summary
Short summary
Using the positive matrix factorization (PMF) model and observations, we showed that natural surface emission (wildfires and re-emitted Hg) dominated anthropogenic contributions to total gaseous mercury (TGM). Decreasing TGM was due to reduced shipping, local combustion, and regional emissions. Relative contributions from natural surface emissions increased by 0.3–1.8 % yr-1. Results showed Hg control measures have been effective, but greater attention is needed for monitoring surface re-emissions.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
Biogeosciences, 22, 1543–1556, https://doi.org/10.5194/bg-22-1543-2025, https://doi.org/10.5194/bg-22-1543-2025, 2025
Short summary
Short summary
This study examines the effect of dissolved organic matter (DOM) on microbial mercury (Hg) methylation in paddy soils. It uncovers that DOM regulates Hg methylation mainly through altering core Hg-methylating microbiome composition and boosting the growth of core Hg-methylating microorganisms. The study highlights that in the regulation of methylmercury formation in paddy soils, more attention should be paid to changes in DOM concentration and composition.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429, https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with 9 models at different land types worldwide. The input data stems from a database. The models estimated mostly reasonable summertime ozone deposition. The different results of the models varied by land cover which were mostly related to the moisture deficit. This is an important step for assessing the ozone impact on vegetation.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Preprint archived
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723, https://doi.org/10.5194/acp-20-9713-2020, https://doi.org/10.5194/acp-20-9713-2020, 2020
Short summary
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
Cited articles
AMAP/UNEP: Geospatially Distributed Mercury Emissions Dataset 2010v1,
available at: https://www.amap.no/mercury-emissions/datasets (last access:
25 April 2021), 2013.
AMAP/UNEP: Technical Background Assessment for the 2018 Global Mercury Assessment, available at: https://www.unep.org/resources/publication/global-mercury-assessment-2018 (last access: 4 March 2019), 2018.
Ambrose, J. L.: Improved methods for signal processing in measurements of mercury by Tekran® 2537A and 2537B instruments, Atmos. Meas. Tech., 10, 5063–5073, https://doi.org/10.5194/amt-10-5063-2017, 2017.
Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G.,
Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury
Physicochemical and Biogeochemical Transformation in the Atmosphere and at
Atmospheric Interfaces: A Review and Future Directions, Chem. Rev., 115,
3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Chakraborty, L. B., Qureshi, A., Vadenbo, C., and Hellweg, S.: Anthropogenic
Mercury Flows in India and Impacts of Emission Controls, Environ. Sci. Technol., 47, 8105–8113,
https://doi.org/10.1021/es401006k, 2013.
Che, H. Z., Wang, Y. Q., and Sun, J. Y.: Aerosol optical properties at Mt.
Waliguan Observatory, China, Atmos. Environ., 45, 6004–6009,
https://doi.org/10.1016/j.atmosenv.2011.07.050, 2011.
Chen, P., Kang, S., Li, C., Zhang, Q., Guo, J., Tripathee, L., Zhang, Y.,
Li, G., Gul, C., Cong, Z., Wan, X., Niu, H., Panday, A. K., Rupakheti, M.,
and Ji, Z.: Carbonaceous aerosol characteristics on the Third Pole: A
primary study based on the Atmospheric Pollution and Cryospheric Change
(APCC) network, Environ. Pollut., 253, 49–60,
https://doi.org/10.1016/j.envpol.2019.06.112, 2019.
Chen, S., Huang, J., Kang, L., Wang, H., Ma, X., He, Y., Yuan, T., Yang, B., Huang, Z., and Zhang, G.: Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results, Atmos. Chem. Phys., 17, 2401–2421, https://doi.org/10.5194/acp-17-2401-2017, 2017.
Cheng, I. and Zhang, L.: Uncertainty Assessment of Gaseous Oxidized Mercury
Measurements Collected by Atmospheric Mercury Network, Environ. Sci. Technol., 51, 855–862,
https://doi.org/10.1021/acs.est.6b04926, 2017.
Cheng, I., Zhang, L., Blanchard, P., Dalziel, J., and Tordon, R.: Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada, Atmos. Chem. Phys., 13, 6031–6048, https://doi.org/10.5194/acp-13-6031-2013, 2013.
Chiapello, I., Prospero, J. M., Herman, J. R., and Hsu, N. C.: Detection of
mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7
TOMS, J. Geophys. Res.-Atmos., 104, 9277–9291, https://doi.org/10.1029/1998jd200083, 1999.
Cole, A. S., Steffen, A., Eckley, C. S., Narayan, J., Pilote, M., Tordon,
R., Graydon, J. A., St Louis, V. L., Xu, X. H., and Branfireun, B. A.: A
Survey of Mercury in Air and Precipitation across Canada: Patterns and
Trends, Atmosphere, 5, 635–668, https://doi.org/10.3390/atmos5030635,
2014.
D'Amore, F., Bencardino, M., Cinnirella, S., Sprovieri, F., and Pirrone, N.:
Data quality through a web-based QA/QC system: implementation for
atmospheric mercury data from the global mercury observation system, Environ. Sci.-Proc. Imp., 17, 1482–1491, https://doi.org/10.1039/c5em00205b, 2015.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.:
Mercury as a Global Pollutant: Sources, Pathways, and Effects, Environ. Sci.
Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
Faïn, X., Obrist, D., Hallar, A. G., Mccubbin, I., and Rahn, T.: High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains, Atmos. Chem. Phys., 9, 8049–8060, https://doi.org/10.5194/acp-9-8049-2009, 2009.
Fu, X., Feng, X., Wang, S., Rothenberg, S., Shang, L., Li, Z., and Qiu, G.:
Temporal and spatial distributions of total gaseous mercury concentrations
in ambient air in a mountainous area in southwestern China: implications for
industrial and domestic mercury emissions in remote areas in China, Sci. Total Environ., 407, 2306–2314,
https://doi.org/10.1016/j.scitotenv.2008.11.053, 2009.
Fu, X., Feng, X., Sommar, J., and Wang, S.: A review of studies on
atmospheric mercury in China, Sci. Total Environ., 421–422, 73–81,
https://doi.org/10.1016/j.scitotenv.2011.09.089, 2012.
Fu, X., Marusczak, N., Heimbürger, L.-E., Sauvage, B., Gheusi, F., Prestbo, E. M., and Sonke, J. E.: Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmos. Chem. Phys., 16, 5623–5639, https://doi.org/10.5194/acp-16-5623-2016, 2016.
Fu, X. W., Feng, X. B., Zhu, W. Z., Wang, S. F., and Lu, J. L.: Total
gaseous mercury concentrations in ambient air in the eastern slope of Mt.
Gongga, South-Eastern fringe of the Tibetan plateau, China, Atmos. Environ.,
42, 970–979, https://doi.org/10.1016/j.atmosenv.2007.10.018, 2008.
Fu, X. W., Feng, X., Liang, P., Deliger, Zhang, H., Ji, J., and Liu, P.: Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmos. Chem. Phys., 12, 1951–1964, https://doi.org/10.5194/acp-12-1951-2012, 2012.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo., 118, 317–328,
https://doi.org/10.1002/jgrg.20042, 2013.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
Gustin, M. S., Dunham-Cheatham, S. M., and Zhang, L.: Comparison of 4
Methods for Measurement of Reactive, Gaseous Oxidized, and Particulate Bound
Mercury, Environ. Sci. Technol., 53, 14489–14495,
https://doi.org/10.1021/acs.est.9b04648, 2019.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and
Celarier, E.: Global distribution of UV-absorbing aerosols from Nimbus
7/TOMS data, J. Geophys. Res.-Atmos., 102, 16911–16922,
https://doi.org/10.1029/96jd03680, 1997.
Huang, J., Kang, S., Yin, R., Ram, K., Liu, X., Lu, H., Guo, J., Chen, S.,
and Tripathee, L.: Desert dust as a significant carrier of atmospheric
mercury, Environ. Pollut., 267, 115442,
https://doi.org/10.1016/j.envpol.2020.115442, 2020.
Jonsson, S., Skyllberg, U., Nilsson, M. B., Lundberg, E., Andersson, A., and
Bjorn, E.: Differentiated availability of geochemical mercury pools controls
methylmercury levels in estuarine sediment and biota, Nat. Commun., 5, 4624,
https://doi.org/10.1038/ncomms5624, 2014.
Kim, P. R., Han, Y. J., Holsen, T. M., and Yi, S. M.: Atmospheric
particulate mercury: Concentrations and size distributions, Atmos. Environ.,
61, 94–102, https://doi.org/10.1016/j.atmosenv.2012.07.014, 2012.
Kubilay, N., Oguz, T., Kocak, M., and Torres, O.: Ground-based assessment of
Total Ozone Mapping Spectrometer (TOMS) data for dust transport over the
northeastern Mediterranean, Global Biogeochem. Cy., 19, Gb1022, https://doi.org/10.1029/2004gb002370, 2005.
Lan, X., Talbot, R., Castro, M., Perry, K., and Luke, W.: Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data, Atmos. Chem. Phys., 12, 10569–10582, https://doi.org/10.5194/acp-12-10569-2012, 2012.
Lin, H., Tong, Y., Yin, X., Zhang, Q., Zhang, H., Zhang, H., Chen, L., Kang, S., Zhang, W., Schauer, J., de Foy, B., Bu, X., and Wang, X.: First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence oftransboundary pollutant invasion, Atmos. Chem. Phys., 19, 1373–1391, https://doi.org/10.5194/acp-19-1373-2019, 2019.
Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S.,
Stevens, R. K., Goodsite, M., and Richter, A.: Dynamic oxidation of gaseous
mercury in the Arctic troposphere at polar sunrise, Environ. Sci. Technol., 36,
1245–1256, https://doi.org/10.1021/es0111941, 2002.
Loewen, M., Kang, S., Armstrong, D., Zhang, Q., Tomy, G., and Wang, F.:
Atmospheric transport of mercury to the Tibetan Plateau, Environ. Sci. Technol., 41, 7632–7638, https://doi.org/10.1021/es0710398, 2007.
Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., and Zhang, L.: An
updated review of atmospheric mercury, Sci. Total. Environ., 707, 135575,
https://doi.org/10.1016/j.scitotenv.2019.135575, 2020.
Moulin, C. and Chiapello, I.: Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000), Geophys. Res. Lett., 31, L02107, https://doi.org/10.1029/2003gl018931, 2004.
Murphy, D. M., Hudson, P. K., Thomson l, D., Sheridan, P. J., and Wilson, J.
C.: Observations of mercury-containing aerosols, Environ. Sci. Technol., 40,
3163–3167, https://doi.org/10.1021/es052385x, 2006.
Obrist, D., Moosmuller, H., Schurmann, R., Chen, L. W., and Kreidenweis, S.
M.: Particulate-phase and gaseous elemental mercury emissions during biomass
combustion: controlling factors and correlation with particulate matter
emissions, Environ. Sci. Technol., 42, 721–727,
https://doi.org/10.1021/es071279n, 2008.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
Okamoto, S. and Tanimoto, H.: A review of atmospheric chemistry observations
at mountain sites, Prog. Earth Planet Sc., 3, 34, https://doi.org/10.1186/s40645-016-0109-2, 2016.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, https://doi.org/10.5194/acp-10-5951-2010, 2010.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000rg000095, 2002.
Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., and Scott,
C.: Global source attribution for mercury deposition in the United States, Environ. Sci. Technol., 38, 555–569,
https://doi.org/10.1021/es034109t, 2004.
Selin, N. E.: Global Biogeochemical Cycling of Mercury: A Review, Annu. Rev. Env. Resour., 34, 43–63,
https://doi.org/10.1146/annurev.environ.051308.084314, 2009.
Sheu, G. R. and Mason, R. P.: An examination of methods for the measurements
of reactive gaseous mercury in the atmosphere, Environ. Sci. Technol., 35,
1209–1216, https://doi.org/10.1021/es001183s, 2001.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Sun, R. Y., Sun, G. Y., Kwon, S. Y., Feng, X. B., Kang, S. C., Zhang, Q. G.,
Huang, J., and Yin, R. S.: Mercury biogeochemistry over the Tibetan Plateau:
An overview, Crit. Rev. Env. Sci. Tec., 51, 577–602,
https://doi.org/10.1080/10643389.2020.1733894, 2021.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of
backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.-Atmos., 103, 17099–17110, 1998.
Tsamalis, C., Ravetta, F., Gheusi, F., Delbarre, H., and Augustin, P.:
Mixing of free-tropospheric air with the lowland boundary layer during
anabatic transport to a high altitude station, Atmos. Res., 143, 425–437,
https://doi.org/10.1016/j.atmosres.2014.03.011, 2014.
Wang, X., Lin, C.-J., Yuan, W., Sommar, J., Zhu, W., and Feng, X.: Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China, Atmos. Chem. Phys., 16, 11125–11143, https://doi.org/10.5194/acp-16-11125-2016, 2016.
Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software
that uses various trajectory statistical analysis methods to identify
potential sources from long-term air pollution measurement data, Environ. Modell. Softw., 24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004,
2009.
Wright, L. P., Zhang, L. M., Cheng, I., Aherne, J., and Wentworth, G. R.:
Impacts and Effects Indicators of Atmospheric Deposition of Major Pollutants
to Various Ecosystems – A Review, Aerosol Air Qual. Res., 18, 1953–1992,
https://doi.org/10.4209/aaqr.2018.03.0107, 2018.
Wu, Y., Wang, S. X., Streets, D. G., Hao, J. M., Chan, M., and Jiang, J. K.:
Trends in anthropogenic mercury emissions in China from 1995 to 2003, Environ. Sci. Technol., 40, 5312–5318,
2006.
Xu, W., Xu, X., Lin, M., Lin, W., Tarasick, D., Tang, J., Ma, J., and Zheng, X.: Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability, Atmos. Chem. Phys., 18, 773–798, https://doi.org/10.5194/acp-18-773-2018, 2018.
Xuan, J., Liu, G. L., and Du, K.: Dust emission inventory in Northern China,
Atmos. Environ., 34, 4565-4570,
https://doi.org/10.1016/S1352-2310(00)00203-X, 2000.
Yin, X., Kang, S., de Foy, B., Ma, Y., Tong, Y., Zhang, W., Wang, X., Zhang, G., and Zhang, Q.: Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4730 m a.s.l.) in the inland Tibetan Plateau region, Atmos. Chem. Phys., 18, 10557–10574, https://doi.org/10.5194/acp-18-10557-2018, 2018.
Yu, G. Y., Qin, X. F., Xu, J., Zhou, Q., Wang, B., Huang, K., and Deng, C.
R.: Characteristics of particulate-bound mercury at typical sites situated
on dust transport paths in China, 648, 1151–1160, Sci. Total Environ.,
https://doi.org/10.1016/j.scitotenv.2018.08.137, 2019.
Zhang, B., Tsunekawa, A., and Tsubo, M.: Contributions of sandy lands and
stony deserts to long-distance dust emission in China and Mongolia during
2000–2006, 60, 487–504, Global Planet. Change,
https://doi.org/10.1016/j.gloplacha.2007.06.001, 2008.
Zhang, H., Fu, X. W., Lin, C.-J., Wang, X., and Feng, X. B.: Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China, Atmos. Chem. Phys., 15, 653–665, https://doi.org/10.5194/acp-15-653-2015, 2015.
Zhang, H., Fu, X., Lin, C.-J., Shang, L., Zhang, Y., Feng, X., and Lin, C.: Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China, Atmos. Chem. Phys., 16, 13131–13148, https://doi.org/10.5194/acp-16-13131-2016, 2016.
Zhang, H., Fu, X., Wang, X., and Feng, X.: Measurements and Distribution of
Atmospheric Particulate-Bound Mercury: A Review, B. Environ. Contam.
Tox., 103, 48–54, https://doi.org/10.1007/s00128-019-02663-5, 2019.
Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M.,
Yang, H., Hao, J., and Liu, X.: Updated emission inventories for speciated
atmospheric mercury from anthropogenic sources in China, 49, 3185–3194, Environ. Sci.
Technol., https://doi.org/10.1021/es504840m, 2015.
Zhao, Z. Z., Cao, J. J., Shen, Z. X., Xu, B. Q., Zhu, C. S., Chen, L. W. A.,
Su, X. L., Liu, S. X., Han, Y. M., Wang, G. H., and Ho, K. F.: Aerosol
particles at a high-altitude site on the Southeast Tibetan Plateau, China:
Implications for pollution transport from South Asia, J. Geophys. Res.-Atmos.,
118, 11360–11375, https://doi.org/10.1002/jgrd.50599, 2013.
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show...
Altmetrics
Final-revised paper
Preprint