

Supplement of

Speciated atmospheric mercury at the Waliguan Global Atmosphere Watch station in the northeastern Tibetan Plateau: implication of dust-related sources for particulate bound mercury

Hui Zhang et al.

Correspondence to: Xuewu Fu (fuxuewu@mail.gyig.ac.cn) and Xinbin Feng (fengxinbin@vip.skleg.cn)

The copyright of individual parts of the supplement might differ from the article licence.

		GEM (ng m ⁻³)		GOM (pg m ⁻³)		PBM (pg m ⁻³)				Air			BC	
Month	AAI	mean	median	mean	median	mean	median	АТ (⁰ С)	RH (%)	water content (g m ⁻³)	WS (m s ⁻¹)	RF (mm)	(ng m ⁻ 3)	CO (ppbv)
January	0.3	1.89	1.96	24.8	23.8	133.7	127.7	-10.8	18.0	0.34	3.9		303.3	111.6
February	0.4	2.27	2.44	18.1	17.7	162.0	153.5	-7.1	22.4	0.60	5.1	3.0	344.0	124.7
March	0.7	2.36	2.24	12.2	11.5	156.6	152.0	-1.8	34.9	1.44	4.6		446.3	156.6
April	0.7	2.44	2.55	29.3	26.4	54.3	54.8	0.3	35.3	1.72	5.3	1.7	497.7	169.3
May	0.1	1.77	1.55	10.6	7.4	14.9	11.8	2.2	69.2	3.90	4.9	26.7	386.9	140.5
June	-0.1	1.78	1.54	5.7	5.1	24.4	23.1	6.1	56.0	4.19	4.8	35.8	379.8	133.8
July	-0.4	2.08	1.95	2.5	2.5	18.6	18.9	7.7	71.9	6.19	4.4	163.9	351.2	184.9
August	-0.4	1.86	1.89	5.3	5.0	20.5	20.3	8.1	57.9	4.98	4.6	78.8		152.9
September	-0.1	2.18	1.99	9.1	8.1	36.4	36.1	4.0	52.3	3.40	4.2	41.1	451.8	165.3
October	0.1	1.37	1.28	7.4	6.8	21.9	20.3	-1.8	30.7	1.26	4.3	7.3	482.9	122.0
November	0.5	1.33	1.29	6.1	4.9	35.7	35.6	-7.5	18.9	0.47	6.1	1.6	321.7	175.0
December	0.5	1.41	1.46	21.6	19.6	71.4	69.0	-11.1	17.6	0.33	5.6		269.1	
Warm seaons	-0.14	1.84	1.70	6.8	5.8	22.8	21.8	4.4	56.3	3.99	4.5	58.9	410.5	149.9
Cold seasons	0.51	1.95	1.99	18.7	17.3	102.3	98.8	-6.3	24.5	0.82	5.1	2.1	363.7	147.4

 Table S1:
 The monthly means (median) of atmospheric mercury species and meteorological parameters at WLG.

		GEM	GOM	PBM	BC	со
GEM	Pearson Correlation	1				
	Sig. (2-tailed)					
	Ν	12				
GOM	Pearson Correlation	0.310	1			
	Sig. (2-tailed)	0.327				
	Ν	12	12			
PBM	Pearson Correlation	0.442	0.545	1		
	Sig. (2-tailed)	0.151	0.067			
	Ν	12	12	12		
BC	Pearson Correlation	0.441	0.019	-0.174	1	
	Sig. (2-tailed)	0.203	0.959	0.631		
	Ν	10	10	10	10	
со	Pearson Correlation	0.217	-0.296	-0.379	0.329	1
	Sig. (2-tailed)	0.522	0.377	0.251	0.387	
	Ν	11	11	11	9	11

Table S2: The correlations of speciated mercury associated with CO and BC (Black carbon) during monitoring period at WLG site.

* Correlation is significant at the 0.05 level (2-tailed).

** Correlation is significant at the 0.01 level (2-tailed).

Site	TSP Hg/TSP	РМ _{2.5} /ТЅР (ид д-1)	Dust emission flux	Amount of Hg associated with	References
	(ug g ⁻¹)	("55")	(Tg yr ⁻¹)	dust (Mg yr ⁻¹)	
Yulin	0.51	0.50			(Yu et al., 2019)
Duolun	0.48	0.44			
Hetian	0.35	0.22			
Tazhong	0.14	0.46			
Tazhong	0.13				
kashgar	0.84				(Huang et al., 2020)
Minfeng	0.13				
Ruoqiang	0.21				
Taxkorgan	0.20				
Mean	0.33	0.40			
Global			1836±903	606±298	(Engelstaedter et al., 2006)
China			242±120	80±40	(Laurent et al., 2006)

Table S3: The statistics of the total suspended particles (TSP) Hg/TSP (ug g⁻¹) and the estimates of Hg associated with dust emission from global and China.

Fig. S1: Medians distribution of daily GEM, GOM and PBM concentrations in ambient air at WLG.

Fig. S2: Monthly medians of GEM, GOM and PBM at WLG during a full-year sampling period.

Fig. S3: Distribution of monthly event frequencies from the over mean value of GEM (>1.90 ng m⁻³). GOM (>12.0 pg m⁻³), and PBM (>65.4 pg m⁻³) respectively at WLG. The mercury pollution events were defined as the observed values higher than the annual mean values of GEM, GOM and PBM.

Fig. S5: The distribution of Absorbing Aerosol Index (AAI) and Biomass burned area.

References:

Engelstaedter, S., Tegen, I., and Washington, R.: North African dust emissions and transport, Earth-Sci Rev, 79, 73-100, https://doi.org/10.1016/j.earscirev.2006.06.004, 2006. Huang, J., Kang, S., Yin, R., Ram, K., Liu, X., Lu, H., Guo, J., Chen, S., and Tripathee, L.: Desert dust as a significant carrier of atmospheric mercury, Environ Pollut, 267, 115442, https://doi.org/10.1016/j.envpol.2020.115442, 2020.

Laurent, B., Marticorena, B., Bergametti, G., and Mei, F.: Modeling mineral dust emissions from Chinese and Mongolian deserts, Global Planet Change, 52, 121-141, https://doi.org/10.1016/j.gloplacha.2006.02.012, 2006.

Yu, G. Y., Qin, X. F., Xu, J., Zhou, Q., Wang, B., Huang, K., and Deng, C. R.: Characteristics of particulate-bound mercury at typical sites situated on dust transport paths in China, Sci Total Environ, 648, 1151-1160, https://doi.org/10.1016/j.scitotenv.2018.08.137, 2019.